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Abstract.With the increased demands in streaming services today, existing catalog contents
are finding new exposures to large audiences. However, catalog contents and other old footage
are generally only available in interlaced format. Interlacing has traditionally been used to
double the perceived frame rate without consuming additional bandwidth. This allowed en-
hanced motion perception and reduced visible flicker. While old CRT displays can display
interlaced video directly, modern TV displays typically use progressive scanning. This has
more recently increased the interest in high quality deinterlacing algorithms. Deinterlacing
can be considered as an ill-posed inverse problem with the goal of reconstructing an original
input signal. As such it is challenging to solve, which becomes most apparent in the cases of
large motion. Interestingly however, we can easily describe the degradation incurred through
the subsampling strategy employed in interlacing, and therefore it is an ideal candidate for
a fully supervised deep learning approach. Despite recent successes of machine learning for
other tasks such as upscaling and denoising, deinterlacing has been explored relatively little
and the early solutions that employ learning do not manage to consistently outperform exist-
ing deinterlacing methods already established in the industry. In this paper, we aim to close
this gap by proposing a novel approach to deep video deinterlacing. Our approach addresses
previous shortcomings and leverages temporal information more coherently. In addition to
describing our architecture and training process in detail, we also include an ablation study
that shows the impact of our individual architectural choices. Last but not least we also con-
duct a detailed objective evaluation comparing our approach to existing industry solutions as
well as earlier learning based methods and show that we can consistently achieve significantly
improved quality scores.
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1 Introduction
The concept of breaking a video into interlaced lines was first formulated and patented by
German Telefunken engineer Fritz Schröter in 1930 [10]. Interlacing effectively is a sub-
sampling scheme that strikes a balance between resolution and frame rate, by alternatively
sampling rows from two consecutive frames. It was introduced to address the fact that TVs
were not yet powerful enough to display progressive videos at a sufficient refresh rate due to
their high bandwidth.
This worked well for many decades when played back on old CRT monitors, which can
natively display interlaced content and make it perceptually appear as a coherent image
sequence, aided by the afterglow of the display’s phosphor. However, modern TVs use
progressive scanning and are not able to properly display interlaced content requiring an
explicit deinterlacing step. This and the fact that old interlaced catalog content is finding new
audiences through streaming services has increased the interest in high quality deinterlacing
algorithms. Especially also since the interlacing scheme can come in more complex forms
in catalog content: In addition to subsampling, a variation of the interlacing scheme has
also been used to increase the video frame rate in a process referred to as telecine. Here
four frames are turned into five in a 2:3 pulldown to convert from 23.976Hz to 29.97Hz.
Catalogue content may thus be composed of sections that are purely interlaced, telecined,
or complex spatially varying compositions of both which increases the complexity of proper
deinterlacing.
Due to its nature, interlacing generally works well for videos with little motion but begins to
break down when the motion becomes larger. In such cases comb like artifacts introduced
by interlacing can become apparent (see Figure 1). Existing commercial tools use methods
that range from simple spatial interpolation, via directional dependent filtering, to motion
compensated interpolation. These methods often achieve good results but we observed that
they can create artefacts in complex situations and as such there is still an opportunity to
improve existing deinterlacing results.
Interestingly, the methods used in the industry do not yet leverage the capabilities of deep
learning although deep learning has shown impressive results in image enhancement tasks

Figure 1: Artifacts introduced by interlacing (left) and our reconstructed image (right).
Photo Credits: pexels.com.

