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Abstract

We present a new method for designing high quality denoisers that are robust to varying noise characteristics of input images.
Instead of taking a conventional blind denoising approach or relying on explicit noise parameter estimation networks as well as
invertible camera imaging pipeline models, we propose a two-stage model that first processes an input image with a small set of
specialized denoisers, and then passes the resulting intermediate denoised images to a kernel predicting network that estimates
per-pixel denoising kernels. We demonstrate that our approach achieves robustness to noise parameters at a level that exceeds
comparable blind denoisers, while also coming close to state-of-the-art denoising quality for camera sensor noise.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction

Image denoising is a fundamental visual computing problem with
numerous practical applications. For instance, noise in Monte Carlo
(MC) rendering is a byproduct of the inherent variance in the MC
estimator, and the noise magnitude is inversely proportional to the
invested computation time. Rendering can be accelerated by using
a denoiser, which processes a noisy initial image produced by a
renderer with the help of additional scene features, and removes
any remaining noise in the image. In contrast, noise in photographs
is an inevitable byproduct of the mechanics of camera sensors, and
can have a noticeably adverse effect on image quality especially in
low light shots. Raw sensor noise consisting of “shot” and “read”
components can be approximated by simple statistical distributions
with reasonable accuracy. However, such approximations no longer
work as the imaging pipelines of consumer cameras grow more
complex over time. As such, an important challenge for practical
image denoising is robustness against various noise characteristics
resulting from real-world sources.

As with most low-level vision problems recent work in denoising
focused on using data-driven methods that involve using various
types of deep networks. Deep denoising networks often are trained
for a specific type of noise with a narrow range of parameters, such
as additive white Gaussian noise with a certain magnitude. Such
specialized denoisers were initially outperformed by older patch-
based methods when tested on datasets captured with real-world
cameras, mainly as results of the difference between noise parame-
ters they were trained for and the noise parameters at testing time.
Blind denoising is a common strategy to generalize performance
over a certain range of noise parameters by training with a diverse

dataset. The fundamental tradeoff of blind denoising, however, is
that robustness comes at the cost of overall denoising quality.

In this work we propose a new approach for designing denois-
ers for non-synthetic images that is robust to changes in noise
characteristics. Our method does not follow the classical blind de-
noiser paradigm of training a single network using a diverse train-
ing dataset, nor does it require explicit camera pipeline models or
additional components for estimating noise parameters. Instead, we
propose a two-stage approach, where an input image with arbitrary
noise characteristics is first processed by a number of specialized
denoisers, that are each trained for a specific narrow range of noise
parameters. We then introduce a second network that uses the out-
come of the specialized denoisers as features to produce a denois-
ing kernel for the specific characteristics of the noise present in the
input image. Our method differs from previous kernel-predicting
denoising architectures such as [MBC∗18], in that our method fo-
cuses on forming accurate spatial kernels using specialized denois-
ers as extra feature channels, instead of relying on temporal infor-
mation provided by a burst sequence.

2. Related Work

Prior to the wide scale use of convolutional neural networks (CNN)
in image denoising, patch-based methods such as [ZW11] have
been known to produce high quality results in practice. Algorithms
such as BM3D [DFKE07] have been popular ever since and are
known to work well for removing non-parametric noise that could
for instance be produced by a camera sensor. In fact, the emer-
gence of datasets of camera-captured images with sensor noise
and the corresponding clean images [ALB18] revealed that deep
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networks trained with synthetic data were outperformed by older
methods such as BM3D. DnCNN [ZZC∗17] reported for the first
time a significant improvement over classical patch-based methods,
and is still being considered the state-of-the-art solution for remov-
ing additive Gaussian noise. Other techniques utilized burst image
sequences to exploit temporal information [MBC∗18], which can
potentially enhance denoising quality but requires careful atten-
tion to avoid ghosting artifacts. In [PCL∗20], a multi-level wavelet
residual network architecture and a progressive training scheme has
been proposed for denoising. In [YZZM20], a dual adversarial net-
work architecture has been proposed for image denoising as well
as noise pattern generation by learning the joint distribution of the
clean-noisy image pairs.

