
Local Anatomically-Constrained Facial Performance Retargeting
PRASHANTH CHANDRAN, ETH Zurich, Switzerland and DisneyResearch|Studios, Switzerland
LOÏC CICCONE, DisneyResearch|Studios, Switzerland
MARKUS GROSS, ETH Zurich, Switzerland and DisneyResearch|Studios, Switzerland
DEREK BRADLEY, DisneyResearch|Studios, Switzerland

Fig. 1. We present a local, anatomically-constrained method for facial performance retargeting that is ideally suited for the complex problem of human-to-
human facial animation transfer. Here we show one frame of retargeting the source character (left) to five different target characters (right). While the method
targets human performances, it naturally also extends to fantasy characters (far right).

Generating realistic facial animation for CG characters and digital doubles
is one of the hardest tasks in animation. A typical production workflow
involves capturing the performance of a real actor using mo-cap technology,
and transferring the captured motion to the target digital character. This
process, known as retargeting, has been used for over a decade, and typi-
cally relies on either large blendshape rigs that are expensive to create, or
direct deformation transfer algorithms that operate on individual geometric
elements and are prone to artifacts. We present a new method for high-
fidelity offline facial performance retargeting that is neither expensive nor
artifact-prone. Our two step method first transfers local expression details
to the target, and is followed by a global face surface prediction that uses
anatomical constraints in order to stay in the feasible shape space of the
target character. Our method also offers artists with familiar blendshape con-
trols to perform fine adjustments to the retargeted animation. As such, our
method is ideally suited for the complex task of human-to-human 3D facial
performance retargeting, where the quality bar is extremely high in order
to avoid the uncanny valley, while also being applicable for more common
human-to-creature settings. We demonstrate the superior performance of
our method over traditional deformation transfer algorithms, while achiev-
ing a quality comparable to current blendshape-based techniques used in
production while requiring significantly fewer input shapes at setup time. A
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detailed user study corroborates the realistic and artifact free animations
generated by our method in comparison to existing techniques.
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1 INTRODUCTION
Character facial animation is a key aspect of many computer graph-
ics applications. Creating realistic 3D facial animation is a difficult
task, as even the slightest inaccuracies can make the result look
uncanny. One practical way to obtain realism is to capture the per-
formance of a real actor using motion-capture technology, and then
transfer the resulting digital performance to a target 3D character.
Such an approach is commonly referred to as performance retarget-
ing, and is the primary method of generating facial animation for
high-end visual effects in film and entertainment. While the motion
capture side of the problem has seen tremendous technical advances
over the past two decades, the retargeting side has advanced at a
much slower pace. In practice, there are two methods commonly
used in studio productions (and both are nearly two decades old).
The first is based on blendshape animation [Lewis et al. 2014], where
corresponding blendshape rigs are created for the source and target
characters and retargeting becomes the simple task of copying the
blendweights from the source performance to the target rig. This
method requires very many facial shapes in the rigs, which must be
in parity, incurring a large up-front cost. The benefit, however, is
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that the source and target characters can be arbitrarily dissimilar (e.g.
retargeting a young female face to an elderly man with wrinkles).
The alternative method is to use deformation transfer [Sumner and
Popović 2004], which requires only 1 (usually neutral expression)
shape of the target character, and attempts to retarget triangle de-
formations from the source performance directly. While incurring a
much smaller setup time, this method can be prone to geometric ar-
tifacts and is generally more applicable when the source and target
are very similar, as surface details (e.g. wrinkles) from the source
character would be copied to the target.

More recent 3D facial retargeting methods do exist, but are nearly
all designed for retargeting human performances to cartoon or fan-
tasy characters. A growing problem in the visual effects industry is
the creation of photorealistic digital humans, where the precision
and realism of facial animation is of highest importance. Here, if the
actor corresponding to the digital human is available to perform,
the solution lies primarily in the motion-capture domain. However,
oftentimes the target human character is not physically available
to perform, for example if they have passed away, or if the target
character is a younger or older version of the actor1. In such scenar-
ios, to create realistic facial animation we must resort again to the
retargeting problem. Here, the quality bar is much higher than for
retargeting to cartoon characters. We present a high-quality facial
performance retargeting solution that is ideally suited for this realis-
tic human-to-human retargeting scenario, while also demonstrating
results for more traditional human-to-creature retargeting.
Our method considers the problem locally, by first retargeting

small patches of the face surface individually. This offers a high
degree of flexibility, allowing us to operate with only a small number
of input shapes for establishing correspondence (i.e. complete facial
rigs are unnecessary). In a second step, to retain global consistency,
we fit a subject-specific anatomical face model, originally designed
for monocular face tracking [Wu et al. 2016], by extending it to
support performance retargeting.

