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Fig. 1. We present the first method for reconstruction and tracking of dense facial hair along with the underlying skin surface for performance capture.

Facial hair is a largely overlooked topic in facial performance capture. Most
production pipelines in the entertainment industry do not have a way to
automatically capture facial hair or track the skin underneath it. Thus, actors
are asked to shave clean before face capture, which is very often undesirable.
Capturing the geometry of individual facial hairs is very challenging, and
their presence makes it harder to capture the deforming shape of the under-
lying skin surface. Some attempts have already been made at automating this
task, but only for static faces with relatively sparse 3D hair reconstructions.
In particular, current methods lack the temporal correspondence needed
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when capturing a sequence of video frames depicting facial performance.
The problem of robustly tracking the skin underneath also remains unad-
dressed. In this paper, we propose the first multiview reconstruction pipeline
that tracks both the dense 3D facial hair, as well as the underlying 3D skin
for entire performances. Our method operates with standard setups for face
photogrammetry, without requiring dense camera arrays. For a given cap-
ture subject, our algorithm first reconstructs a dense, high-quality neutral
3D facial hairstyle by registering sparser hair reconstructions over multiple
frames that depict a neutral face under quasi-rigid motion. This custom-built,
reference facial hairstyle is then tracked throughout a variety of changing
facial expressions in a captured performance, and the result is used to con-
strain the tracking of the 3D skin surface underneath. We demonstrate the
proposed capture pipeline on a variety of different facial hairstyles and
lengths, ranging from sparse and short to dense full-beards.

CCS Concepts: • Computing methodologies → Motion capture; Mo-
tion processing.
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1 INTRODUCTION
The creation of realistic animated performances for digital char-
acters has relied for decades on motion capture of real actors, in
particular for high-quality visual effects in feature films. More and
more, actors are performing in front of multi-camera reconstruction
systems that accurately recover the actors’ movements digitally,
which is especially popular for facial animation. Such facial perfor-
mances can then be used for face replacement, digital enhancement,
aging or de-aging, or in order to drive fantasy characters.
While the technology for 3D reconstruction and tracking of the

facial skin surface has advanced immensely, a major limitation is
that current facial performance tracking methods do not operate
well in the presence of facial hair. As multiview stereo reconstruc-
tion has been predominantly targeted at 3D surfaces, the presence
of a multitude of small and thin structures such as facial hair, with
a complex mutual occlusion pattern, most often results in largely
incorrect, shrink-wrapped (water-tight) 3D surfaces. Therefore, ac-
tors are consistently asked to shave their beards and mustaches just
before their facial performances are captured. This can pose many
problems, ultimately increasing the cost and complexity of the cap-
ture pipeline. For example, it might be that the digital character is in
factmeant to have the facial hair of the actor, in which case the clean-
shaved skin of the actor is first reconstructed in 3D, and then artists
must digitally re-add the facial hair on top of the skin geometry —
which is obviously inconvenient and time consuming (expensive).
An additional issue that arises very often is that many actors are
simply unwilling to shave, as it causes a large and undesired change
in their appearance. Shaving can also be a huge commitment, as
it can take multiple months until facial hair grows to reach the
same length and density again. Thus, capturing an actor in a role
with a beard or mustache also imposes scheduling challenges, as
all principal photography shooting must be done before the actor
shaves for facial capture work, or only several months after face
capture, leaving enough time for the beard to re-grow. Furthermore,
eyebrows exhibit similar challenges as beards and mustaches, so a
universal solution for facial hair capture would be very valuable.
In this work, we present the first method (to our knowledge)

that enables facial performance capture in the presence of facial
hair (e.g. beards, mustaches and eyebrows). Our method focuses
on detailed 3D facial hair reconstruction and tracking over time,
yielding a dense digital 3D facial hairstyle and its deformation over
an entire performance. The resulting hair geometry sequence is in
full correspondence over time and can be easily edited by artists.
Our method also estimates a time-varying face surface under the
hair, in order to provide a plausible clean-shaven facial performance
reconstruction. Combining the face and the hair captured by our
method, a high fidelity digital double can be obtained. Applications
include reconstructing faces with the facial hair for more faithful
digital actors, or focusing on the underlying facial surface and dis-
carding the recovered hair, to model clean-shaven digital doubles
without requiring the actor to shave.

2 RELATED WORK
This section reviews related work on facial performance capture
and hair capture, focusing on facial and scalp hair.

Face Capture. The last decades havewitnessed significant progress
on research focused on capturing the 3D geometry of unoccluded fa-
cial skin, going beyond static faces to also capture facial deformation
over time in a markerless way. In the domain of static reconstruction,
there have been both active lighting methods [Ghosh et al. 2011;
Ma et al. 2007], as well as passive, stereo approaches [Beeler et al.
2010] that can capture fine geometric detail at the level of skin pores,
with sub-millimeter accuracy. In the area of dynamic performance
capture, multiview techniques [Beeler et al. 2011; Bradley et al. 2010;
Fyffe et al. 2017] allow to capture high-quality sequences of 3D facial
geometry with dense temporal correspondences in a markerless
way. Recently, Wu et al. [2016b] have also enabled accurate tracking
of 3D faces for performance capture using few camera views, by
leveraging stronger face priors in the form of an anatomical local
model of facial skin deformation. More recently, Deep Learning
based methods [Laine et al. 2017; Li et al. 2021; Tewari et al. 2017]
have helped lower the processing time. In line with tracking the
skin surface, there have also been works that focus on capturing
and tracking secondary facial features like eyes [Bérard et al. 2016],
eyelids [Bermano et al. 2015], teeth [Wu et al. 2016a], as well as the
skull and jaw [Zoss et al. 2019]. These works all contribute to the
goal of automatically capturing a complete human face with all its
inherent details. Most of these works assume that skin patches are
mostly hair free; when this assumption does not hold, the result-
ing geometry tends to exhibit artifacts like spurious noise and a
shrink-wrapping effect around the hair.