Recently, methods based on CNNs have also been successfully
applied for denoising of MC renderings. Most related to our method
are kernel predicting convolutional network (KPCN) based denois-
ers that express denoised pixel colors as a weighted linear combi-
nation of their neighboring pixels [BVM∗17, VRM∗18]. One key
difference to denoising of non-synthetic images is that additional
scene features can directly be obtained from the renderer with very
low computation overhead (such as albedo, depth, surface normals,
etc.). These scene features typically capture information about im-
portant structures in the image at much lower noise-levels than in
the color image and help denoisers to distinguish noise from sig-
nal [ZJL∗15]. Instead of relying on specialized equipment such as
an RGB-D camera for acquiring additional data channels, we in-
stead propose a novel way of generating features that augment the
performance of KPCNs.

3. Robust KPCN

Our method utilizes a user defined number of specialized denois-
ers, each trained exclusively using noisy images with specific set
of noise parameters {λ0,λ1, . . . ,λs}. At test time a specialized de-
noiser typically performs well if the noise parameters of the test
image are similar to those of the training data. However as the noise
parameters start to diverge from training data, testing performance
drops rapidly. We introduce a KPCN generalizer to alleviate this
inability of specialized denoisers to generalize over noise parame-
ters. The KPCN generalizer takes as input not only an input image
with some arbitrary noise parameters λa, but also utilizes the out-
come of a set of specialized denoisers given the noisy input image,
which we refer to as denoised-image features. For computational
efficiency reasons we often want to keep the number of denoised-
image features low. As such, in practice we expect the noise pa-
rameters λa of an input image not to match the noise parameters
{λ0,λ1, · · ·λs} that the specialized denoisers were trained for. Our
method therefore relies on the KPCN generalizer to estimate a suit-
able denoising kernel for an input image with noise parameters λa
given the denoised-image features. This way we achieve consistent
denoising quality over a wide range of noise parameter, and hence
we refer to our final method as Robust KPCN denoiser.

3.1. KPCN Generalizer

We represent the noisy input color image as a vector, which we de-
note as x ∈ R3. We treat the denoised-image features as additional

Figure 1: Architecture of a KPCN. See text for discussion.

channels f, that consist of individual feature maps {f1, f2, . . . , fs}.
The KPCN generalizer takes as input the tuple {x, f}. Our objec-
tive is to find a model that minimizes the average distance be-
tween estimated denoised images x̂ and the corresponding noise-
free ground-truth images y. Formally, we express our model as
x̂ = d({x, f}; θ̂), where d denotes our denoiser with parameters θ̂.
We compute the parameters θ̂ in a supervised setting using the
dataset {{x1,y1},{x2,y2}, . . . ,{xn,yn}}. Specifically, our objec-
tive is:

θ̂ = argmin
θ

1
N

N

∑
n=1

l(y,d({x, f};θ)), (1)

where l denotes the loss function and is discussed in Section /ref-
sec:impl. The main difference between a KPCN and a direct pre-
diction network is that the former estimates a k× k kernel of scalar
weights around the neighborhood N (p) of a pixel location p. The
weighted linear combination of the pixels in N (p) then gives the
final pixel color prediction at location p.

Figure 1 illustrates the main building blocks of a KPCN architec-
ture, where each residual block consists of two 3×3 convolutional
layers bypassed by a skip connection. Thus, compared to the direct
prediction of pixel colors, KPCNs introduce an intermediate kernel
prediction step, which results in significant improvement in conver-
gence speed as explored in detail in [VRM∗18]. Moreover, prior ex-
perience has shown that KPCNs tend to generalize well to new data
that has different characteristics than the training set [BVM∗17]. In
our method, the KPCN generalizer estimates a denoising kernel at
pixel location p using the following identity:

x̂p = dp({x, f}; θ̂) = ∑
q∈N (p)

wpq xq, (2)

where wpq denotes the normalized estimated weight at location q
belonging to the kernel at pixel location p. We normalize the ker-
nel weights using a softmax function as in [VRM∗18] so that they
remain within [0,1].