Ourmethod retains the benefits of both of the common approaches
for facial retargeting (blendshapes and deformation transfer), with-
out exhibiting either of their drawbacks. For example, with our
approach the source and target characters can be arbitrarily dissim-
ilar and our method will not directly copy fine expression details
from one to the other. Furthermore, we can accomplish this with
only a fraction of the number of input shapes that a typical blend-
shape retargeting approach would require (for example, approx. 20
versus hundreds of shapes). Our method also exhibits fewer geomet-
ric artifacts than deformation transfer, which we will demonstrate
in our results. Finally, our approach allows easy artistic direction
over the retargeted solution by providing a simple mechanism to
favor or punish certain shape deformations in different regions of
the face, or locally exaggerate the retargeting strength, all while
staying in a plausible manifold of the target 3D character.
To summarize, our work presents a new practical, robust and

flexible method for realistic facial performance retargeting, suitable
for today’s high demand for realistic digital characters.

1e.g, The Irishman (2019) - www.fxguide.com/fxfeatured/de-aging-the-irishman/

2 RELATED WORK
We now review related work in the various areas of performance
retargeting.

2.1 General Motion Retargeting
In areas other than the human face, previous works in performance
retargeting have focused on skeleton animation [Aberman et al.
2020], full 3D bodies for computer graphics [Baran et al. 2009; Borno
et al. 2018] and robotics applications [Morishima et al. 2016; Penco
et al. 2018], and hand animation for robotics [Antotsiou et al. 2018;
Orbik et al. 2021] and sign language [Ge et al. 2005]. Rigged human
body models such as the widely used SMPL model [Loper et al.
2015] and its recent variants [Osman et al. 2020; Santesteban et al.
2020] can be trivially re-purposed for retargeting. Since the face
is typically parameterized differently than other parts of the body,
such methods do not readily apply to facial animation.

2.2 Video Face Retargeting
There exists a large body of work on 2D video-based facial re-
enactment or face swapping [Chen et al. 2020a,b; Garrido et al. 2014;
Kim et al. 2019; Naruniec et al. 0 07; Nirkin et al. 2019; Perov et al.
2021; Ren et al. 2021; Thies et al. 2016; Wang et al. 2021; Zhang et al.
2020]. Colloquially referred to as DeepFakes, these techniques have
progressed to a point where given a performance, a desired actor’s
face can be photo-realistically retargeted as a video. In contrast, our
method is concerned with 3D geometric retargeting rather than 2D
video face swapping. Although certain techniques do use 3D facial
geometry within their pipeline [Hong et al. 2021; Thies et al. 2016;
Wang et al. 2021], this 3D information tends to be of low resolution
as it primarily only serves as prior for the video generation. While
these 2D retargeting techniques are indeed impressive, they lack
some key benefits of a 3D approach, such as offering artists more
control . For a detailed analysis of recent literature in the field of
2D face swapping, we refer to a survey by Mirsky and Lee [2020].

2.3 Real-time Puppeteering
Real-time puppeteering is a special case of retargeting, where the
goal is to drive a virtual character’s face in real time, and the focus is
primarily on speed rather than on the quality of retargeting. Prior to
the advent of deep learning, techniques for capturing and animating
a digital character’s face in real time included Adaptive PCA [Li et al.
2013], wherein the basis vectors of a PCA model were adapted by
progressively observing captured frames of an actor. A monocular
system for real time face capture was proposed by Cao et al. [2014]
which used morphable model regressors to drive a digital character.
Real time techniques that are primarily focused towards non-human
character animations have also been proposed [Bouaziz et al. 2013;
Weise et al. 2011]. These methods rely on a morphable model and
are therefore only capable of producing approximate/coarse shapes.
As such, these techniques are clearly not suitable for use in high
end visual effects production.
With the advent of Telepresence, there has also been a focus on

reproducing photo realistic digital doubles [Seymour et al. 2017] in
real time. Some recent techniques in this space can indeed reproduce
high fidelity avatars [Chen et al. 2021; Lombardi et al. 2018; Ma et al.
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2021], however most of these techniques require large amounts of
actor specific training data and generalize poorly to multiple actors
and test conditions. In contrast, we focus on high quality offline
3D retargeting shapes, without requiring large amounts of training
data.