2



that are closely related to deinterlacing such as upscaling [5, 11], inpainting [9, 13] or de-
noising [8, 15].
Some of the aforementioned problems are actually blind, making it harder to design appro-
priate solutions [3, 7], while deinterlacing is perfectly suited for fully supervised training as
the degradation process of interlacing is known and well defined. Therefore deinterlacing
seems to be an ideal candidate for a deep learning based solution.
However, even in academia, these opportunities have only been explored very little. Recently,
Zhu et al. [16] investigated using deep learning for the deinterlacing problem however the
proposed solution is limited to processing a single frame (two fields) at a time and thus does
not optimally leverage temporal information.
We propose a deep learning based solution that builds on recent advances in super-resolution
and leverages temporal information by considering pixels from multiple fields. Our solution
does not require to know the particular interlacing scheme used (e.g. standard interlacing,
telecine, or combinations thereof). The experimental evaluation investigates multiple alter-
natives for example regarding architectural choices or the size of the temporal window to
consider. We achieve state of the art results in our quantitative evaluation and demonstrate
preferable visual results. Even though we did not specifically tune our method or the imple-
mentation for speed, we obtain roughly 10fps for deinterlacing NTSC content on a standard
desktop machine with a recent GPU.
In summary, the contribution of the paper is a neural network architecture for the deinterlac-
ing problem that leverages information from neighboring fields, an ablation study regarding
several design choices, as well as state-of-the-art results.
Our paper is organised as follows: First we cover the most important related works. Then
we describe our solution and conduct an ablation study before comparing to other existing
methods and finally concluding.

2 Related Work
While there is a rich selection of methods for deinterlacing, deep learning based approaches
have been explored relatively little. We will first list traditional approaches for deinterlacing
and then discuss methods that employ learning.

Traditional methods are often categorized into field combination deinterlacing (weaving,
blending, inverse telecine), field extension deinterlacing (line doubling, interpolation), and
motion compensation deinterlacing. The latter are regarded as the most advanced algorithms
as they try to predict the direction and the amount of image motion between subsequent
fields in order to better blend the two fields together. They may employ algorithms similar to
block motion compensation used in video compression. One of the most popular and state-
of-the art algorithms is Yadif [2]. A summary of non machine learning based deinterlacing
algorithms can be found in [4].

(Deep) Learning-Based Deinterlacing has been explored very little so far. Nnedi3 [1]
is one of the very few tools using learning in the form of shallow neural networks for intra
frame deinterlacing. To the best of our knowledge, real time deep video deinterlacing [16]
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Figure 2: Overview of the proposed algorithm

is the first effort to address deinterlacing by means of deep learning. However, the method
suffers from several drawbacks due to suboptimal use of temporal information, operating
directly on interlaced inputs, and separately learning branches to fill in even and odd rows
although this is essentially the same task.

3 Deep Deinterlacing
The objective of deinterlacing is to reconstruct an original unknown sequence of progressive
frames from an interlaced input sequence. A progressive frame Ik consists of its odd and
even rows, denoted as I−k and I+k , respectively. We will refer to these rows as fields. If we
consider an interlaced sequence {I−1 , I+2 , I−3 , I+4 }, the objective is to recover the missing rows
in order to reconstruct the original sequence {I1, I2, I3, I4}.
To deinterlace a sequence of frames, the first step in our model as shown in Figure 2 is
separating the two fields corresponding to two different instants in time for each input frame.
The two fields are ordered in time corresponding to the original video frames. Applying this
process to an interlaced sequence yields a sequence of alternating top and bottom fields. Our
goal is to find the missing half of the field sequence. Note that in order to perform this step
it must be known whether the original video was interlaced in a top field first or a bottom
field first way. The example in Figure 2 corresponds to a top field first setting and we will
present our model in this setting before showing how bottom field first can be addressed
by slightly transferring the same solution. Let’s consider the case where the top field I−k
is available. Our objective is to predict the bottom field I+k for the same frame k, and we
propose using a deep neural network to solve this problem.
The prediction function is denoted as fθ where θ are the parameters of the neural network
to be optimized:

I+k = fθ(I
−
k ,PI−k ,NI−k ). (1)