Static Facial Hair Capture. In contrast to the large body of work
on face capture, less than a handful of papers address the problem
of capturing facial hair. Early work by Herrera et al. [2010] inves-
tigated image-based techniques for modeling static facial hair in
texture space, growing 3D hairs by shooting particles, and achieving
limited fidelity and realism. Most closely related to our work is the
method by Beeler et al. [2012] for multiview 3D reconstruction of
facial hair on a static face, while also estimating the underlying
skin position. Their work uses a passive, multi-camera setup with
uniform lighting and a custom sequence of 2D and 3D algorithms
for hair detection, reconstruction of 3D hair segments, and growing
of individual facial hair strands. As an additional step, hair root
positions are used to provide estimates of the underlying skin sur-
face positions. While the resulting epi-surface works well for sparse
and short facial hairstyles, it creates anatomically implausible skin
geometry for subjects with long and dense beards, whose hair roots
are not visible. Parallel work by Fyffe [2012] captures facial hair
using a specialized photo-consistency loss and particle-based hair
primitives. Furthermore, LeGendre et al. [2017] investigated model-
ing the very fine, low contrast vellus hair using asperity scattering
along a subject’s backlit silhouette. More recently, the ideas in Beeler
et al. [2012] were extended for monocular facial hair capture by Rot-
ger et al. [2019], but with more limited fidelity due to the lack of
multiple viewpoints. All of these methods target individual static
faces in isolation and do not address the problem of performance
capture with dense temporal correspondence. In this work, we build
upon Beeler et al. [2012] to add these missing capabilities and fur-
ther improve quality and density of the recovered hairstyles, also
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providing more plausible estimates of the underlying skin surface
as it deforms during a facial performance.

Static Scalp Hair Capture. Scalp hair growing on top and around
a person’s head is one of the most distinctive identity features that
is external to the face. As such, significantly more research work
has been devoted to modeling and capturing scalp hair. Early work
by Nakajima et al. [1997] first explored the idea of reconstructing
3D scalp hair with multiple images, creating and then growing hairs
inside a 3D volume. Subsequently, Grabli et al. [2002] leveraged spec-
ular reflections over an image sequence under moving light sources
to acquire the 3D orientation of hair strands and ultimately grow
hair from such orientation field. Paris et al. [2004] further improved
on these ideas and, in their well-known work Hair Photobooth [Paris
et al. 2008], used projectors and multiple cameras to capture both the
geometry and appearance of a diverse set of hairstyles. Jakob et al.
[2009] captured single hair fibers using a sequence of images and a
camera with very shallow depth of field. Herrera et al. [2012] pro-
posed another innovative approach for hair capture using thermal
imaging techniques. The work by Luo et al. [2013] is another very
important contribution towards hair capture, based on graph data
structures and global optimization of complex hairstyles. Zhang
et al. [2017] investigated the use of only four sparse views (front,
back, left, right) of the head to reconstruct the hair, allowing for
the creation of different combinations of hairstyles. Hu et al. [2014]
leveraged a dataset of physically simulated hairs, achieving robust
results on hairstyles with large occlusions, multiple layers, and
complex structures. The state-of-the-art work by Nam et al. [2019]
redefined hair capturing as a multiview line-based patch match prob-
lem but relies on a dense array of 70 or more cameras. Recently, Sun
et al. [2021] proposed a method to both capture scalp hair geometry
and appearance, reformulating multiview triangulation of oriented
hair segments, and using controllable lighting to provide robust fea-
tures for multiview stereo matching and appearance computation.
Their method arguably works with as few as 24 cameras, but they
only demonstrate results on synthetic datasets. In contrast to all
the above hair static capture methods, we focus on high-quality
dynamic facial hair capture using only 14 frontal cameras in a stan-
dard photogrammetry setup with passive, uniform lighting, without
requiring large and expensive capture volumes.

Dynamic Scalp Hair Capture. In the entertainment industry, scalp
hair geometry is significantly more useful when combined with
a motion model. While the predominant technique is still manual
hair grooming and simulation, some work has investigated the chal-
lenging task of capturing dynamic scalp hair. Ishikawa et al. [2007]
approached hair motion capture by attaching physical markers on
long hair strands to track them. Yamaguchi et al. [2009] proposed
the first passive approach for dynamic hair capture, extending static
capture ideas with temporal smoothing of hair strands, but remain-
ing limited to mostly straight hairstyles. Xu et al. [2014] analyzed
space-time slices through stacks of hair images and traced a mo-
tion path for each hair pixel, obtaining impressive results for long
hair, but also remaining limited to fairly straight hairstyles. Hu
et al. [2017] combined dynamic scalp hair capturing with physical
simulation to facilitate artistic control. Other works have focused
on monocular scalp hair capture using learning-based methods to

Fig. 2. We adopt a standard setup for facial performance capture based on
Riviere et al. [2020], with 14 video cameras organized into four triplets (each
including a stereo pair) and two additional cameras for hair capture.

derive stronger data-driven priors, but achieving low-fidelity results
that mainly capture the overall shape of the hair and predominant
strand orientation [Chai et al. 2013; Liang et al. 2018; Yang et al.
2019]. Despite the larger body of work on scalp hair capture, such
methods are not directly applicable in the scenario of facial per-
formance capture due to differences in the hardware and accuracy
requirements and also the nature of facial hair, which is shorter,
with less uniform density and orientation, and undergoes a unique
type of self-collision, occlusion and deformation as the underlying
skin surface deforms during facial expressions. These challenges
are exactly the ones we target in this work.