2.4 Data driven 3D Retargeting
Neural face models are becoming increasingly popular owing to
their performance and ability to model nonlinear skin deformations.
Naturally, some of these models have been used for the purpose
of 3D retargeting as well. Chandran et al. [2020] proposed the use
of a disentangled variational auto encoder (VAE), which can fully
isolate facial identity and expression in its latent space, thereby
allowing for the swapping of expression codes across identities in
the latent space to achieve 3D human-to-human retargeting. Zhang
et al. [2022] recently proposed a framework where human and char-
acter specific VAEs share a common latent space; allowing a human
face to drive the desired character’s face. The use of neural architec-
tures allows for other forms of retargeting; for instance driving a
3D face from an audio input [Karras et al. 2017]. Neural networks
that predict the parameters of a rig or a blendshape model have also
been developed for retargeting [Aneja et al. 2018; Chaudhuri et al.
2019; Costigan et al. 2014]. Another stream of recent research in
3D retargeting treats the problem similar to 2D face swapping: by
performing the retarget first in 2D image space and then regressing
rig/model parameters from the retargeted image [Kim et al. 2021;
Moser et al. 2021]. The primary drawback of data driven techniques
in 3D retargeting is their large requirements of training data and
that they only satisfy the stringent quality requirements of produc-
tion in a single to few character setting. The second drawback is that
even if they do generalize across characters, SOTA techniques [Kim
et al. 2021; Moser et al. 2021] resort to predicting linear morphable
model parameters, resulting in a lack of realism in the retargeted
result. Finally, they also offer limited room for artistic intervention.

2.5 Offline Performance Retargeting
Most closely related to our work are methods in offline performance
retargeting. Blendshape rigs [Lewis et al. 2014] are an industry wide
standard for facial animation. By adjusting the coefficients or blend-
shape weights of the rig, an artist can intuitively produce a desired
expression in a character. In the context of performance retargeting,
the coefficients of a source rig are estimated and transferred to the
target rig. One such pipeline for estimating blendshape coefficients
from a video and applying them to the target is described in Chuang
and Bregler [2002]. Although blendshape rigs are intuitive and fast,
production rigs with hundreds of shapes are time-consuming to
create. Hence researchers have also explored techniques to create
character rigs starting from a small subset of shapes [Li et al. 2010],
and to maximize rig expressiveness using as few shapes as pos-
sible [Carrigan et al. 2020]. Despite their popularity, blendshape
rigs have limited expressivity due to their linear nature. To pro-
duce subtle nonlinear face deformations, artists are often forced to
sculpt hundreds of shapes and keyframe animate their coefficients,
making facial animation a massive time-sink in production [Seol
et al. 2011]. To address some short comings of such rigs, researchers

have proposed several incremental improvements. These include rig
augmentation [Kim et al. 2011], coefficient remapping [Song et al.
2011], rigs with skinned bones and corrective shapes [Li et al. 2017],
and range of motion calibration between the source and target rigs
[Ribera et al. 2017].
Another popular technique for 3D retargeting is deformation

Transfer [Sumner and Popović 2004]. Given a source shape in a
rest and deformed pose, deformation transfer computes the relative
local deformations of triangles in the source and transfers them to a
target shape in the rest pose. While extremely efficient, and capable
of producing plausible retargets, deformation transfer suffers from
the drawback of transferring the smallest wrinkles from the source
to the target, resulting in the transfer of high frequency details that
may not match the target character. Furthermore, naïve deformation
transfer is often artifact prone, leading to self intersections in the
geometry and requires additional regularization [Saito 2013]. A
simple work-around to alleviate some of the geometric artifacts of
deformation transfer while retaining similar properties is simply
to perform a per-vertex delta transfer, where the 3D displacements
from deformed to rest pose of the source mesh are blindly copied
to the target rest mesh, creating the effect of retargeting. While
simplistic in theory, this approach has also been used in practice,
but also suffers from the drawback of transferring high frequency
details from source to target.
Expression cloning [Noh and Neumann 2001] is another tech-

nique involving the transfer of expressions using known correspon-
dences of a sparse set of points between the source and the target.
Such techniques have been extended to automatically compute map-
pings between the source and the target [Bouaziz and Pauly 2014;
Dutreve et al. 2008] and to consider additional constraints such as
contours [Bhat et al. 2013]. Space time expression cloning [Seol
et al. 2012] approaches retargeting by assuming that the source and
target trajectories must be similar and formulates retargeting by
interpreting facial movement as the derivative of position and by
constraining the derivative with poisson boundary conditions. De-
composing a facial expression into large and fine scale deformations
and transfering them in a single optimization was proposed by Xu
et al. [2014]. A notion of locality in face retargeting was introduced
by Liu et al. [2011] where the face is automatically segmented into
multiple regions and has been used to retarget performances .
In summary, while the problem of facial performance retarget-

ing has been studied for over a decade, current methods are either
not suited for high quality human-to-human retargeting for visual
effects, or those that are suited, such as blendshape animation and
deformation/delta transfer have several drawbacks. We present the
first method that does not have a large setup burden and is not prone
to geometric artifacts, producing high-fidelity facial performance
retargeting suitable for production. We will provide detailed com-
parisons of our method to the common approaches of blendshape
retargeting, deformation transfer and delta transfer, highlighting
the superior performance of our approach.

