
EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

Shape Transformers: Topology-Independent 3D Shape Models
Using Transformers

Prashanth Chandran1,2 Gaspard Zoss2 Markus Gross 1,2 Paulo Gotardo2 Derek Bradley2

1ETH Zurich 2DisneyResearch|Studios

Figure 1: Our transformer-based 3D shape autoencoder leverages the transformer’s self-attention mechanism to effectively capture nonlin-
ear spatial correlation of arbitrary extent, without the need to dictate the size of the receptive field a priori. It can be trained on a mixture of
3D datasets of different topologies and spatial resolutions. At test time, the same model can be evaluated to output different topologies and
arbitrary spatial resolutions for different application scenarios. Here we show the output of one model evaluated with 4 different topologies,
highlighting differences in the same region for each variation.

Abstract
Parametric 3D shape models are heavily utilized in computer graphics and vision applications to provide priors on the observed
variability of an object’s geometry (e.g., for faces). Original models were linear and operated on the entire shape at once. They
were later enhanced to provide localized control on different shape parts separately. In deep shape models, nonlinearity was
introduced via a sequence of fully-connected layers and activation functions, and locality was introduced in recent models that
use mesh convolution networks. As common limitations, these models often dictate, in one way or another, the allowed extent of
spatial correlations and also require that a fixed mesh topology be specified ahead of time. To overcome these limitations, we
present Shape Transformers, a new nonlinear parametric 3D shape model based on transformer architectures. A key benefit of
this new model comes from using the transformer’s self-attention mechanism to automatically learn nonlinear spatial correla-
tions for a class of 3D shapes. This is in contrast to global models that correlate everything and local models that dictate the
correlation extent. Our transformer 3D shape autoencoder is a better alternative to mesh convolution models, which require
specially-crafted convolution, and down/up-sampling operators that can be difficult to design. Our model is also topologically
independent: it can be trained once and then evaluated on any mesh topology, unlike most previous methods. We demonstrate
the application of our model to different datasets, including 3D faces, 3D hand shapes and full human bodies. Our experiments
demonstrate the strong potential of our Shape Transformer model in several applications in computer graphics and vision.

CCS Concepts
• Computing methodologies → Shape modeling; Modeling methodologies;

1. Introduction

Parametric 3D shape models are ubiquitous in computer graphics
and computer vision since they provide a prior on the space of
observable geometric variation and deformation, helping constrain
many problems such as 3D animation and performance capture. For
instance, face and full body models are usually built from datasets

of 3D scans in spatial correspondence, and the aim is to represent
the domain of statistically-plausible 3D shapes in a compact and
controllable way. The most common model is the linear 3D mor-
phable model (3DMM, [BV99]), which expresses new shapes as
linear combinations of prototypical basis shapes. Over the past two
decades, researchers have investigated face and body models and
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improved upon 3DMMs in several ways, including the semantic
separation of identity versus expression/pose parameters, and the
creation of localized linear models in an attempt to decouple un-
wanted spatial correlations at distant points across the 3D shape,
to achieve better generalization. Notably, localized models can be
much more expressive than global ones, and can be built from
smaller datasets. But their expressive power comes at the cost of
decreased robustness; i.e., it can be easier to generate implausible
shapes with local models than global ones.

A major drawback of 3DMMs is their linear nature, which leads
to less compact models that cannot represent continuous, nonlin-
ear deformation of familiar shapes such as human faces and bod-
ies. For this reason, the explosion of deep learning has already
been leveraged to build more powerful, nonlinear models. Initial
deep-learning models of 3D geometry were particularly limited to
fully-connected network architectures [CBGB20] that have a much
larger number of free parameters and, thus, require more train-
ing data. Fully-connected networks represent global shape models,
and are thus susceptible to the same limitations of global 3DMMs
in terms of generalization and modeling spurious global correla-
tions across the shape. In contrast, convolutional neural networks
(CNNs), with fewer free parameters and more localized recep-
tive fields, have also been leveraged for building new models. The
building blocks for these models were initially limited to familiar
convolutions on the simple 2D image grid. More recently, new def-
initions of convolutions on 3D point neighborhoods were proposed
to allow the creation of geometric models in the form of CNNs
that can operate on the surface of a 3D mesh [HHF∗19, GCBZ19].
While mesh-convolutional architectures yield compact 3D models
that represent local surface deformations, such convolutional mod-
els capture global correlations very poorly, requiring careful hand-
crafting of down/up-sampling operators on meshes.

Whether linear or nonlinear, the choice between a fully global
versus a strictly local model is quite limiting. In both cases, the ex-
tent of spatial correlations between different points on the shape is
dictated a priori. In the case of global models, all points on the sur-
face are naïvely correlated with each other. Although correlations
are ultimately learned from data, the limited sampling of the true
underlying shape distribution inevitably leads to learning spurious
global correlations (e.g., a model that only sees both eyes blink-
ing together during training cannot express a face with a single eye
closed). Local models alleviate this problem to some extent by in-
troducing explicit independence assumptions that remove distant
correlations, but the specific local region structure is dictated ahead
of time, instead of being learned from data. For the complex geo-
metric domain of human faces and bodies, it can be very difficult
(or impossible) to manually specify which 3D points should be cor-
related with each other in the creation of realistic 3D shapes.

When building shape models, in addition to the choices between
linear versus nonlinear and global versus local models, another
important aspect is the mesh topology used to create the model.
Notably, previous parametric shape models are designed for fixed
mesh topologies. In other words, the topology used to create the
model must be the topology used to evaluate the model. This issue
is often overlooked, but in fact introduces an important limitation
when attempting to use the same pre-trained model in different ap-

plication scenarios (e.g., high-quality animation, video games, or
other visualization in realtime). Often the parametric model does
not adapt naturally to the application and constraints at hand, with-
out having to be re-trained at different resolutions.