Neural Rendering. The recent explosion of neural rendering ap-
proaches [Gafni et al. 2021; Lombardi et al. 2019; Park et al. 2021;
Tewari et al. 2020] has enabled the synthesis of photorealistic images
of complete human head models, including scalp and facial hair,
even under arbitrary viewpoints, head poses and expressions. This
is achieved in a data-driven way, without the explicit estimation
of high-quality 3D geometry assets. Although impressive, these
methods do not yet allow for the level of artistic control and ed-
itability (e.g. relighting, beard grooming, removal, animation, etc.)
that is expected in familiar, high-quality production pipelines in the
entertainment industry and related fields.

3 PERFORMANCE CAPTURE WITH FACIAL HAIR
This section presents our novel method for dynamic 3D facial hair
capture and tracking that is designed for use with standard pho-
togrammetry systems for facial performance capture, such as [Beeler
et al. 2011; Gotardo et al. 2018; Riviere et al. 2020]. We use a common
capture setup comprised of 16 banks of LED lights, for constant and
uniform lighting, and 14 synchronized, color video cameras with
resolutions ranging from 12 to 50 megapixels. All cameras and lights
are placed around the frontal hemisphere of the captured subject,
who can deliver facial performances in a fixed seated position, Fig. 2.
Twelve cameras are organized into four triplets (front-up, front-
bellow, left, right), where each triplet contains a stereo pair and
a third central camera that is cross-polarized relative to the light-
ing; this central camera does not capture specular highlights and
cross-polarization is only required to capture the appearance pa-
rameters of facial skin [Riviere et al. 2020]. Two additional cameras
are placed in between the triplets above, one on each side of the
captured subject, to assist in facial hair capture. Note that our facial
hair capture method can work with additional cameras, in different
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Fig. 3. Overview of the proposed dynamic facial hair capture pipeline comprising two main stages: (top) facial skin reconstruction and tracking, and (bottom)
facial hair reconstruction and tracking, whose solutions are coupled and computed in alternation, via multiple refinement steps (Section 3.𝑥 , as indicated).

Fig. 4. Steps for creating a hair-free reference mesh with well-defined canon-
ical topology for tracking throughout a facial performance.

arrangements and without polarized lighting, as long as the stereo
pairs provide sufficient coverage of the face.

We approach the problem of dynamic facial hair capture by split-
ting it into two parts: (𝑖) facial skin reconstruction and tracking, and
(𝑖𝑖) facial hair fiber reconstruction and tracking. Our pipeline alter-
nates between these two tasks during refinement steps, converging
to a well-tracked underlying skin surface with individually-tracked
3D facial hairs. These two main stages are further split into a se-
quence of steps as outlined in Fig. 3 and described below.

3.1 Initialization
Our facial performance capture pipeline begins with per-frame
multiview stereo [Beeler et al. 2010], yielding a high quality face
shape that we refer to as the raw mesh for each frame. This mesh
contains detailed 3D geometric reconstructions for skin areas, but
shrink-wrapped surfaces over facial hair regions, Fig. 4 (a). At this
stage, the raw meshes of different frames have different topologies
and vertex counts and are not yet in temporal correspondence.
We then borrow from the static facial hair capture method of

Beeler et al. [2012] and compute initial and sparse per-frame hair
reconstructions, adapting the method to work well with our spe-
cific camera layout and image resolution. In particular, images were

resized such that individual hairs had a width of approximately 3
pixels, allowing us to use the original hyper-parameters of Beeler
et al. [2012], with the exception of the threshold for 2D hair growing,
which we reduced from 0.5 to 0.3 in order to obtain slightly more
density in the static hairstyle reconstructions given that we had
fewer camera angles. Note, however, that such static hair recon-
structions are not directly suitable for performance capture as they
are too sparse and noisy, with significant temporal jitter due to the
inconsistent reconstructions and lack of common topology across
frames. These inaccuracies get amplified with more expressive facial
performances and with added motion and depth-of-field blur.