Here PI−k and NI−k are the set of fields respectively preceding and following Ik. This allows
for some flexibility in the considered temporal window. The size of the temporal window
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Figure 3: Detailed architecture for the deinterlacer

is denoted by N and it corresponds to the total number of fields used in the prediction.
With N = 1, we are considering a prediction from I−k only. The case N = 3 is illustrated in
Figure 2 where additional fields are taken into account. This corresponds to the case where
PI−k consists of the field I+k−1 and NI−k consists of I+k+1. In our solution N only takes odd
values and we have experimented with one, three, five and seven.
To predict the deinterlacing result, we first use linear interpolation of the known rows as
an initial estimate of the missing rows. The neural network is then trained to predict the
residual which is added to the initial estimate. The proposed architecture consists of two
parts. The first one, the fusion, has the objective to produce an intermediate feature map
from the different input fields. The second part, the core deinterlacer, computes the mapping
to the RGB residual.
The solution we describe assumes that the prediction is made for the missing bottom field
I+k , given the top field input I−k . To address deinterlacing in the other case, i.e. bottom fields,
we first flip the fields vertically. This essentially turns them into a top field. The flipped field
can then be deinterlaced and the output can be flipped vertically again. With this strategy,
we can effectively transfer what was learned for top fields to the case of deinterlacing bottom
fields to coherently treat both cases with a single trained network. Next we present the core
of our deinterlacing architecture, the different fusion alternatives we considered and finally
the training procedure.

3.1 Core Deinterlacing Architecture

The combination of residual networks (ResNets) and dense networks (DenseNets) has pro-
duced impressive results for related problems like super-resolution. Due to this, we use an
architecture design inspired by our earlier work [11]. Figure 3 shows the deinterlacing ar-
chitecture in detail. The most basic building blocks we use are the dense and compression
blocks. These building elements are used to form the residual dense block which itself is
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Figure 4: Details of the progressive fusion [14].

used to form our Dense Net with residual connection. To control the size of the network we
can tune both the number of residual dense blocks (RDB) and the number of dense blocks
in each RDB. In our experiments we explored different settings for the number of residual
dense blocks M .

3.2 Multi-Field Fusion

Our core network takes a single feature map as input. Here we describe two different alter-
natives to obtain such a tensor from multiple input fields.

Direct Fusion is the simplest option where the fields are concatenated along the color
channel dimension and directly provided to the deinterlacing neural network.

Progressive Fusion is a more complex solution to progressively extract and merge infor-
mation between multiple fields. The details of the architecture are illustrated in Figure 3. It
is similar in spirit to the Dense Net with residual connections used in the deinterlacing part.
The difference here is that we maintain parallel branches, one for each input field, until the
end where features are merged into a single tensor.

3.3 Training

The network is trained to minimize the objective function L over the dataset D consisting
of interlaced frames

θ? = argmin
θ

EIk∈D
[
L
(
fθ(I

−
k ,PI−k ,NI−k ), I+k

)]
(2)

For the image loss we use the `2-norm of pixel differences:

L
(
fθ(I

−
k ,PI−k ,NI−k ), I+k

)
= ||fθ(I−k ,PI−k ,NI−k )− I+k ||2 (3)
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4 Experimental Results
We evaluate our model on a custom dataset consisting of a wide variety of different video
clips. The peak signal to noise ratio (PSNR) is used to measure the distortion between ground
truth and reconstruction. Finally, we compare our method against Yadif [2] and Real-time
Deep Video Deinterlacing (RDVD) [16]. All our models were trained on the Vimeo90K [12]
dataset with a batch size of two and a learning rate of 0.0005 using the Adam optimizer [6].
The Vimeo90K dataset consists of roughly 90’000 sequences of seven frames with resolution
448x256. These are progressive sequences (our ground truth) from which we create the
interlaced input used for training. We use the training / testing split that is provided with
the dataset.

4.1 Ablation Study

In this section we aim to answer the following two questions. How many input fields are
needed? And does progressive fusion yield any benefit over the simpler direct fusion?

Optimal number of input fields. To determine the optimal number of input fields our
model is trained using direct fusion and one, three, five and seven input fields. For each case
three and six RDB blocks are tested.