This paper directly addresses these main issues concerning para-
metric 3D shape models, namely: (i) can the nonlinear model auto-
matically learn the important spatial correlations without being dic-
tated a priori; and (ii) can the model be topology independent, al-
lowing pre-trained models to be applied at different resolutions de-
pending on the use case. To address these issues, we present a new
parametric 3D shape autoencoder based on transformer architec-
tures, which we call Shape Transformers. A transformer [VSP∗17]
is a neural network designed to carry out inference over sequences
of input tokens (data) of arbitrary length, as well as translation
into another type of token sequence. Transformers have been used
very successfully in natural language processing and are increas-
ingly being utilized in many computer vision applications. Our new
shape model is a neural network that exploits the transformer’s
self-attention mechanism to automatically and dynamically cap-
ture spatial correlations across the entire shape. In contrast to other
models, our transformer autoencoder is both a global and a lo-
cal neural shape model and can represent geometric shape detail
at an arbitrary spatial resolution, without being tied to a specific
mesh topology. As a result, our method does not require careful,
hand-crafted pre-computation of down/up-sampling operators like
mesh-convolutional models, and can be both trained and applied
with meshes of multiple topologies and resolutions. In addition to
these new benefits, our transformer autoencoder provides all the
usual advantages of recent shape models, including nonlinear de-
formation characteristics, and the ability to disentangle semantic
attributes like identity and expression, to sample from the model
parameters to generate new shapes, and to optimize over the set of
parameters to generate specific shapes in reconstruction scenarios.
We demonstrate our new shape model on various datasets includ-
ing 3D human faces, hands and full bodies. We also show the strong
potential for our transformer-based shape models in different appli-
cations in computer graphics and vision.

2. Related Work

The seminal linear 3DMM was originally proposed by Blanz and
Vetter [BV99] to model faces. Over the years, linear models were
improved by semantically separating the parameters that corre-
spond to identity from those that encode expression, giving birth
to so-called Multi-Linear Models (MLMs) [VBPP05]. Localized
linear models were shown to improve expressibility by splitting
the shape into a subset of distinct regions [TDlTM11, NVW∗13],
and incorporating anatomical constraints [WBGB16]. Wang et
al. [WBZB20] showed the best of both worlds by developing a
global-local multilinear framework for facial modeling. There is a
multitude of applications that make use of such linear shape mod-
els. We refer to the recent survey of Egger et al. [EST∗20] for a
detailed account of 3DMMs and the challenges in building and ap-
plying them. The obvious drawbacks of all linear face models are
their lesser degree of compactness and inability to model the con-
tinuous, nonlinear deformation of human faces. Some linear mod-
els also dictate the allowed extent of spatial correlations a priori,
and are created on fixed topologies. Linear models of shape defor-
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mation also include techniques like Linear Blend Skinning (LBS)
[KCZO08] which is widely used tool in the industry for character
animation. Kavan et al.[Kv05] also introduced a dual quaternion
extension to LBS to allow for nonlinear joint articulations. Such
techniques were also utilized in the building of full body morphable
models like the popular SMPL model [LMR∗15].

To address the linearity issue, most recent works compute deep
3D shape models in the form of neural networks. The feed-forward,
fully-connected neural network provides a simple architecture to
train neural 3D face models [ABWB19, CBGB20]. As in previ-
ous approaches, these models operate by flattening the list of the
vertices into a vector and feeding it through the network, which
includes a sequence of linear projections and nonlinear activation
layers. They have strong representative power due to a large num-
ber of parameters, but they are also strongly susceptible to overfit-
ting and poor generalization. These are also global shape models
and are tied to a specific 3D mesh topology.

Graph Convolution Networks (GCNs) generalize the
convolutional operator to work with arbitrary graphs
[DBV16, RBSB18, HHF∗19, BBP∗19, GCBZ19, ZWL∗20, CK21].
They make use of the graph connectivity to define convolutions
over the appropriate local neighborhood of an input vertex.
Generally speaking, GCNs are not tied to a specific topology as
each iteration of training or evaluation can take as input a variable
set of vertices of the graph and the desired adjacency information
for performing convolutions. While the localized nature of graph
convolutional networks make them efficient and small in size, they
introduce difficulties in modeling long-range relationships across
vertices of the graph. In the context of geometry processing, to
overcome this problem of a limited receptive field, previous work
has computed matrix operators for mesh down/up-sampling that
respectively decrease and increase the resolution of the topological
graph of a mesh. These matrices are often carefully pre-computed
before training [RBSB18, BBP∗19, GCBZ19, ZWL∗20] and are
used to increase/decrease the neighborhood over which a graph
convolutional filter operates. We refer to this specific form of graph
convolution network as a mesh convolution. Mesh-convolutional
networks restrict the model to a single topology and have no
guarantee to remain optimal for deformed shapes with the same
topology (e.g., different facial expressions). To alleviate the latter
issue, previous work has also attempted to learn these down/up
sampling operations [CK21] but the fixed topology issue remains.

There exists many variants of these graph convolutional opera-
tors in practice. Ranjan et al. [RBSB18] used Chebyshev convo-
lutions [DBV16] and pre-computed down/up-sampling matrices to
train a face model. Hanocka et al. [HHF∗19] proposed MeshCNN,
a convolutional network that operates on edge features instead. Us-
ing the known topology of a mesh, they start by defining edge prop-
erties (such as orientation, length etc.) and use convolutions to learn
higher dimensional features over pairs of vertices. They also define
new ways of down/up-sampling edge features to process a given
shape at multiple resolutions. They show applications in learning
to segment and sub-sample meshes using their network. Bouritsas
et al. [BBP∗19] introduced SpiralNet as an alternative to standard
GCNs that use the adjacency information during convolution. They
fix the topology over which the network operates and proposed pre-

computing spirals of vertices of a fixed length and passing them
through an MLP to extract features. SpiralNet++ [GCBZ19] ex-
tended the speed and efficiency of SpiralNet by introducing dila-
tion, a means of increasing the receptive field of the MLP with-
out affecting the capacity of the network, and showed reduction in
training times and improved performance on reconstruction tasks.
Zhou et al. [ZWL∗20] also assume a fixed topology and learn a
basis of convolutional filters that operate on a vertex neighbour-
hood. To increase representative power, their model jointly learns
a per-vertex weight map that informs the network of which basis
of filters the vertex would benefit from being convolved with the
most. They also introduce down/up-sampling techniques that offer
the user more control over the process.

Our work makes use of transformer architectures [VSP∗17] to
construct topology-independent 3D shape models that more effec-
tively learn spatial correlations. Originally proposed for language
models, transfomers were later naturally adopted for inference over
temporal sequences and also in vision tasks [DBK∗21]. Notably,
recent research has investigated the use of transformers for 3D re-
construction from images. Lin et al. [LWL21a] use a vanilla trans-
former to reconstruct coarse posed human bodies and coarse posed
hands from images and a learnable MLP to upsample the meshes to
full resolution. In a follow up work [LWL21b], the authors coupled
their previous vanilla transformer with graph-convolutional layers
and showed better accuracy for the body and hand reconstruction
tasks. In contrast to their work, our new model stands out as the first
implicit parametric model designed exclusively as a transformer
network and capable of outputting high resolution meshes. Our
models are also topology-independent and can be trained on a mix-
ture of arbitrary mesh topologies, and then applied on other topolo-
gies and spatial resolutions while Lin et al. [LWL21a, LWL21b]
use an upsampling MLP, fixing the output mesh resolution.