3 LOCAL ANATOMICAL RETARGETING
We now describe our method for local anatomical facial retargeting.
Given a single frame from the source character performance, our
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goal is to transfer the expression of the source character faithfully
to the target character, while preserving the identity and nuances of
the target character. We approach this retargeting problem in steps.
In the first step, we tackle the retargeting task locally by breaking
down a source face into a number of patches and estimating their
deformations. These per-patch deformations are transferred over to
the target character (Section 3.2) to yield an initial approximation of
the retargeted shape. Then, since such a local transfer of deforma-
tions can yield inaccurate global face shapes, we perform a second
step wherein we fit a character specific anatomical face model to
the initial retargeted result, yielding a high fidelity target character
shape (Section 3.3). The steps of our method are illustrated in Fig. 2.
As our method is directly aimed for a workflow in film production,
it also offers artists with several semantically meaningful knobs
that they can use to achieve the final look for the retargeted char-
acter. Our method operates on a frame-level, and can be trivially
parallelized over the whole sequence and is naturally suited for
both single shot expression transfer and performance retargeting.
Before we explain the details, we first describe a one-time model
setup procedure that is needed to build the local and anatomical
face models for the two steps of our method (Section 3.1).

Fig. 2. Our method approximates a given source shape (a), with a collection
of patch blendweights (b). These optimized patch blendweights are then
transfered to the target model to perform an initial patch-wise retarget of
the source shape (c). The result is further processed by an anatomical model
to produce the final retargeted shape in high-fidelity (d).

3.1 Model Setup
In order to retarget performances from a source character to a target
character, we require a small number of 𝑁 3D facial shapes for each
character in semantic correspondence, similar to blendshape-based
retargeting methods. In contrast to such methods, we require many
fewer shapes (eg. all results in this paper are generated with 𝑁 = 20
or fewer input shapes per character) to produce a high fidelity re-
sult. These face shapes can be sculpted by artists or scanned using
multiview capture setups [Beeler et al. 2011; Fyffe et al. 2015]. Alter-
natively these shapes can also be created efficiently using automated
techniques for rig creation [Carrigan et al. 2020; Li et al. 2010]. Let
S be the set of source shapes, and T be the set of target shapes,
such that S𝑖 portrays the same expression as T𝑖 . Without loss of
generality, let S0 and T0 be the neutral expressions. The sets S and
T should be defined as triangle meshes at the origin of a common
canonical coordinate frame. Fig. 3 illustrates a subset of the input
shapes used in this paper, however other shape combinations would
also be possible (see Section 4.4). In practice, good example shapes to

use include extreme expressions like stretching the face wide open,
compressing it tightly, smile, puffing air into the cheeks, mouth
funneler (e.g. making a shhh sound), kiss, eyebrows up and down,
and asymmetrical mouth and jaw movements both left and right.

Fig. 3. The local patch layout we use (left), and a subset of the input shapes
(right) required for an exemplar source (top) and target (bottom) character.

Patch Blendshape Models. As our method operates at a local
level, we divide S and T into a number of small spatial patches with
overlapping boundaries. An example patch layout is shown in Fig. 3
(left), showing the patcheswithout overlapping boundaries for better
visualization. The exact size and distribution of the patches does
not greatly affect the retargeting results, and we refer to Section 4.4
for an evaluation of different patch layouts and varying amounts
of overlap. Note that the source and target meshes do not need to
share the same topology, however we require a consistent mapping
between the patches of the source and target models. This is easily
achieved if the meshes do all share the same topology, or a UV layout.
In other scenarios, this mapping can also be manually specified by
an artist. Formally, letP be the set of all patches and 𝑝 ∈ P represent
an individual patch. All patches are modeled analogously in our
work and we drop the index of a patch in our equations for brevity.
Then 𝑝S is the set of all local shapes in S for patch 𝑝 . Given this
parameterization, one can define a local patch blendshape model
for the shape of the patch XS

𝑝 as

XS
𝑝 = 𝑝S0 +

𝑁−1∑
𝑖=1

𝛼𝑝,𝑖 (𝑝S𝑖 − 𝑝S0 ), (1)

where 𝛼𝑝 ∈ R𝑁−1 are patch specific coefficients used to linearly
blend the patch blendshapes (defined as shape displacements be-
tween patch 𝑝S