1 Frame 3 Frames 5 Frames 7 Frames
3 Blocks 33.64 36.90 36.79 36.23
6 Blocks 33.50 37.20 37.07 36.64

Table 1: PSNR achieved by our method using varying numbers of input fields and RDB
blocks on our custom data set. All models use direct fusion.

Table 1 shows that using multiple input fields yields much better results compared to using
just a single input field. Further, using six instead of three RDB blocks only yields marginal
gains compared to the performance difference between the single and multi field methods.
Increasing the number of input fields beyond three does not yield any additional benefit.

Direct Fusion vs. Progressive Fusion. While direct fusion is simple it might not
be able to fully extract the temporal information available in all input fields. Progressive
fusion is a more sophisticated fusion technique which has shown promising results for related
problems [14]. To see if progressive fusion yields any benefit over direct fusion we train our
method using both techniques. To keep the number of parameters similar the direct fusion
methods are trained using six RDB blocks while the progressive fusion method are trained
using three RDB blocks.
Table 2 shows that progressive fusion does not yield better results than direct fusion. Ad-
ditionally, progressive fusion comes at the cost of much higher memory consumption and
slower runtime during both training and inference. We conclude that direct fusion is the
better choice and will be used to compare our method against other state of the art methods.
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3 Frames 5 Frames
Direct Fusion 37.20 37.07
Progressive Fusion 36.79 36.23

Table 2: PSNR achieved by our method using direct and progressive fusion with similar
numbers of parameters.

Figure 5: PSNR values achieved by different methods over our custom dataset.

4.2 Comparison to other methods

We compare our method against Yadif [2] and RDVD [16]. We have previously concluded
that direct fusion is sufficient and no more than three input fields are required. Due to
this we choose our direct fusion model with three input fields and six RDB blocks for all
comparisons against other methods. First, we perform a numerical comparison between the
methods by looking at the PSNR values achieved over our custom dataset.
Figure 5 shows our method outperforming both other methods in every single case. Often
the gap in performance between our method and the others is quite large. To see if these
large PSNR gains translate to better visual quality we take a closer look at two individual
frames from our dataset.
Figure 6 shows that the improved PSNR values from our method translate to better visual
quality. In the tennis and the calendar examples we see Yadif reconstruction the text and
numbers poorly. The tennis example especially shows Yadif reaching it’s limits when it comes
to quick camera movement. Our method manages to reconstruct high quality images in both
cases. The beach and turtle examples clearly show our method’s strong performance when
reconstructing thin details. Yadif and RDVD both introduce gaps into the palm tree’s leafs
and the white stripes on the turtle’s head. Our method manages to produce continuous thin
details in both cases.
In addition to yielding higher quality frames our method has another advantage compared
to the other two. When looking at video sequences instead of individual frames our method
produces drastically fewer flickering artifacts. The absence of flickering is essential for pro-
ducing high quality video reconstructions. Unfortunately flickering cannot be measured or
illustrated by comparing individual frames.
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Figure 6: Visual comparison between Yadif, RDVD and our method. Our method clearly
produces the best results in terms of visual quality. Photo Credits: Beach and Turtle from
pexels.com
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5 Conclusion
In this paper we introduced a new method for deinterlacing. Our proposed architecture is able
to make use of more temporal information than previous deep learning based methods. By
exploiting symmetries in the interlaced input our proposed architecture uses it’s parameters
efficiently. The proposed method surpasses current state-of-the-art techniques by a large
margin in terms of PSNR as well as visual quality. The main advantages of our method
are it’s robustness and ability to use temporal information accurately. The accurate use of
temporal information is especially noticeable in the reduction of flickering artifacts which
other methods tend to produce. While we did investigate the progressive fusion technique
it did not manage to produce higher quality results than simple direct fusion. Exploring
more sophisticated fusion techniques, perhaps with attention layers, could be an interesting
avenue for future research. A more powerful fusion technique could help the model to make
use of even more temporal information which could yield even higher quality reconstructions.
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