3.2 Creating a Hair-Free Reference Mesh for Tracking
We now begin the novel contributions of our work, starting with
the creation of a hair-free neutral reference mesh for tracking. Ul-
timately, our face performance capture goal is to track a standard
mesh topology over all the per-frame raw meshes obtained above,
to model the dense, temporal 3D deformation of all facial skin areas,
regardless of whether or not they are covered by hair. This task
requires that we first create an identity-specific track mesh, without
facial hair, for the captured subject. To this end, we first select a
neutral frame of the performance and register a template 3D face
mesh with a well-defined canonical topology to the corresponding
rawmesh. In this process, we need to discard and replace incorrectly
reconstructed areas of the rawmesh that show shrink-wrap artifacts
due to facial hair, or we end up with a bearded track mesh as shown
in Fig. 4 (b). Fortunately, the facial hair areas can be identified based
on inconsistencies in the multiview reconstruction, denoted by a
surface confidence value, which is computed by examining photo-
metric consistency as evaluated via normalized cross-correlation
across the multiview images [Beeler et al. 2010]. We encode this
confidence into a facial hair mask in UV texture space, as illustrated
in the top-left block of Fig. 3. Using this mask, our goal is to predict
a plausible skin surface for areas occluded by facial hair. Unlike
previous work [Beeler et al. 2012], we take a data-driven approach
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to the surface prediction task. Specifically, using a dense 3D face
database [Chandran et al. 2020], we create a PCA face model and
fit it to the hair-free skin surface region, while additionally ensur-
ing that the surface remains behind any reconstructed hair strands,
Fig. 4 (c). At this point we aim to obtain only an approximate skin
surface under the hair regions, and so our approach does not depend
on the particular PCA face model we constructed and we envision
that alternative models would work equally well. As a final step, we
combine the occluded skin surface predicted by PCA with the accu-
rate multiview stereo geometry of non-hair regions via Laplacian
mesh deformation [Sorkine et al. 2004], yielding our hair-free refer-
ence face mesh with a well-defined canonical topology for tracking
throughout the facial performance, Fig. 4 (d).

3.3 Tracking the Reference Mesh with Facial Hair Mask
We can now apply the facial tracking method of Beeler et al. [2011],
which aims to propagate the hair-less track mesh with template
topology to all frames in the performance. Due to the presence of
the facial hair, we adapt the tracking method by again masking all
pixels that correspond to hair regions, and instead of tracking we
allow the surface to deform as-rigidly-as-possible in these regions,
while properly tracking the non-hair regions. While not a perfect
solution, this process yields initial hair-free tracked meshes that
have a consistent topology, dense temporal correspondences, and
are devoid of the shrink-wrap artifacts of the original per-frame
raw meshes. The resulting facial surface under hair regions will be
further refined in the subsequent steps, but is already plausible and
accurate enough to proceed with 3D hair fiber reconstruction.

3.4 Creating the Reference Facial Hairstyle
We now turn to our other goal: capturing a temporally-consistent,
high-quality, dense facial hairstyle for each video frame. We start
with our reference frame, showing a frontal neutral face expression,
and build a reference hairstyle for our reference track mesh. Empiri-
cally, we found that using the static method of Beeler et al. [2012] on
the reference frame resulted in sparse and inaccurate facial hair due
to hair occlusions, defocus from shallow depth of field, and the few
stereo cameras in our setup. Instead of requiring the use of a denser
array of cameras, we opted to design our method so that it builds
a denser, high-quality reference hairstyle by accumulating hair re-
constructions over multiple frames in time. To achieve this goal,
we capture additional viewpoints of the target subject by asking
them to slowly rotate their face while maintaining a neutral facial
expression, Fig. 5. As a result, we effectively increase the number
of viewpoints by at least an order of magnitude. For each video
frame showing this circular motion, we compute initial, static hair
reconstruction following Beeler et al. [2012], as described above.

For creating a reference facial hairstyle, for subsequent tracking,
we also make use of cumulative optical flow relative to the reference
frame, which was already precomputed for each camera view dur-
ing the previous mesh tracking step. Here, the optical flow vectors
are used to constrain a non-linear optimization for 3D hairstyle
registration throughout the rotating neutral face video, bringing
all per-frame 3D hair reconstructions into alignment with the co-
ordinate system of the reference frame. This process allows our

Fig. 5. Reference hairstyle reconstruction from rotating neutral face video:
static hair reconstructions (1-6) [Beeler et al. 2012] are brought into align-
ment with the reference frame and merged by our 3D hair registration
algorithm to build up a single, denser reference hairstyle, R. The resulting,
high-quality reference hairstyle, together with the hair-free reference track
mesh, can then be used together for performance capture in other videos.

reference hairstyle to grow denser and more accurate by accumu-
lating more 3D hairs, in comparison to the initial sparse and noisy
reconstructions based on Beeler et al. [2012] in Fig. 5.

3.4.1 Hair Alignment Optimization. More formally, 3D hair regis-
tration is done as an iterative closest point (ICP) optimization that
considers optical flow and both the 3D position and orientation of
hair points. We optimize for a locally rigid deformation field with
per-frame and per-hair 3D translations t and rotations q, encoded
as unit quaternions,

min
t,q

𝜆𝐼𝐸𝐼𝐶𝑃 (t, q) + 𝜆𝑓 𝐸𝑓 𝑙𝑜𝑤 (t, q) + 𝜆𝑛𝐸𝑛𝑒𝑖𝑔ℎ (t, q), (1)

where the rightmost neighborhood energy enforces spatial regula-
tion to constrain the hairstyle alignment to be as rigid as possible.
The per-frame deformation fields (t, q) are initialized from rigid
transformations of small skin patches around each hair, relative
to the reference track mesh. We implement this hair registration
ICP method using the well-known, auto-differentiable Ceres Solver
package [Agarwal et al. 2016].