𝑖
and the neutral patch 𝑝S0 ). In essence, a patch blend-

shape model is analogous to a global blendshape rig, except that
each patch has it own set of blending coefficients, thereby leading to
a model with greater expressiveness and more degrees of freedom.
As the source and target shapes are in semantic correspondence and
share the same patch layout, we can similarly define

XT
𝑝 = 𝑝T0 +

𝑁−1∑
𝑖=1

𝛼𝑝,𝑖 (𝑝T𝑖 − 𝑝T0 ), (2)

for the target shapes. The patch blendshape models will be used in
the first step of retargeting, described in Section 3.2.
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Anatomical Local Face Model. In order to obtain high fidelity
shapes for the target character face, we extend the Anatomical Local
Model (ALM) proposed by Wu et al. [2016], which was designed
for monocular face capture. A brief overview of the model is given
below, however we refer to the original work for a more detailed
description of the construction of the ALM model. In Section 3.3,
we describe our novel use of the model for facial retargeting.

An anatomical local model is a character specific model that
is built using a set of shapes of a given character. In contrast to
blendshape rigs, the ALM model is a local model and is capable of
modeling both skin deformations and the interaction of the skin
(sliding, folding etc) with the underlying bone structure. Thus the
ALM model benefits from locally deforming skin patches while
preserving global consistency across these patches through anatom-
ical constraints. Specifically, skin deformation is defined at a patch
level, and complete face shapes are parameterized by two main
components. The first is a set of patch deformation coefficients
that define local patch stretching, bending and general non-rigid
deformation in-place (devoid of rigid motion). The second is a set
of rigid transformations for each patch. Together, these parameters
combine to represent character specific facial expressions. Wu et
al. [2016] propose a method to solve for these parameters to match a
data term (e.g. monocular video) while respecting character specific
anatomical constraints, that come in the form of skin thickness
and sliding constraints over the character’s rigid skull bone; the
position of which is also solved for at the same time. To describe
the model formally, we will re-use the same patch layout P as our
patch blendshape models, although this is not a requirement. Let
X𝑝 represent the shape of patch 𝑝 as defined by the ALM model as

X𝑝 = 𝑀𝑝

(
𝑈𝑝 +

𝐾∑
𝑘=1

𝑤𝑝,𝑘𝐷𝑝,𝑘

)
, (3)

where𝑀𝑝 is the rigid motion of the patch, 𝑈𝑝 is the average patch
shape over all 𝐾 input shapes, and 𝐷𝑝,𝑘 is the deformation subspace
with corresponding weights 𝑤𝑝,𝑘 . In practice, we use the same 𝑁
input shapes from the target character patch blendshape models
to create the target ALM model (thus 𝐾 = 𝑁 ), although this is not
a requirement. An important distinction between the ALM model
and the patch blendshape models is that the ALM model removes
rigid motion from the patch shapes, such that the 𝐷𝑝,𝑘 subspace
models pure nonrigid deformation, while the rigid motion of the
patch is included in the patch blend shape model. The reason for this
difference will be made apparent in Section 3.2. As mentioned, the
ALM model also consists of an anatomical subspace which is used
to constrain the parameters of Eq. 3. These anatomical constraints
relate a skin vertex 𝜈 to a point on the underlying bone 𝑏𝜈 , with
a skin thickness constraint 𝑑𝜈 , along normal direction 𝑛𝜈 . More
formally, these constraints are defined as follows

b̃𝜈 = b0𝜈 +
𝐾∑
𝑘=1

𝑤𝑝,𝑘 (b𝑘𝜈 − b0𝜈 ), (4)

ñ𝜈 � n0𝜈 +
𝐾∑
𝑘=1

𝑤𝑝,𝑘 (n𝑘𝜈 − n0𝜈 ), (5)

𝑑𝜈 = 𝑑0𝜈 +
𝐾∑
𝑘=1

𝑤𝑝,𝑘 (𝑑𝑘𝜈 − 𝑑0𝜈 ) . (6)

In the equations above, indices 𝑝 , 𝑘 continue to refer to the patch
and shape indices respectively, and each estimated component (bone
point b̃𝜈 , normal ñ𝜈 and skin thickness𝑑𝜈 ) are defined in correspond-
ing subspaces to the patch deformation subspace (Eq. 3) such that
the subspace weights𝑤𝑝,𝑘 semantically correspond. As such, Eq. 4
defines a bone subspace, which supports the sliding of skin over
the bone when certain shape weights𝑤𝑝,𝑘 are activated. Similarly,
Eq. 5 and Eq. 6 are skin normal and thickness subspaces, respec-
tively. Solving for an ALM face pose generally means to solve for
𝑀𝑝 and the set of {𝑤𝑝,𝑘 } for each patch 𝑝 and then cleverly stitch
the patches together. Note that in our work, the ALM model is cre-
ated only for the target character, as it will be used to anatomically
constrain the retargeted performance (Section 3.3). We also only use
anatomical constraints derived from the skull bone, which can be
automatically fit to the target character using the method of Beeler
and Bradley [2014] with minimal overhead. Again, please refer to
Wu et al. [2016] for more details.