Another type of topology-agnostic shape models are
built using neural, continuous implicit representations,
where an MLP operates on individual 3D points as input
[PFS∗19, YTB∗21, CZ19, DLJ∗20, GYH∗20]. These models rep-
resent the 3D shape as a level-0 isosurface that must be searched
within the represented volume using a root finding algorithm. In
contrast, our method employs an explicit canonical shape and
outputs a continuous field of deformation offsets, making its
evaluation trivial and significantly more efficient when sampling
shapes at very high resolution (e.g. Fig. 15). Also, the architecture
we propose is transformer-based and operates simultaneously on
an arbitrary number of points, using its self-attention mechanism to
exploit both local and global context. Our new architecture enables
a number of new applications, which we demonstrate in Section 4.

3. Modeling 3D Shapes Using Transformers

This section introduces our novel, topology-independent 3D shape
model, which we call a Shape Transformer. Our model leverages a
transformer’s self-attention mechanism to more effectively capture
nonlinear spatial correlation of arbitrary extent, while overcoming
some of the limitations of recent neural architectures used in shape
modeling, such as GCNs. Instead of carefully hand-crafting the net-
work’s receptive field, as in a GCN, our key idea is to exploit self-
attention to automatically learn, in a data-driven manner, the actual
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Figure 2: Overview of our transformer-based autoencoder for
topology-independent, nonlinear 3D shape modeling. At the cen-
ter of the model lies a canonical 3D shape that is deformed based
on a shape code associated with the target 3D shape. Shape codes
can be generated randomly, interpolated, or computed from an in-
put 3D shape via the encoder. This autoencoder is trained end-to-
end, in a fully-supervised fashion using datasets of registered 3D
shapes, possibly varying in topology and spatial resolution.

extent of the receptive field at each point in a 3D shape. As a result,
our model is able to capture both short- and long-distance spatial
correlation on the target 3D geometry, without explicit definitions
of neighborhood, connectivity, or convolution. To avoid GPU mem-
ory bottlenecks, our model computes a smaller cross-covariance
self-attention matrix, following El-Nouby et al. [ENTC∗21] (see
Section 3.5). While we use faces as example when introducing
our model, the proposed architecture generalizes to other shapes
including human hands and full bodies, as shown in Section 4.

3.1. Overview

A schematic of Shape Transformer, our transformer-based 3D
shape autoencoder architecture is shown in Fig. 2. We begin with an
overview of the decoder, Fig. 2 (right), to illustrate how the model
generates the output 3D shape. At the center of our architecture lies
a canonical 3D shape (e.g., a template body or face with standard
identity, in a reference pose or expression) whose surface provides
the continuous domain of canonical 3D locations used to sample
the model. These 3D locations are also associated with a latent
shape code: a parameter vector that represents a particular geo-
metric deformation that is applied to the canonical 3D geometry
to yield the output 3D shape (e.g., a face with a different identity
and expression). Together, the shape code and queried 3D locations
form the input to our transformer-based decoder, while the output
comprises 3D offset vectors that correspond to each queried 3D lo-
cation. The generated offsets are added to the canonical shape to
produce the output 3D shape, Fig. 2 (right). Similarly, the inputs to
the shape encoder, Fig. 2 (left), are also represented as 3D offsets
from the corresponding canonical points. In contrast to these off-
sets, points on the canonical shape itself are always queried (sam-
pled) as absolute 3D coordinates in world space. Our transformer-
based 3D shape autoencoder can be trained end-to-end, in a fully
supervised way using datasets of registered 3D shapes. Note a
first interesting result of our transformer-based architecture: both
at training and test times, the input to the encoder and decoder can
comprise an arbitrary number of queried 3D locations that are near
and/or far away from each other, and in arbitrary ordering. Each
of these input 3D locations is processed separately, to a large ex-

tent, but is also embedded (transformed) with information coming
from the other inputs, as captured by the transformer’s dynamic
self-attention mechanism. This property enables our shape model
to be trained on a mixture of 3D datasets of different topologies
and spatial resolutions (e.g., high-quality dense 3D scans, marker-
based motion capture data). At test time, the same model can be
evaluated on other topologies with arbitrarily-varying spatial reso-
lutions, depending on the user’s need and application.

The goal of the decoder, during training, is thus to learn to es-
timate non-linear spatial correlations across the arbitrary sets of
canonical 3D locations and use this contextual information to pre-
dict the corresponding 3D offsets that will form the output shape,
as guided by the input shape code. In contrast, the encoder is given
an arbitrarily-sized sequence of input 3D point offsets (relative to
the canonical shape), from which the goal is to estimate an asso-
ciated shape code. The corresponding 3D points on the canonical
shape are also provided as input to the encoder. The architectures
of both the encoder and decoder comprise a sequence of 4 trans-
former blocks, as detailed in Section 3.2 and Section 3.3. While our
network could operate without the encoder, by following the tradi-
tional alternative approach of computing the latent (shape) codes
via iterative optimization, having an encoder is often beneficial: it
provides faster estimation of shape codes at test time, while also
learning a better structure for the latent space of shape codes dur-
ing training. Additionally, there are also particular advantages from
having a transformer-based encoder: (i) the encoder naturally op-
erates on arbitrarily-sized subsets of input 3D points (and offsets),
thus facilitating the handling of cases of missing data as when en-
coding shapes that are partially occluded; and (ii) the transformer
can also be applied to separately encode smaller regions of the in-
put 3D shape, yielding distinct per-region codes that can be mixed
and used together to extrapolate novel, unseen 3D shapes, thus in-
creasing the expressiveness of the model. These advantages, along
with other applications of our method are demonstrated in our ex-
perimental results in Section 4.

3.2. Transformer-based 3D Shape Encoder

A typical transformer operates on a sequence of input tokens, trans-
forming them into a desired output sequence by modeling token-to-
token interaction via self-attention [VSP∗17], while also individu-
ally modifying the tokens with residual MLPs. In our transformer-
based encoder, the input tokens are given as (i) an arbitrary set of
3D locations on the canonical shape, and (ii) a set of corresponding
3D offsets that lead to a target shape. As described next, the canon-
ical points are used to position-encode the target offsets, hence the
need for them to be in correspondence. However, the number of
sampled points and the sampling strategy remain arbitrary.