ICP Energy. Iterative closest point alignment is a natural so-
lution for the registration of our 3D hair point clouds. First, we
establish correspondences between each hair point 𝑝𝑖 𝑗 (point 𝑗 of
𝑖-th hair), at a given video frame, and the closest hair point 𝑝 ′ in
the reference frame, with the reference hairstyle. If these hairs are
in close proximity of 5mm and have orientations matching within
a threshold of 30 degrees, then the match (𝑝𝑖 𝑗 , 𝑝 ′) is considered in
the optimization. The ICP energy is defined as:

𝐸𝐼𝐶𝑃 (t, q) =
∑

(𝑝𝑖 𝑗 ,𝑝′)

𝑅(q𝑖 )𝑝𝑖 𝑗 + t𝑖 − 𝑝 ′
2, (2)

where 𝑅(q𝑖 ) is the rotation matrix of the 𝑖-th quaternion (hair). As
ICP is iterative, we repeat the optimization after each update on the
matched point set (𝑝𝑖 𝑗 , 𝑝 ′) and 𝜆𝐼 = 0.001. In practice, we found
that 3 repetitions are enough, due to the good initialization obtained
from the local rotation of skin patches in the tracked face mesh.

Flow Energy. Instead of point matches, this term considers indi-
vidual 3D hair points 𝑝𝑖 𝑗 and enforces that their alignment (t𝑖 , q𝑖 ) is
consistent with the motion estimate given by the optical flow in each
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view. Let 𝑥𝑖 𝑗𝑘 denote the projection of 𝑝𝑖 𝑗 onto camera view 𝑘 , using
the projection matrix 𝑄𝑘 . We then use the optical flow 𝐹𝑘 to propa-
gate this point and derive a target position 𝑥𝑖 𝑗𝑘 = 𝑥𝑖 𝑗𝑘 + 𝐹𝑘 (𝑥𝑖 𝑗𝑘 ) at
the reference frame. The flow energy is then given by,

𝐸𝑓 𝑙𝑜𝑤 (t, q) =
∑
𝑘

∑
𝑝𝑖 𝑗

𝜓

(𝑄𝑘 (𝑅(q𝑖 )𝑝𝑖 𝑗 + t𝑖 ) − 𝑥𝑖 𝑗𝑘
2)𝑉𝑘 (𝑝𝑖 𝑗 ), (3)

where 𝜓 (·) is the robust Huber loss function, 𝑉𝑘 (𝑝𝑖 𝑗 ) is a cosine-
weighted per-camera visibility term, and 𝜆𝑓 = 0.0001.

Neighborhood Regularizer. The third energy for hair align-
ment optimization is a neighborhood regularization term that seeks
to preserve the local structure of the hairstyle by favoring similar
transformations (t𝑖 , q𝑖 ) for aligning neighboring hair follicles at
the current frame towards the reference frame. For the 𝑖-th hair
follicle, let 𝑁𝑟𝑖 be the set of its neighboring hairs within a distance
of 𝑟 = 5mm. The spatial smoothness energy is defined as,

𝐸𝑛𝑒𝑖𝑔ℎ (t, q) =
∑
𝑖

∑
𝑖′∈𝑁𝑟𝑖

𝑊 (𝑖, 𝑖 ′)
([
𝜆𝑡𝑟𝑎𝑛𝑠
𝜆𝑟𝑜𝑡

]𝑇 [
∥t𝑖 − t𝑖′ ∥2
∥q𝑖 − q𝑖′ ∥2

])
, (4)

where𝑊 (·, ·) is a Gaussian weighting factor with 𝜎 = 2.5mm. Note
that for this term we chose 𝜆𝑡𝑟𝑎𝑛𝑠 = 0.01 and 𝜆𝑟𝑜𝑡 = 1 for the
translation and rotation regularization weights, as well as 𝜆𝑛 = 1.

3.4.2 Hair Growth and Refinement. Once aligned to the reference
frame, the reference hairstyle needs to be updated by merging the
newly aligned static hairs. To this end, we first use the line mean-
shift algorithm to filter out the noise. We then subsequently grow
first the existing hairs and then the new ones with a Forward Euler
approach, in line with techniques described in Nam et al. [2019].
Next, we further apply the post-processing, cleanup and pruning
methods described in Section 4.3 of Beeler et al. [2012], and finally
update the new reference hairstyle. We apply this entire pipeline
iteratively for each time step in the head rotation sequence and
thus slowly build up a more and more dense hairstyle over time, as
in Fig. 5. After iterating through the entire sequence, we apply one
last post-processing step before fixing the subject specific hairstyle
topology which we will use to track novel performances.

3.5 Tracking the Reference Facial hairstyle
At this stage, we have already built (𝑖) a hair-free reference mesh that
can be tracked to any frame of a captured facial performance, and (𝑖𝑖)
a dense, reference 3D hairstyle with a fixed topology, to be tracked
with the reference skin mesh. We now present the method for track-
ing this hairstyle as it deforms over time due to the changes in
facial expression and head pose, while also maintaining the internal
structure of the reference hairstyle to some extent. We assume that
our hair-free reference mesh has already been tracked to each video
frame of a captured performance, using the method in Section 3.3.
Tracking the reference hairstyle to a particular video frame of a

performance is also formulated as a non-linear optimization prob-
lem, similar to the one used above for building the hairstyle. The
goal now is to deform the reference hairs and bring them into align-
ment with the current video frame. This time, however, we do not
need to compute static hairs for the current frame using Beeler et al.
[2012] because these single-frame results are noisy and incomplete,

Fig. 6. Example rigid (red) and non-rigid (cyan) hair tracking: the non-rigid
hair refinement improves alignment towards the input images by deforming
the tracked hair geometry.

for use in isolation. Thus, we drop the ICP constraints in our op-
timization problem above and rely solely on optical flow (already
computed before mesh tracking) and the spatial regularizer,

min
t,q

𝜆𝑓 𝐸𝑓 𝑙𝑜𝑤 (t, q) + 𝜆𝑛𝐸𝑛𝑒𝑖𝑔ℎ (t, q) . (5)

Note that, now, both the optical flow and the solution (t, q) describe
a motion field in a different direction, from the reference hairstyle
onto the facial pose and expression of the current video frame.