3.2. Denoised-image Features

The idea of augmenting KPCNs with features that have low noise-
levels has been previously explored for denoising of rendered im-
ages [ZJL∗15, BVM∗17, VRM∗18]. These methods, in addition to
mere colors, also exploit the additional types of scene information
including albedo, surface normals, depth, visibility maps that are
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often available in a rendering setting without significant extra ef-
fort. Figure 1 in supplemental material shows examples of typical
feature channels that convey only partial scene information with re-
spect to the corresponding color channel, but have the advantage of
being often nearly noise-free and perfectly aligned with the color
channel. Previous work showed that such features can be effectively
utilized in a KPCN framework, which results in high quality de-
noising results even in challenging cases. A key difference when
working with natural images is the absence of any additional scene
information beyond the colors of an input image. Some extra in-
formation, such as depth, might still be captured using specialized
equipment. But this approach brings in additional technical chal-
lenges such as alignment with the color image and dealing with
missing or incorrect depth values, in addition to being less practi-
cal due to the extra hardware required. Moreover, it is unclear how
to capture all the scene information that previous work in the ren-
dering domain utilizes to achieve high quality denoising results.
Another potential approach could be to extract scene information
directly from color images. However, our experiments with recent
work [ZSS∗18] showed that the level of accuracy of the resulting
predictions is not sufficient for our particular application. In fact,
we found that using scene information predicted directly from in-
put colors had a detrimental effect on denoising quality.

In our method we thus take a different approach and rely on fea-
tures produced by a user defined set of specialized denoisers. Each
specialized denoiser is typically trained for a specific noise type
(e.g. noise produced by a specific camera sensor) or a narrow range
of noise parameters (e.g. additive Gaussian noise with a specific
magnitude). At testing time, an input image is processed by each of
the specialized denoisers, producing the denoised-image features
(Figure 2). The quality of each denoised-image feature, measured
as the average distance from the corresponding clean image, varies
depending on the noise characteristics of the input image. Thus, in a
second step we introduce a KPCN generalizer that is trained to im-
prove the final denoising quality by utilizing all the denoised-image
features.

Figure 2: Example denoised-image features that are generated by
specialized denoisers given the noisy image as input.

3.3. Model Implementation

While any denoiser can potentially be used to generate denoised-
image features, in our experiments we used a U-Net architecture in
our experiments that has originally been designed for image seg-
mentation [RFB15]. In this work we directly adopt a modified ver-
sion that has recently been shown to achieve comparable results
to larger networks in image denoising applications [LMH∗18] at
faster training times.

We employed a two-step training procedure, where we first train

PSNR / SSIM
Datasets G4 GP IP N6 S6
U-Net G4 32.99 / 0.876
U-Net GP 31.03 / 0.726
U-Net IP 32.78 / 0.730
U-Net N6 27.06 / 0.527
U-Net S6 22.91 / 0.432
U-Net-B 31.71 / 0.845 30.05 / 0.706 32.86 / 0.739 26.97 / 0.516 22.81 / 0.426
Robust KPCN 38.48 / 0.969 38.75 / 0.948 42.86 / 0.971 36.39 / 0.907 31.36 / 0.795

Table 1: Average PSNR/SSIM results of various denoisers on SIDD
benchmark dataset. See text for discussion.

a set of specialized denoisers, which we use to train a KPCN gen-
eralizer in a second step. We trained both the KPCN generalizers
and specialized denoisers using patches of size 128×128, utilizing
the Adam optimizer with an initial learning rate of 10−4, and later
using dataset specific schedulers to decay the learning rate during
the course of the training. All KPCN generalizers that were used
to produce the results in this paper were trained with at mini-batch
size 16 and used the mean absolute percentage error (MAPE) to
assess the distance to a clean reference:

l(y, x̂) = |y− x̂|
|y|+ ε

, (3)

where ε = 10−3 was introduced to avoid division by zero. The in-
ference time of our whole method depends on the number and ef-
ficiency of individual specialized denoisers, as well as the resolu-
tion of the input image. Overall, Robust KPCN is runs efficiently at
320ms to process a 512×512 image single NVIDIA Titan X GPU.