As shown in Fig. 3, each canonical 3D point is first individually
fed through a 4-layer Position MLP that maps the point onto a high-
dimensional latent position. In parallel, each target 3D offset is also
fed through a similar Input Offset MLP that maps the offset onto
another high-dimensional latent code. Applying these two initial
MLPs before passing the tokens over to the transformer, allows the
model to represent the 3D shape more generically, without being
limited to the spatial distribution in the 3D world space. This op-
eration enables the network to stretch and squeeze the distribution
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Figure 3: The detailed architecture of the proposed transformer-based 3D shape autoencoder: (left) transformer-based 3D shape encoder,
including a special, fixed input token for shape queries that is trained with the network; and (right) transformer-based 3D shape decoder.

of input tokens such that they are optimally distributed for the task
at hand. The input to the transformer encoder is then obtained by
concatenating the corresponding canonical and offset tokens into
a single sequence of tokens. Position encoding via this concatena-
tion step effectively tags each offset token with features related to
a specific position in the canonical shape, thus helping the trans-
former in learning spatial correlations. This type of position encod-
ing has been found to be beneficial in previous work [LWL21a]
compared to regular sinusoidal position encoding. Our choice of
position encoding method is continuous and naturally allows for
arbitrary resolution in the input space. An ablation study showing
its effectiveness is presented in the supplemental material.

Our transformer encoder is then designed as a sequence of four
standard XCiT blocks [ENTC∗21]. The goal for this transformer
is to produce a single shape code from the collection of input to-
kens. This is however in contrast with a key property of transform-
ers, which are sequence-to-sequence architectures that provide as
many outputs as the number of input tokens. To address this issue,
an elegant solution to implementing our goal using a transformer
is to introduce an extra input token, similar to the [CLS] token in
BERT [DCLT19], that is learned (optimized for) with the network
parameters during training. This single, new input shape query to-
ken is itself a part of the encoder that is used to encode all input
shapes and remains constant after training. Unlike the other tokens,
this special token is not position encoded. It is processed by the
transformer encoder and is embedded with information from the
other input tokens, leading to the desired output shape code. The
other tokens output by the encoder are not used (grayed out tokens
in Fig. 3). Thus, this mechanism allows us to retrieve a shape code
from the encoder irrespective of the number of input tokens.

3.3. Transformer-based 3D Shape Decoder

For our transformer-based decoder, the input tokens are given as
(i) an arbitrary set of 3D locations on the canonical shape (as for
the encoder), and (ii) a shape code vector. Note that the queried

canonical points do not have to match those seen by the encoder.
As when encoding, the sampled canonical 3D points are separately
fed through a Position MLP to provide high-dimensional tokens for
the decoder. The decoder also consists of a sequence of 4 trans-
former blocks with standard residual MLPs, but with modulated
input tokens: instead of concatenating each token with the shape
code, the shape code is used to modulate the intermediate activa-
tions that serve as input to each decoder block. This novel style-
modulated transformer block is described in detail in Section 3.4.
The decoder outputs a different sequence of tokens (as in a standard
trasformer), one for each queried canonical point. Finally, each of
these output token is independently processed by the Output Off-
set MLP to produce final 3D offsets that are added to the canonical
points, resulting in the decoded 3D points of the ouput shape.

3.4. Style-Modulated Transformer Block in Shape Decoder

The basic idea motivating the design of our new style-modulated
transformer block is to inject information derived from the shape
code directly into each one of the transformer blocks. As a result,
the network does not have to waste capacity in memorizing this
information while carrying it forward to subsequent blocks. The
architecture of our transformer block is illustrated in Fig. 4. We
build on top of the recently proposed XCiT block [ENTC∗21] due
to its memory efficiency when operating on very long sequences of
tokens (see discussion in Section 3.5). In each transformer block,
a 5-layer Style MLP maps the input shape code into a style code
of the same size as each input token (these per-block MLPs have
ReLU activations and shared weights for the first four layers). Each
input is then individually modulated by the style token via multi-
plication of corresponding feature positions. The intended effect is
to emphasize or suppress a subset of features of the input token, as
guided by the style code at the particular layer of the transformer
block. As shown in Fig. 4, the set of modulated tokens is then fed
through a standard XCiT transformer block. This block is then re-
sponsible for processing each token and exchanging information
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point tokens at different layers of our transformer-based decoder. In
our identity-expression disentangled version (bottom), we explicitly
split the Identity Code from the expression: the blendweights first
go through an Expression MLP and its output is concatenated with
the Identity Code before it follows a path similar to the Shape Code,
modulating the XCiT Layer.

across all tokens via self-attention. As modulation happens just be-
fore (outside) each transformer block, it is also possible to use dif-
ferent shape codes to modulate different input tokens, as a way of
introducing localized shape deformation. This more advanced fea-
ture of our model is demonstrated empirically in Section 4.8 and in
our supplemental material.

3.5. Side-Stepping GPU Memory Bottlenecks

A transformer dynamically builds one or more attention matrices
that capture correlations and propagate information across a poten-
tially very large number of input tokens. Each attention matrix is a
dense matrix whose number of entries depend on the squared length
of the input/output sequence. In our model, the number of elements
in the attention matrix is the squared number of simultaneously
queried canonical 3D points. For high-quality 3D shapes such as
the ones used to train our network, the total number of observed
3D points can range from a few thousands to hundreds of thou-
sands. Building the standard self-attention matrix for sequences
of such length is most often infeasible due to GPU memory con-
straints. To circumvent this well-known problem with transform-
ers, we rely on the recently proposed XCiT cross-covariance atten-
tion [ENTC∗21] as a more compact replacement for the standard
self-attention. Since our goals are different than that in El-Nouby
et al. [ENTC∗21], we replace their 3×3 (LPI) convolutional layer
with a 1×1 convolution and keep our model invariant to permuta-
tion on the input tokens. In addition, our continuous shape model
naturally makes it possible to apply different strategies for sampling
separate subsets of 3D points, sequentially, in order to progressively

evaluate complete and dense 3D shapes with a virtually unlimited
number of points.

Training. We train our model using a dataset of registered 3D
shapes, with known spatial correspondence (but not necessarily of
the same topology), from which the canonical shape is defined as
the mean shape or any particular, most representative shape (e.g.,
the most dense 3D shape, when training using different topologies).
We first compute 3D offsets between points in all training shapes,
relative to those in the canonical shape. Then, the weights of our
3D shape autoencoder and the query shape code shown in Fig. 3
are jointly optimized during training in a normal supervised fash-
ion; the objective is to minimize the L2-loss between the ground-
truth per-point 3D offsets, which are provided as inputs to the en-
coder, and the corresponding 3D offsets that are output by the de-
coder (Fig. 2). Once trained, our model allows for a variety of
topology-independent applications in 3D shape modeling, recon-
struction, and shape deformation, as shown in the following.