3.2 Patch-wise Retargeting
We now describe how we use the patch blendshape models defined
in Section 3.1 to obtain an initial estimate of the retargeted perfor-
mance from a source to a target character. We assume we are given
patch blendshape models corresponding to both characters, and
that we will process the frames of the source performance individu-
ally. Let us denote the current source performance shape that is to
be retargeted as X𝑆

′
. At a high level, we approach the problem by

estimating the coefficients 𝛼 of all the patches of the source model
(Eq. 1) that can accurately describe the local skin deformations re-
quired to match the shape X𝑆

′
. We then transfer these coefficients

to the target model (Eq. 2) to obtain an estimate of the retargeted
expression. During this process, we will add several methods to
artistically control the result. The resulting per-patch deformations
of the target model will be passed on to the final step in Section 3.3.

To solve for the coefficients 𝛼 that best fit the source patch blend-
shape model to X𝑆

′
we employ a least squares optimization, defined

by the following fitting energy

𝐸𝐹𝑖𝑡 =
∑
𝑝∈P

(X𝑆
′
𝑝 − 𝑅XS

𝑝 ) . (7)

Here, XS
𝑝 is the source model defined in Eq. 1, and 𝑅 is a global rigid

transformation for the entire model. We include this transformation
to accommodate a practcal scenario where the shape X𝑆

′
may come

from a facial performance capture system and may not lie at the
canonical origin. While methods for removing rigid head motion
from performances do exist [Beeler and Bradley 2014], these tech-
niques are not perfect and there is often some residual rigid motion
remaining, which we account for by optimizing 𝑅 along with the
shape coefficients 𝛼 .
Since blindly optimizing for patch coefficients 𝛼𝑝 is an under-

constrained problem, we further regularize the patch coefficients to
remain close to zero as
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𝐸𝑅𝑒𝑔 =
∑
𝑝∈𝑃

𝑁−1∑
𝑖=0

(𝛼𝑝,𝑖 )2, (8)

and to stay consistent across adjacent patches with an overlap en-
ergy, defined as

𝐸𝑂 =
∑
𝑝∈𝑃

∑
𝑞∈N(𝑝)

𝑁−1∑
𝑖=0

(𝛼𝑝,𝑖 − 𝛼𝑞,𝑖 ), (9)

where N(𝑝) defines the patches neighboring 𝑝 . The final energy
for fitting our patch blendshape model to a source shape X𝑆

′
is the

weighted sum of these energies,

𝐸𝑃𝐵𝑆 = 𝜆𝐹𝑖𝑡𝐸𝐹𝑖𝑡 + 𝜆𝑅𝑒𝑔𝐸𝑅𝑒𝑔 + 𝜆𝑂𝐸𝑂 . (10)

The result of fitting the patch-wise blendshapes to a source per-
formance shape is illustrated in Fig. 2 (a) and (b). An important
distinction of our patch-wise retargeting model in comparison to
the ALM model is the presence of rigid motion in our patch blend-
shapes. As an ALM model optimization solves for both per-patch
rigid transformations and deformation coefficients, a least squares
solver prefers to explain as much of skin deformation as possible us-
ing the rigid transform and only dials in the patch coefficients when
necessary. While this property may be beneficial in the context of
face tracking, it extends poorly to retargeting, as transferring rigid
transformations of source patches to the target is undesirable due to
differences in scale and range of motions between the two characters.
Therefore, by not separating the rigid motion from the blendshapes
in the patch-wise retargeting step, we expect the patch coefficients
to explain all of the skin deformation, which translates into better,
more character-specific expression transfer during retargeting. In
Section 4.4 we will show a visual comparison of transferring ALM
coefficients (rigid transform + patch coefficients) from the source to
the target character vs. our local transfer, where our method clearly
outperforms the ALM transfer (refer to Fig. 16).
Artistic Control. In practice, we found that it is beneficial to al-
low some level of artistic control over the patch fitting process.
For example, even simply increasing or decreasing the “strength"
of the retergeting can be powerful, which is easily accomplished
by post-multiplying the resulting 𝛼 coefficients by a user-defined
scalar value. Importantly, as our method is local, we can support
a spatially-varying strength control parameter, where the retarget
strength of each local patch can be individually specified (typically
accomplished through a texture map lookup). An additional way
to add user control is to allow artists to provide blendshape prefer-
ences, with a per-shape preference weight 𝛾𝑖 , where 0 ≤ 𝑖 ≤ 𝑁 − 1
and 0 ≤ 𝛾𝑖 ≤ 1. By default, 𝛾𝑖 = 1 for all 𝑖 , but this preference
parameter allows to penalize the use of certain shapes by setting
the corresponding 𝛾𝑖 to a value below 1, or favor a shape by setting
all other shape values to less than 1. Again, in practice we can even
allow spatially-varying shape preferences, different for each patch
𝑝 , and thus the preference weight is formally defined as 𝛾𝑝,𝑖 . To
incorporate the shape preferences in our optimization, we modify
the source model from Eq. 1 to be