The result of this processing stage is an initial, complete solution
with dynamic facial hairstyle tracked throughout a complete facial
performance. The subsequent steps in the following are then used
to further refine the tracked hair and the skin surface underneath.

3.6 Non-Rigid Space-Time Hair Refinement
The tracked facial hairs already follow the underlying facial perfor-
mance motion quite well after the step above, but may not perfectly
align to the individual hair strands in the images of each frame.
This is largely because (a) the flow vector computation was perhaps
inaccurate, (b) the regularization prevented hitting the perfect result,
and/or (c) we have so far only solved for rigid per-hair transforma-
tions, while hairs do in fact deform slightly due to facial expressions.
Thus, starting from the results above, this final non-rigid hair re-
finement step deforms each tracked hair, in each frame, such that it
best aligns with the hair images from the multiple cameras, Fig. 6.
This step is also implemented as a non-linear optimization, but

now the inputs and outputs are individual points along an individual
hair. The refinement is formulated over time, taking multiple frames
into consideration at once, such that we can add a temporal regular-
ization term to promote smoothness and avoid temporal jitter. This
non-rigid optimization has the following terms:

min
p

∑
𝑡

∑
𝑖

𝜆𝐻𝐸𝐻𝐷𝐹 (𝑝𝑡𝑖 ) + 𝜆𝑝𝐸𝑝𝑜𝑠 (𝑝𝑡𝑖 )

+ 𝜆𝑙𝑒𝑛𝐸𝑙𝑒𝑛 (𝑝𝑡𝑖 ) + 𝜆𝑙𝑎𝑝𝐸𝑙𝑎𝑝 (𝑝𝑡𝑖 ) + 𝜆𝑡𝐸𝑡𝑒𝑚𝑝 (𝑝𝑡𝑖 ), (6)

where 𝑡 is the frame (time) index, with the energy terms as detailed
next. The final result is an accurate, temporally-tracked, deforming
hairstyle that more accurately matches the real actor’s facial hair
throughout the captured performance.

Hair Distance Field (HDF) Energy. To better align 3D hairs
with their projects on the input images, we repurpose the hair
distance fields (HDFs) computed during static hair reconstruction
with Beeler et al. [2012] — an HDF encodes the distance from each
image pixel to the closest hair follicle. The intended effect of this
energy term is to encourage the optimization to move hair points
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𝑝𝑡
𝑖 𝑗
towards the detected hair lines on the image plane:

𝐸𝐻𝐷𝐹 (𝑝𝑡𝑖 ) =
∑
𝑘

∑
𝑗

𝜓

( 1
𝐻𝑡
𝑘
(𝑄𝑘𝑝

𝑡
𝑖 𝑗
) + 𝜖

− 1
2
2

)
𝑉𝑘 (𝑝𝑖 𝑗 ), (7)

where 𝐻𝑡
𝑘
denotes the HDF for camera 𝑘 at time 𝑡 , and the other

terms are as in Eq. 3. The energy weight is set to 𝜆𝐻 = 0.01.

Position, Length and LaplacianRegularizers. To balance the
deformation term represented by the HDF energy, we add regular-
izers that seek to preserve the position and geometry of each hair
where the HDF is noisy or ill defined. We use simple regularizers in
the form of a position energy 𝐸𝑝𝑜𝑠 towards the rigid initialization, a
segment length energy 𝐸𝑙𝑒𝑛 , as well as 1D Laplacian 𝐸𝑙𝑎𝑝 . Note that
for position regularization, we hereby increase the root weight by a
factor of 100, to prevent the tip from drifting. Furthermore, while
𝐸𝑙𝑒𝑛 is regularizing the current hair points towards the previous
rigid distance between points with a simple L2 norm, 𝐸𝑙𝑎𝑝 does the
same for the 1D Laplacian vector of the rigid solution. We set energy
weights as 𝜆𝑝 = 0.01, 𝜆𝑙𝑒𝑛 = 100 and 𝜆𝑙𝑎𝑝 = 1000.

Temporal Regularizer. Due to the potentially noisy nature of
the driving deformation term 𝐸𝐻𝐷𝐹 , we add temporal regularization
to preserve consistency in 3D hair geometry over time. We use
the common second-order central difference formula to allow for
a smooth trajectory through time between hair points 𝑝𝑡−1

𝑖 𝑗
, 𝑝𝑡

𝑖 𝑗

and 𝑝𝑡+1
𝑖 𝑗

. However, to penalize only non-rigid deformation, we first
rigidly align the hair geometry within this 3 frame temporal window,
using the previously computed, per-hair transformations (t, q) from
Section 3.5. Let𝑇 𝑡−1

𝑖
,𝑇 𝑡

𝑖
and𝑇 𝑡+1

𝑖
denote these rigid transformations

that bring the hair shapes into alignment in the coordinate system
of the reference frame. Then, the temporal energy is:

𝐸𝑡𝑒𝑚𝑝 (𝑝𝑡𝑖 ) =
∑
𝑗

𝑇 𝑡−1
𝑖 𝑝𝑡−1𝑖 𝑗 − 2𝑇 𝑡

𝑖 𝑝
𝑡
𝑖 𝑗 +𝑇

𝑡+1
𝑖 𝑝𝑡+1𝑖 𝑗

2
2
,

with weight 𝜆𝑡 = 1.
We solve this entire optimization for all hairs one frame at a time,

alternating between frames while keeping the results for neighbor-
ing frames fixed. This provides an efficient optimization strategy
and temporally smooth solution within 5 iterations on each frame.