4. Results

We now demonstrate how our topology-independent transformer
shape model performs on datasets with different classes of 3D
shapes, including faces, hands, and full human bodies (Section 4.1),
while also analyzing and evaluating our design choices. We be-
gin by showcasing the representative power of our model, specifi-
cally in the scenarios of reconstructing and interpolating 3D shapes
(Section 4.2). We then highlight one of the main benefits of our
approach, which is the topology independence of the underlying
shape model (Section 4.3), and illustrate several new applications
enabled by this property including shape completion (Section 4.4),
accurate shape fitting and generalization (Section 4.5), and the cre-
ation of high-quality faces (Section 4.6). In Section 4.7, we present
several experiments that demonstrate how the model reacts to sce-
narios never seen during training. We additionally present an exten-
sion of the original architecture that allows for disentangling facial
identity and expression (Section 4.8), for better application in para-
metric face modeling. Kindly refer to our supplementary material
for additional experiments.

4.1. Datasets

Our 3D shape autoencoder is generic and can be trained on a
wide variety of 3D shapes. In this section, we briefly introduce
the datasets we use to validate our approach. For 3D faces, we
consider the datasets of COMA [RBSB18] and Semantic Deep
Face Models (SDFM) [CBGB20]. Besides faces, we show applica-
tion on the MANO hand dataset [RTB17], and the DFAUST body
dataset [BRPMB17]. The characteristics of these datasets and spe-
cific information on how we trained our model are detailed next.

COMA: Introduced by Ranjan et al. [RBSB18], this dataset com-
prises registered 3D human faces consisting of 20,465 meshes
spanning 12 extreme facial expressions. Each mesh contains
5,023 vertices. COMA has been successfully use in previous
work [BBP∗19, GCBZ19] for building parametric face models. For
a fair comparison of the representative power of our model in the
reconstruction task, we partition the dataset into training and testing
subsets following an identical 9:1 ratio as in these previous works.
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SDFM: This is another dataset with human faces, originally used
by Chandran et al. [CBGB20] to build their semantic deep face
model. This dataset currently includes 9,000 meshes of 375 dis-
tinct identities in 24 facial expressions. Each mesh includes 5,257
vertices on the front of the face and neck. The SDFM dataset allows
us to demonstrate the application of our shape model in the task of
disentangling facial identity and expression (see Section 4.8).

MANO: Introduced by Romero et al. [RTB17], this dataset com-
prises in total 1514 unique, registered 3D meshes of human hands,
with a pair of left and right hands for 777 subjects. There are also
mirrored counterparts for the left hand meshes leading to a final
count of 2,291 meshes. The hands in this dataset span a consider-
able range of 3D shapes and consist of complex pose and shape
deformations. Each mesh is database consists of 778 vertices. For
our experiments, we considered only the 777 right hand meshes
from this dataset and randomly left out 70 shapes for validation.

DFAUST: This human body dataset was proposed by Bogo et
al. [BRPMB17] and contains 140 sequences of registered human
body meshes. The dataset includes 10 subjects performing various
movements and even includes dynamics. Each mesh in this dataset
consists of 6,890 vertices. As in Zhou et al. [ZWL∗20], we used
103 sequences for training, 13 sequences for validation, and the
remaining 13 sequences for testing.

Architectural Details and Hyper-Parameters.
On COMA, SDFM, and MANO, our model as set up as follows:
Canonical shape: average of all shapes in the training dataset
Sampling strategy: all 3D vertices on both encoder and decoder
Code/token sizes: 64 dimensions in shape code, style code, and
in all per-point input tokens.

On DFAUST, the model setup was:
Canonical shape: average of rest shapes in the training dataset
Sampling strategy: all 3D vertices on both encoder and decoder
Code/token sizes: 128 dimensions in shape code, style code, and
in all per-point input tokens.

4.2. Shape Reconstruction and Interpolation

A basic task of any data-driven deformable model is shape re-
construction and its ability interpolate smoothly between shapes.
Fig. 5 demonstrates the reconstruction accuracy for three different
instances of our model, trained on COMA, MANO and DFAUST.
In all three cases, our transformer-based autoencoder was able to
accurately model the different classes of 3D shapes with very small
errors of only a few millimeters. A quantitative evaluation of our
Shape Transformer’s performance on COMA, in comparison to
other models in the related work, is shown in Table 1. As the ta-
ble shows, our model provides the lowest average modeling error
(and standard deviation) on this face dataset. The performance of
our method on DFAUST is summarized in Table 2. Shape Trans-
former produces competitive results on the DFAUST benchmark
while only being trained for 170 epochs as compared to the 300
epochs training for the other methods.On MANO, our Shape Trans-
former achieves a reconstruction error of 1.628 mm and 2.657 mm
on the training and validation sets, respectively.

The ability of our nonlinear model to interpolate between two

Ground Truth Recon. Error

COMA MANO

0 10mm
Ground Truth Recon. Error

0 10mm

DFAUST

Ground Truth Recon. Error
0 20mm

Figure 5: Modeling errors of our transformer-based autoencoder
on test samples of COMA, MANO, and DFAUST datasets.

Table 1: Quantitative comparison of face reconstruction (model-
ing) performance versus related work on the COMA dataset.

Method mean median time per
error (mm) error (mm) epoch (s)

FeaStNet 0.523±0.643 0.297 133.183
MoNet 0.526±0.605 0.353 97.009
COMA [RBSB18] 0.470±0.598 0.263 77.943
ChebyConv (K=9) 0.436±0.562 0.242 86.627
Neural3DMM [BBP∗19] 0.443±0.560 0.245 107.137
SpiralNet++ [GCBZ19] 0.426±0.538 0.238 30.417
DilatedSpiralNet++
[GCBZ19]

0.423±0.534 0.236 29.181

Ours 0.413±0.313 0.323 400
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Figure 6: We can interpolate between shape codes to create re-
alistic in-between shapes. Here, the shapes at 0% and 100% are
training data samples, the others are new interpolated shapes.

different 3D shapes (i.e., two shape codes) is illustrated in Fig. 6.
Please refer to the supplemental video for more examples, and to
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Table 2: Quantitative comparison on DFAUST

Method Training
error
(mm)

Validation
error
(mm)

Model
size

Neural3DMM [BBP∗19] 6.42 7.39 2.0m
MeshCNN* [HHF∗19] 83.3 101.7 2.2m
Zhou et al.[ZWL∗20] 3.73 5.01 1.9m
Ours 4.58 5.31 2.1m

visualize the smooth transition during interpolation. As the inter-
polation weight changes, the resulting shape progressively changes
identity, pose, and expression as the shape code moves within the
model’s latent space. Note how the interpolations effectively cap-
ture nonlinear deformations and always correspond to plausible
shapes, what would be difficult to obtain with a linear model.