4. Camera Sensor Noise Experiments

To test our method we used the medium version of the recently
published Smartphone Image Denoising Dataset (SIDD) [ALB18],
which consists of 320 noisy and clean image pairs, obtained from
40 scenes under different lighting conditions using 5 smartphone
cameras: Google Pixel (GP), Apple iPhone 7 (IP), Samsung Galaxy
S6 Edge (S6), Motorola Nexus 6, (N6), LG G4 (G4).

We train a Robust KPCN denoiser by first using 150 image pairs
from SIDD to train a separate specialized denoiser for each of the
5 cameras used to generate the images in the dataset. Each special-
ized denoiser is only trained with images that were captured using
one of the 5 cameras. We adopted a U-Net model in order to im-
plement the specialized denoisers, as it has been reported that this
model is fast to train and shows good performance on denoising
tasks [LMH∗18]. The remaining 170 image pairs from SIDD are
then used to train a KPCN generalizer which utilizes the special-
ized denoisers to generate 5 denoised-image feature channels.

Table 1 shows the average PSNR and SSIM values of Robust
KPCN on the SIDD benchmark dataset consisting of 40 images.
The columns of the table show the results from only images cap-
tured by specific cameras. The rows of the table show the results of
various denoisers, where U-Net (G4, GP, IP, N6, S6) denote spe-
cialized denoisers trained for the corresponding cameras, U-Net-
B denotes the blind denoiser trained with images captured with
all cameras, and Robust KPCN denotes our full denoiser with 5
denoised-image feature channels that are obtained using the spe-
cialized U-Net denoisers (G4, GP, IP, N6, S6).
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Method PSNR SSIM
EPLL [ZW11] 27.11 0.870

KSVD-G [EA06] 27.11 0.771
KSVD-DCT [EA06] 27.51 0.780
CBDNet [GYZ∗19] 33.28 0.868
DANet+ [YZZM20] 39.43 0.956

PT-MWRN [PCL∗20] 39.92 0.959
Robust KPCN 38.60 0.948

Table 2: Average PSNR/SSIM results from SIDD sRGB Benchmark
(Top published methods).

We observe that the blind denoiser generalizes well over dif-
ferent types of camera sensor noise, but does so at the cost of
decreased average PSNR and SSIM values with respect to corre-
sponding specialized denoisers. Robust KPCN using 5 denoised-
image feature channels improves upon both the specialized and
blind denoisers by a large margin. We present a visual comparison
in Figure 3.

Our method also compares favorably against previous denoising
work in the SIDD benchmark challenge. In Table 2 we present our
PSNR and SSIM results with other techniques as listed in [ALB18]
that have been published at the time of submission. In terms of
both PSNR and SSIM Robust KPCN is among the top methods in
the benchmark.

Figure 3: Example denoising results from SIDD. (a) Ground truth,
(b) Noisy image, (c) Specialized U-Net (d) KPCN with five U-Nets.

5. Conclusion and Future Work

We presented a KPCN-based architecture for designing denoisers
that are robust to noise parameters, and achieve near state-of-the-art
denoising quality with real-world datasets. While we owe our inspi-
ration of using a KPCN with feature channels to previous work in
denoising Monte Carlo renderings [BVM∗17], we think our new
method of using denoised-image features within a KPCN frame-
work could inspire more work back in the rendering community.
We also think that extensions of our technique to video denoising
could be an interesting direction for future research. From Table 1
we note that Robust KPCN performs significantly better than the

specialized denoisers across the board. This suggests the special-
ized denoisers might be overfitting to the relatively small number
of training samples available in the SIDD dataset. A thorough in-
vestigation of Robust KPCN on similarly limited datasets would be
another interesting research direction.
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