3.7 Mesh Refinement with Tracked hairstyle
Now that we have more accurate hairs for each video frame, we
return to the problem of refining our estimates of the underlying
skin surface, improving upon the results from the previous step
in Section 3.4. To accomplish this, we place deformation handles on
a sparse set of 3D points on the skin areas covered by facial hair,
Fig. 7 (left). For each handle, we determine a subset of the facial hairs
that are close to the handle in the reference frame, and assign the
set of root hair points to the handle. Then, for every video frame, we
compute the least-squares fit of a rigid transformation for that set
of root points between the reference frame and the deformed frame,
and then apply the same transformation to the handle point. Finally,
given all handle deformations, we solve for the final facial surface
which best tries to match those deformations, while also remaining
smooth (via Laplacian regularization) and fixing in space the facial

Fig. 7. We sample a sparse set of points in the facial hair region of the
reference surface (cyan) and for each point, use the surrounding hair point
correspondences between reference and frame 𝑖 to find a local transforma-
tion𝑇 . We use𝑇 to get the target surface points (red) and apply Laplacian
deformation [Sorkine et al. 2004] to arrive at the refined result on the right.

surface that was not underneath facial hair. The final result is a
temporally tracked facial skin surface under the accurately tracked
facial hair, Fig. 7 (right).

4 RESULTS
We now show the results of our facial hair tracking method for
high-fidelity performance capture. To evaluate our method, we cap-
tured 5 different actors with varying facial hair length, density and
color. Each actor performed a small quasi-rigid rotation with neu-
tral expression in order to build the dense hairstyle, as described
in Section 3.4, followed by additional performances that included
either dialog or a random set of facial expressions. For all of the
following results, please refer to the supplemental video in order to
better appreciate the result quality in motion.

4.1 Qualitative Evaluation
We begin with showing the variety of reconstruction results as a
whole, in Fig. 1, Fig. 8, and Fig. 9, where several frames from dy-
namic performances are illustrated. For each frame we show one of
the multiview input images, and corresponding 3D reconstruction
results of both the face and the hair geometry. Fig. 8 and Fig. 9
additionally show the accuracy of the recovered hairs, by overlay-
ing them (in cyan) on the input image. All of these results were
generated automatically, without any artist intervention or manual
cleanup. Note how our approach is able to reconstruct beards, mus-
taches, and even partial eyebrows. To better examine the individual
hair reconstructions, we show a cropped-zoom result in Fig. 10, for
two different frames of two of the actors, also shown from two dif-
ferent views from the multiview set. Although not every single hair
is perfectly aligned with the images, our reconstruction is overall
quite accurate and represents a very faithful reconstruction of the
particular facial hairstyle.
After reconstructing the facial hair performance, our method

further refines the underlying skin geometry using the recovered
hairs (Section 3.7). The benefit of doing this is illustrated for one
frame in Fig. 11. Here you see that the initial estimated face surface
can be inaccurate, occluding many of the reconstructed hairs. After
refinement, we obtain a more faithful reconstruction.
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Fig. 8. Several frames of performance with 3D face and facial hair capture for two actors, showing the input images, hair overlay in cyan, and 3D geometry.
ACM Trans. Graph., Vol. 41, No. 4, Article 165. Publication date: July 2022.
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Fig. 9. Several frames of performance with 3D face and facial hair capture for two actors, showing the input images, hair overlay in cyan, and 3D geometry.
ACM Trans. Graph., Vol. 41, No. 4, Article 165. Publication date: July 2022.
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Fig. 10. Here we show close-up views of our hair reconstruction results for
two different frames of actors (shown from different views), including the
reconstructed hairs overlaid in cyan and the full 3D geometry results.

Finally, we highlight that our temporally-consistent reconstruc-
tions with a common topology for the facial hair allows to artistically
edit captured performances in a straightforward way. For example,
the neutral frame hairstyle can be groomed or trimmed to any de-
sired style, and then these edits are automatically propagated to the
full sequence, as shown in Fig. 12, where the full beard was trimmed
on the sides to form a large goatee instead. The performance natu-
rally reflects the change in facial hairstyle. Further artistic examples
are provided in the supplemental video.

4.2 Comparisons and Ablations
We start by showing an ablation on the impact of the different
terms in Eq. 1 (Section 3.4), used to create the reference hairstyle, in
Fig. 13. Here, we zoom in on a small patch where three hairs from
one of the source frames (green) are to be aligned with the current
estimate of the reference hairstyle in the target reference frame

Fig. 11. Our per-frame face mesh refinement step corrects the initial sur-
face estimate using the reconstructed facial hairs. Here we see 1 frame of
correction, from left to right: one input image, initial surface estimate with
reconstructed hairs, our refined surface with reconstructed hairs, difference
between original and refined surface (blue: 0mm to red: 5mm). A zoom-in
on the improvement is shown in the bottom row.