Comparison to Implicit Models. Here we compare our Shape
Transformer’s performance against two implicit models. The first
is that of DeepSDF [PFS∗19] on the SDFM dataset. For this exper-
iment, we exported each SDFM shape as a signed distance field,
following Park et al. [PFS∗19] by sampling 250K points in the
normalized bounding volume of the dataset. DeepSDF uses a la-
tent shape code of 512 dimensions and an 8-layer MLP with skip
connections. Since DeepSDF is trained in an auto-decoder fashion
(without an encoder), validation shapes must be fit (reconstructed)
via an iterative optimization step. As a second comparison baseline,
we take the implicit MLP architecture used by DeepSDF and train it
to output per-point offsets from our canonical shape (i.e., no signed
distance field, no self-attention). We trained these two baselines and
a facial Shape Transformer for 200 epochs each. As shown in Ta-
ble 3, our transformer-based model outperforms the two baselines,
which showed similarly inferior generalization. Fig. 7 compares the
generalization errors on a validation example and also shows the
faster convergence of our Shape Transformer compared to a simple
MLP that predicts per-point offsets from our canonical shape.

Decoding Context. As the attention mechanism in the Shape
Transformer naturally depends on the set of vertices sampled for
decoding, we provide an evaluation of the reconstruction perfor-
mance of the COMA Shape Transformer while varying the num-
ber of simultaneously sampled locations on the canonical face sur-
face. The result of this evaluation, in Fig. 9, shows that the attention
produces reasonable deformations for different decoding densities,
but that accuracy is best at higher resolutions. In a related exper-
iment, we kept the number of sampled points constant but varied
their spatial extent, to measure the effect of local and global cor-
relations while decoding vertex sets. Intuitively, we reconstruct a
vertex while forcing the attention weight to be zero for all ver-
tices further away than a given distance. We repeat this experiment
for 100 vertices on the face and for 8 different distance thresholds
(from 10mm to 200mm), allowing the model to capture increasing
global context. Fig. 10 plots the average reconstruction error as a
function of the neighbourhood distance. Again, leveraging global
context via self-attention gives the best results, showing that Shape
Transformers can effectively balance both local and global spatial
correlations. This helps our model outperform mesh convolutional
(local) models (Table 1, Table 2) and also other implicit, single-
point models based on MLPs without self-attention (Table 3).

Table 3: Comparison vs implicit shape models on SDFM data.

Method Validation error (mm)
Implicit MLP 1.76
DeepSDF [PFS∗19] 1.35
Ours 0.768

Ground Truth DeepSDF Implicit MLP Shape Transformer 
(Ours)

Lo
ss

Figure 7: Shape Transformer outperforms implicit shape models in
face reconstruction (left), while also converging faster to a better
solution when compared to per-point MLPs without self-attention.

4.3. Topology Independence

One of the key benefits of the Shape Transformer model is its
topology independence, where the model can be trained on one or
many different topologies, and then evaluated on any new topolo-
gies without re-training. We illustrate the topological independence
for the SDFM Shape Transformer in Fig. 1, and the MANO Shape
Transformer in Fig. 8. Note that the model produces accurate over-
all geometry for all topologies, and also learns to increase the sur-
face details when the mesh topology permits (e.g., the Catmull-
Clark subdivision result in Fig. 8 has long thin triangles in the
middle of the palm, and the Shape Transformer is able to create
more detailed wrinkles). Shape Transformer could thus perform as
a valuable tool for mesh super-resolution/upsampling. Note that in
order to support a new topology at test time, we require a one-time
mapping of the new topology to the canonical manifold (e.g., by
registering a single new mesh onto the canonical shape). This is
easily achieved using traditional mesh deformation tools that are
readily available in 3D modeling packages [Com18] and in litera-
ture [WAT∗11, SCOL∗04].

4.4. Shape Completion

Face models occasionally have to deal with incomplete data, for ex-
ample in image-based reconstruction tasks when parts of the face
are occluded. It is often the task of the face model to complete
missing regions in a plausible way. Here we show that Shape Trans-
formers are very well suited to this task. Recall that the shape code
in the Shape Transformer is obtained from an encoder which is
also implemented as a transformer, and thus is also topology in-
dependent. This means that it is sufficient to supply only partial
shapes to the encoder, in order to obtain the shape code for decod-
ing. We illustrate this case of missing data on the SDFM Shape
Transformer in Fig. 11 by manually cropping away large regions
of vertices from shapes before encoding them, and evaluating the
reconstruction errors. The Shape Transformer naturally handles the
missing region and reconstructs plausible deformations even when
only trained with complete information during training. An extreme
case of missing input data is to sample only a subset of the ver-
tices of the target mesh. Our shape encoder is able to still obtain
plausible shape codes under such extreme cases, which we show
by slowly reducing the number of encoded vertices in our COMA
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Figure 8: Here we show the MANO Shape Transformer evaluated
on several different topologies, even though the model was trained
only once on the original topology.
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Figure 9: We show reconstruction errors while varying the number
of queried vertices in the decoder of the COMA Shape Transformer.
Even with very few vertices, the sampled offsets remain accurate,
demonstrating the robustness of self-attention in our decoder.

Shape Transformer in Fig. 12. This experiment is valuable as it
supports a real-world scenario of sparse facial tracking, e.g., from
detected landmarks or motion-capture dots. We demonstrate this
use case in Fig. 13, where we show reconstruction errors for two
different frames of a captured performance, evaluating two differ-
ent marker layouts — 64 landmarks corresponding to a landmark
detector, and 160 evenly placed markers corresponding to a motion-
capture layout. Note that in this experiment we demonstrate an
actor-specific use case, and thus we train a special actor-specific
Shape Transformer such that the encoded shape codes represent
expressions only. Please refer to the supplemental video for several
complete sparse performance reconstructions.