XS
𝑝 = 𝑝S0 +

𝑁−1∑
𝑖=1

𝛼𝑝,𝑖 · 𝛾𝑝,𝑖 (𝑝S𝑖 − 𝑝S0 ), (11)

effectively scaling the blendshapes by the user preference values.
This has the effect that when a user preference is less than 1, the
corresponding blendshape is scaled closer to the neutral shape, and
the systemmust use a higher corresponding 𝛼𝑝,𝑖 , contradicting Eq. 8,
and so if possible a different combination of shapes to achieve the
same goal will be chosen by the optimization instead. In the end,
we transfer the weighted shape coefficients 𝛼𝑝,𝑖 · 𝛾𝑝,𝑖 to the target
blendshape model to account for the scaling during optimization.

The result of the patch-wise retargeting is a set of deformed target
patch shapes X𝑇

′
𝑝 for all 𝑝 , which approximate the desired target

shape corresponding to the source input shape (Fig. 2 (c)). For all
experiments reported in this paper, unless explicitly mentioned, we
set 𝜆𝐹𝑖𝑡 to 1, 𝜆𝑂 to 100 and 𝜆𝑅𝑒𝑔 to 35.

3.3 Anatomical Reconstruction
In the previous section we described the main retargeting procedure,
which transfers per-patch deformations from the source to the target
character. Now, the goal is to convert the patch-wise retargets into a
globally consistent target face shape (Fig. 2 (d)). Even though we aim
to obtain spatial consistency in the per-patch deformations (via the
overlap regularizer in Eq. 9), there will inevitably be discontinuities
at the patch boundaries. For this reason, we employ the character
specific ALM model of Wu et al. [2016] described in Section 3.1 to
provide the final target shape.
Following Wu et al. [2016], this is achieved by solving for the

model parameters𝑀𝑝 and {𝑤𝑝,𝑘 } in Eq. 3 in another optimization.
Contrary to Wu et al. [2016], who formulate the optimization to
match a data term coming from monocular video, we instead for-
mulate a new data term from the patch-wise retargets, formulated
in 3D space. Specifically, we create an alternate data term as

𝐸𝐷 = 𝜆𝐷

∑
𝑣∈V

∑
𝑝∈𝑃 (𝑣)

(X𝑝 (𝑣) − X𝑇
′
𝑝 (𝑣)), (12)

where V is the set of all vertices in the target character mesh, 𝑃 (𝑣)
denotes all patches that contain vertex 𝑣 , X𝑝 (𝑣) is the ALM model
(Eq. 3) evaluated at 𝑣 , and X𝑇

′
𝑝 (𝑣) are the retargeted patch shapes

evaluated at 𝑣 . Using this new data term in the model fitting proce-
dure of Wu et al. [2016] (combined with their standard anatomical
and overlap constraints), we obtain the final retargeted shape, as
illustrated in Fig. 2 (d). Note that we do not solve for the skull po-
sition in the ALM model, but instead fix it in space since we wish
to perform the retargeting in a canonical space. While estimating
the parameters of the ALM model, we set 𝜆𝐷 to 10, the weight for
the anatomical constraint from Wu et al. [2016] 𝜆𝐴1 to 10 and their
overlapping constraint weight 𝜆𝑂 to 0.85.

4 RESULTS AND EVALUATION
We now present the results of our facial retargeting method and
compare it to alternatives. The dataset we use for evaluation consists
of several performance sequences of different actors captured using
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a production capture system2 based onWu et al. [2016], plus a single
hand-crafted fantasy creature.

4.1 Qualitative Results
We start by showcasing several qualitative examples of our local,
anatomically constrained retargeting technique in Fig. 1 and Fig. 4.
Our method is successfully able to retarget a wide variety of fa-
cial performances, ranging from dialogues, emotions, and facial
workouts from a variety of source characters to a range of target
characters. Each result captures the subtle facial deformations of the
source character, without altering the target’s identity. As such, our
method can be an invaluable tool for facial animation and retarget-
ing in visual effects and high-end applications. We further highlight
the flexibility of our method by retargeting performances from hu-
man characters to a target fantasy creature in Fig. 5, achieved with
the same algorithm and no additional parameter tuning. We kindly
refer you to our supplemental video for more results.