Captured Artistically-Edited Performance (Trimmed sides)

Fig. 12. As the reconstructed facial hair has a temporally-consistent con-
nectivity, we can allow artistic edits to automatically propagate to full
sequences, like trimming the sides of the beard.

(red). Note that the center hair does not yet exist in the reference
frame, which includes other hairs that were not recovered in the
source frame. Without the flow term 𝐸𝑓 𝑙𝑜𝑤 (yellow) the center hair
tries to align incorrectly to existing hairs due to the ICP term 𝐸𝐼𝐶𝑃 .
Yet without the ICP term (pink), the flow term alone cannot always
match all hairs, as seen by the third hair. Using both terms (cyan)
allows our optimization to align all hairs reasonably well. In Fig. 14,
we show the necessity for adding a neighborhood regularizer to
the rigid tracking in Eq. 5 (Section 3.5). Due to inaccuracies in the
optical flow, some hairs fly off when only relying on 𝐸𝑓 𝑙𝑜𝑤 . By
also adding the neighborhood regularizer 𝐸𝑛𝑒𝑖𝑔ℎ , the local structure
of the hairstyle is preserved. As a final ablation, we demonstrate
why 𝐸𝐼𝐶𝑃 was not used during rigid hair tracking. Since the per-
frame hair reconstructions from Beeler et al. [2012] are inconsistent
and noisy, introducing an ICP term into Eq. 5 results in jittery hair
reconstructions, as shown in the supplemental video.
Related to our method is the sparse facial hair and skin recon-

struction method of Beeler et al. [2012]. As described earlier, their
approach targets single shot reconstructions only and is thus not
applicable to performances, which is our goal. However, there exists
yet an opportunity for comparison, both in terms of the facial hair
recovered as well as the estimation of the underlying surface. As
illustrated in Fig. 15 (top), our data-driven approach for creating a
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Source Frame Target Ref. Frame ICP + Neigh. Flow + Neigh. ICP + Flow + Neigh.

Fig. 13. An ablation on the impact of each term in the creation of the
reference hairstyle (Eq. 1). Three hairs in one of the source frames are being
aligned to the current hairstyle in the reference target frame. Both the Flow
term and the ICP term are required to achieve high-quality alignments.

Fig. 14. An ablation on the impact of adding the neighborhood regularizer
to the rigid hair tracking optimization.

Reference Image Beeler et al. [2012] Ours
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Fig. 15. We compare our face surface and facial hair reconstruction methods
to the static capture method of Beeler et al. [2012].

hair-free reference mesh for tracking (Section 3.2) performs better
than the surface estimation method of Beeler et al. [2012] in the
case of longer beards. Furthermore, we can justify our approach
to combine information from many frames to build the reference
facial hairstyle (Section 3.4) by comparing to the single-shot hair
reconstruction of Beeler et al. [2012]. As shown in Fig. 15 (bottom),
combining data from several frames with our novel registration
process results in a more dense and faithful hairstyle.

We further compare our non-rigid space-time facial hair tracking
method to a recent point-based non-rigid registration technique
known as BCPD [Hirose 2021], which is a Bayesian coherent point
drift method designed for point set registration. In our context, we

Fig. 16. We compare our facial hair tracking approach to the non-rigid point
registration algorithm of Hirose [2021].

evaluate the use of BCPD to track the hair points as compared to
the proposed method in Section 3.5. For both methods we start with
the dense reference facial hairstyle and propagate it through time.
When using BCPD, we track the reference hairstyle by aligning it
non-rigidly to individually-reconstructed per-frame hairstyle using
the method of Beeler et al. [2012]. The result is shown in Fig. 16,
which illustrates a limitation of BCPD in that it cannot always align
the hairstyle to the correct position, where our proposed method is
more accurate. BCPD also produces more noisy temporal results, as
illustrated in the accompanying video. Furthermore, BCPD requires
the additional time-consuming step of reconstructing the per-frame
facial hair as a pre-process, which our method does not require.

5 CONCLUSION
In this work we tackle the complex problem of facial hair tracking
for high-fidelity performance capture. Our method is able to recon-
struct and track individual facial hairs over complex performance
sequences in a traditional multiview reconstruction scenario. We
additionally create a realistic approximation of the dynamic clean-
shaven facial surface, as if the actor had been captured without
facial hair, thus removing the need to actually shave. Both the face
surface and the facial hairs are in topological correspondence over
time, and so the result fits naturally into production-level facial
animation pipelines. As such, our approach is directly applicable to
industry-based performance capture methods.
To the best of our knowledge, this work represents the first

method for facial performance capture with facial hair. As such,
there are some aspects that are open for further improvement. For
example, while our results very closely match the hairstyles of the
captured actors, even under complex motions, the recovered hairs
may not perfectly match the multiview imagery at a strand-accurate
level. We have also not tested extremely long facial hair, which may
pose additional problems due to large occlusions. As we rely on the
static hair reconstruction method of Beeler et al. [2012], we also
share their limitations regarding image quality requirements and we
acknowledge the challenge of hair color that too closely matches the
skin appearance. Also, our recovered hairs are not rooted into the
facial surface and thus a method to connect the hairs naturally to the
face might be desirable. Finally, in addition to the geometry, facial
performance capture methods often reconstruct texture maps for
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attributes like color, displacements and normals. While we propose
a method to estimate an approximate skin surface underneath hair
regions, we have not yet attempted to recover also the texture maps
for these regions, nor hair appearance parameters. We consider all
of these topics to be great avenues for follow up research.
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