4.5. Projecting New Shapes by Optimizing Shape Codes

As mentioned in Section 3, we have two options to compute a
shape code for our Shape Transformers. One option, which have
explored so far, relies on shape codes output by our transformer-
based encoder. The second option is to fit the pre-trained Shape
Transformer to a particular new 3D shape by iteratively optimiz-
ing for a new shape code that minimizes an L2-loss between the
decoded 3D points and the 3D points on the new target shape.
This second option can be beneficial for particular shapes that dif-
fer from those in the training data and for which the shape code
output by the encoder is suboptimal. Thus, it can serve to initialize
a subsequent optimization step. Furthermore, this optimization is
now free to compute different shape codes for different regions of
the face, further improving quality of fit and expressibility of the
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Figure 10: We show the effect of local and global correlations
by decoding a vertex with increasing neighborhood sizes (green).
Higher accuracy is achieved when leveraging more global context.
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Figure 11: Shape Transformers can be used for shape completion
when large regions of the target are missing, e.g., the cheek, chin,
upper lip, and nose shown above on the SDFM Shape Transformer.

model. We note that such a projection into the Shape Transformer’s
latent space assumes that correspondences are known between the
target and canonical shapes. Fig. 14 shows an experiment on which
we fit the Shape Transformer to two unseen subjects, with one local
shape code per vertex. This projection takes 15 seconds per shape
and is guided by gradient descent. Naturally, this corresponds to
an over-parameterization of the model, leading to perfect fits with
zero error. The purpose of this experiment however is to demon-
strate how the Shape Transformer allows for the number of local
shapes to be arbitrarily adjusted to match the desired accuracy at
inference time. Interesting avenues for future work include extract-
ing optimal patch layouts from the Shape Transformer such that a
target face can be represented with as few codes as possible.

4.6. High-Quality Face Modeling

We now demonstrate the application of building a high-quality,
identity-specific Shape Transformer from 24 facial scans of a sin-
gle person. Each scan has over 500,000 vertices capturing fine de-
tail down to the skin pores and fine wrinkles. This high-quality
dataset was captured with a multiview stereo setup in controlled
studio-like conditions [BHB∗11]. This highly detailed dataset com-
prises about 36 million coordinates in total, while our trained Shape
Transformer learns to represent it with about 1 million weights. We
used all 24 shapes to train this Shape Transformer, with the goal of
generating a high-quality model that can be interpolated or driven
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Figure 12: Slowly decreasing the number of encoded vertices for
the COMA Shape Transformer degrades the reconstruction natu-
rally. Left: reconstructions for 6 different encodings from 4000 to
100 vertices. Right: avg. reconstruction errors for 5 different train-
ing samples increase as the number of encoded vertices decreases.
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Figure 13: We illustrate actor-specific Shape Transformer recon-
struction from sparse points on 2 frames of a performance, e.g.,
from 64 landmarks or 160 hand-placed motion-capture markers.

by data in order to generate high-quality facial animation. As the
shapes in this case are of extremely high resolution, they cannot be
queried all at once like in our previous experiments due to GPU
memory limitations. Thus, we opt for a simple training strategy
where the encoder always encodes a fixed set of 20,000 canonical
positions on the target scan. These points are sampled once using
dart throwing such that they cover the entire face. On the decoder
side, we randomly sample 20,000 points at each iteration and re-
construct the corresponding target offsets. This strategy allows us
to consistently learn a single shape code per training sample on the
encoder side while still allowing us to supervise the decoder with
rich ground truth. At inference time, we also split the queried points
into equally sized chunks that fit in memory and query them in se-
quence. The reconstruction accuracy for a few 3D shapes in the
training data is shown in Fig. 15(a). Both the figure insets and the
very small modeling errors (mostly below 0.25 mm) show that the
model is able to effectively capture the fine geometric detail in the
training shapes. Fig. 15(b) shows the novel, high-quality 3D shapes
generated by the Shape Transformer as we interpolate between two
of the original shapes. Besides generating dense, realistic geometry,
this same Shape Transformer can be sampled at different topologies
and spatial resolution, for different application scenarios (Fig. 1).

4.7. Model Analysis

Canonical Shape Changes. Since the Shape Transformer makes
use of a canonical shape to sample queries during training and in-

Ground Truth Ground Truth Optimized Shape Optimized ShapeError Error

0 mm 5 mm

Figure 14: We illustrate the arbitrary representative power of the
Shape Transformer with an over-parameterized projection result-
ing in the perfect reconstruction of the ground truth shape.

ference, a natural question to ask is about its reaction to off-surface
queries? To understand this behavior, we modified the canonical
shape after the Shape Transformer was trained and visualized the
change in reconstructing a particular shape. Fig. 16 shows the effect
of varying the canonical shape in 3 different ways: scale, non-rigid
deformations and pose. The results seem to indicate the our model
is more or less invariant to the scale of the canonical shape, while
failing understandably for large changes in pose. Kindly refer to the
supplemental video for more results of this experiment.

Style Mixing. One more application that is allowed by our style
modulated decoder is style mixing. By style mixing, we refer to the
use of different shape codes to modulate each layer of the decoder.
We first obtain a set of candidate shape codes to style mix by encod-
ing a set of shapes through our encoder. The different shape codes
can then be mix and matched to modulate the decoder at different
layers. Mixing 2 different shapes in the 4 layer COMA and MANO
Shape Transformer decoder is demonstrated in Fig. 17.

4.8. Disentangling Identity and Expression

Previous face models showed several benefits of being able to dis-
entangle the deformation caused by identity changes from the de-
formation caused by expression changes [VBPP05, CBGB20]. Our
new model is also able to disentangle identity and expression, by
splitting the shape code into two separate parts. During training,
we then constrain the identity part to have the same code for all ex-
pressions of the same subject. In addition, the two parts in the code
allows us to modulate the two semantic aspects separately, opening
up several applications as illustrated in the following.

Identity Synthesis. In Fig. 18, each row shows many different sam-
pled identities obtained by change the part of the shape code corre-
sponding to identity, while leaving the expression code fixed. Along
each column, the identity is fixed but the expression code changes.

Identity/Expression Interpolation. A disentangled Shape Trans-
former allows to interpolate only the identity or expression part
of the shape code, as illustrated on SDFM data in Fig. 19 (left).
Furthermore, the interpolation can be applied only locally (e.g., to
only half of the face as shown in Fig. 19 (right)) by using a different
shape code with a subset of the queried 3D points given to the trans-
former. Note that different identities and expressions were used for
the two different experiments (global versus local interpolation).

Blendshape-Based Performance Retargeting. A Shape Trans-
former with disentangled identity and expressions codes naturally
facilitates application in the retargetting of facial performances.
Fig. 20 shows the modeled sequence of facial expressions captured
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Figure 15: High-quality, person-specific Shape Transformer trained on 24 facial scans with fine geometry detail capturing skin pores and
wrinkles: (a) modeling error on 4 training shapes; (b) novel, high-quality shapes generated via interpolation of two training shapes.
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Figure 16: Here we show the effect of modifying the canonical shape at inference after our transformer was trained. We show the effects that
scale, non-rigid deformations and pose have on the trained model. These results indicate that the model is more or less robust to changes in
scale and small non-rigid deformations. Changes in pose seem to affect the predicted offsets to a greater extent.

for the source actor, which are then retargetted to two other actors
by transferring only the expression codes.

5. Conclusion

Parametric shape models are among the most common tools used in
computer graphics applications. These data-driven priors are usu-
ally built from a corpus of 3D scans, and are often used to repre-
sent 3D faces, hands and bodies (among other items). A number
of different parametric models exist, ranging from linear to nonlin-
ear and local to global, but they all share the common limitation
that they usually dictate the extent of spatial correlations that oc-
cur during deformation. Furthermore, they are all designed to work

on a fixed topology. In this work we present Shape Transformers,
a new nonlinear parametric 3D shape model based on transformer
architectures, which uses the transformer’s “self-attention" mech-
anism to automatically learn nonlinear spatial correlations. Addi-
tionally, our model is topologically independent: it can be trained
once and then evaluated on any mesh topology. We demonstrate
how our new model can be applied on various datasets, including
3D faces, hands and full bodies, and illustrate several applications
like reconstruction, shape completion, performance capture and re-
targeting. We believe our transformer-based 3D shape model shows
strong potential in computer graphics and vision applications.
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Figure 17: Here we show the effect of modulating the different layers of our decoder with different shape codes. Though during training, we
always train with a single shape code applied at all layers, our model is able to produce smoothly deforming shapes when mixing styles at
different layers at inference time. The effect of such style mixing is displayed on two datasets consisting of hands and faces.

Figure 18: Our Shape Transformer with separate shape codes
for identity and expression allows for semantically sampling novel
identities, while retaining the ability to control their expression.

References
[ABWB19] ABREVAYA V. F., BOUKHAYMA A., WUHRER S., BOYER

E.: A decoupled 3d facial shape model by adversarial training. In IEEE
ICCV (2019). 3

[BBP∗19] BOURITSAS G., BOKHNYAK S., PLOUMPIS S., ZAFEIRIOU
S., BRONSTEIN M.: Neural 3d morphable models: Spiral convolutional
networks for 3d shape representation learning and generation. In IEEE
ICCV (2019), pp. 7212–7221. 3, 6, 7, 8

[BHB∗11] BEELER T., HAHN F., BRADLEY D., BICKEL B., BEARD-
SLEY P., GOTSMAN C., SUMNER R. W., GROSS M.: High-quality
passive facial performance capture using anchor frames. ACM Trans.
Graphics (Proc. SIGGRAPH) 30 (2011), 75:1–75:10. 9

[BRPMB17] BOGO F., ROMERO J., PONS-MOLL G., BLACK M. J.:
Dynamic FAUST: Registering human bodies in motion. In IEEE CVPR
(2017). 6, 7

[BV99] BLANZ V., VETTER T.: A morphable model for the synthesis of
3d faces. In Siggraph (1999), vol. 99, pp. 187–194. 1, 2

[CBGB20] CHANDRAN P., BRADLEY D., GROSS M., BEELER T.: Se-
mantic deep face models. In Int. Conf. on 3D Vision (2020), pp. 345–354.
2, 3, 6, 7, 10

[CK21] CHEN Z., KIM T.-K.: Learning feature aggregation for deep 3d
morphable models. In IEEE CVPR (2021). 3

[Com18] COMMUNITY B. O.: Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation, Amster-
dam, 2018. URL: http://www.blender.org. 8

[CZ19] CHEN Z., ZHANG H.: Learning implicit fields for generative
shape modeling. IEEE CVPR (2019). 3

[DBK∗21] DOSOVITSKIY A., BEYER L., KOLESNIKOV A., WEIS-
SENBORN D., ZHAI X., UNTERTHINER T., DEHGHANI M., MIN-
DERER M., HEIGOLD G., GELLY S., USZKOREIT J., HOULSBY N.:
An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR (2021). 3

[DBV16] DEFFERRARD M., BRESSON X., VANDERGHEYNST P.: Con-
volutional neural networks on graphs with fast localized spectral filter-
ing. In NeurIPS (2016), p. 3844–3852. 3

[DCLT19] DEVLIN J., CHANG M.-W., LEE K., TOUTANOVA K.: Bert:
Pre-training of deep bidirectional transformers for language understand-
ing. In NAACL-HLT (2019), pp. 4171–4186. 5

[DLJ∗20] DENG B., LEWIS J. P., JERUZALSKI T., PONS-MOLL G.,
HINTON G., NOROUZI M., TAGLIASACCHI A.: Nasa neural articulated
shape approximation. In ECCV (2020). 3

[ENTC∗21] EL-NOUBY A., TOUVRON H., CARON M., BOJANOWSKI
P., DOUZE M., JOULIN A., LAPTEV I., NEVEROVA N., SYNNAEVE
G., VERBEEK J., ET AL.: Xcit: Cross-covariance image transformers.
arXiv preprint arXiv:2106.09681 (2021). 4, 5, 6

[EST∗20] EGGER B., SMITH W. A. P., TEWARI A., WUHRER S.,
ZOLLHOEFER M., BEELER T., BERNARD F., BOLKART T., KO-
RTYLEWSKI A., ROMDHANI S., THEOBALT C., BLANZ V., VETTER
T.: 3d morphable face models - past, present and future. ACM Trans.
Graphics 39, 5 (2020). 2

[GCBZ19] GONG S., CHEN L., BRONSTEIN M., ZAFEIRIOU S.: Spi-
ralnet++: A fast and highly efficient mesh convolution operator. In IEEE
ICCV Workshops (2019), pp. 4141–4148. 2, 3, 6, 7

[GYH∗20] GROPP A., YARIV L., HAIM N., ATZMON M., LIPMAN Y.:
Implicit geometric regularization for learning shapes. In Proc. Machine
Learning and Systems. 2020, pp. 3569–3579. 3

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

http://www.blender.org


P. Chandran, G. Zoss, M. Gross, P. Gotardo, D. Bradley / Shape Transformers: Topology-Independent 3D Shape Models Using Transformers

Global Interpolation (entire face) Local Interpolation (right side of face)

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Ex
pr

es
si

on
Id

en
tit

y

Figure 19: A disentangled COMA Shape Transformer allows to interpolate only the identity (top row) or the expression (bottom row) while
keeping the other part of the shape code fixed. This interpolation can happen by changing the shape code globally for the entire face (left) or
even locally for a part of the face (right). Note that the left and right experiments are performed with different identities and expressions.
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