4.2 Comparisons with Existing Techniques
We now compare the performance of our approach with that of
common methods used in the industry today. Specifically, we will
compare to global blendshape-based retargeting [Lewis et al. 2014],
deformation transfer [Sumner and Popović 2004] and simple delta
transfer, as described in Section 2.5. For the global blendshape model,
we use the same 20 shapes as our approach for a fair comparison
(later we will also compare to a large 236-shape blendshape rig
similar to what is used in production settings).
A qualitative comparison is provided in Fig. 7, where four dif-

ferent source expressions are transferred to four different target
characters, using each of the methods. Both deformation transfer
and delta transfer tend to generate unrealistic shapes in the eyes
and mouth regions, especially when the target character is more
dissimilar in shape from the source character. Both methods also
incorrectly transfer the wrinkle details from the source character
to the target (e.g. the forehead in row 2). As well, sometimes defor-
mation transfer suffers from geometric artifacts (e.g. the eye region
in rows 1 and 4). The 20-shape global blendshape model does not
have enough expressiveness to reach the necessary facial deforma-
tions, resulting in the loss of the intended expression as seen by the
closing eyes in row 1, and the changed mouth expression in row 4.
The supplemental video shows that the global blendshape model
also has problems with temporal stability. In contrast, our method
produces expressive, stable and artifact-free retargets.
We also provide a quantitative evaluation of the methods. This

is achieved by leaving out 4 of the 20 shapes and building retar-
geting models from the 16 remaining shapes, and then evaluating
the retargeted result on the 4 validation shapes. Results are shown
in Fig. 8. Starting with an open mouth expression (rows 1 and 2),
we retarget from two different source characters to the same target
character. In the ideal case, the resulting target shape would be the
same, independent of the source character. Notice the large differ-
ences in the result for the deformation and delta transfer methods.
Also, evaluating the per-vertex error with respect to the held out
ground truth shape via the heat map shows that our method achieve

2https://studios.disneyresearch.com/anyma/

the most accurate results. Row 3 of Fig. 8 adds a second held-out
expression, retargeted from the same source character as row 2, and
again our method produces the most accurate result.
As a final comparison, we demonstrate that our method can

achieve quality on par with large-scale blendshape rigs often used
in production, but with far fewer input shapes. To this end, we em-
ployed a publicly-available model containing 236 shapes3, which
we mapped to our own characters for comparison. Fig. 6 shows
retargeting results for two different source-target pairs. Visually,
the results using the larger blendshape rig are naturally more ap-
pealing than the 20-shape rig, and our results are comparable to the
production rig results while using only 20 input shapes.

4.3 User study
In order to further compare our approach with common methods
used in practice, we performed a user study to gain insight into the
best retargeting method and the approach that generates the most
realistic facial animation overall. The study consisted of several
examples of 3D human source characters being retargeted to 3D
human target characters. We simultaneously showed participants
the results of our method, 20-shape global blendshape retargeting,
deformation transfer and delta transfer. As we will illustrate in this
section, our proposed technique clearly outperforms the others both
in terms of retargeting accuracy and animation realism.
We performed the study on both static expression retargets as

well as dynamic retargeted performances. The static expressions
allowed users to take their time and analyze nuances in the resulting
shapes, while the performance animations provided a more holistic
view of the retargeting quality. 10 different source/target retargeting
examples were shown for each of the individual expressions and
performance animations, spanning 5 different source characters and
6 additional target characters (source characters were never used as
target characters and vice-versa). The performances ranged from
dialog speech to fast facial expression transitions.
An example frame from the user study is shown in Fig. 9. For

the static expressions, the users were asked: Which of the Target
expressions (A,B,C, or D in blue) is the best retargeting of the Source
expression (in blue) to the Target identity? Please refer to example
expressions of the Target in gray, to help understand their identity. To
help the users understand the identity and expressions of the target
character, six ground truth expressions were shown at the bottom
of the screen (in gray). The order of the four results was randomized
for each example. The dynamic performances were presented in the
same manner, and the users were asked two questions, Which of
the Target performances (A,B,C, or D in blue) is the best retargeting
of the Source performance (in blue) to the Target identity? Please re-
fer to example expressions of the Target in gray, to help understand
their identity, and as well: Which Target performance looks overall
the most realistic? Participants were allowed to choose more than
one answer if they could not decide. 45 participants from various
backgrounds took part in the survey (45% were not familiar with
computer graphics, 44% were experienced in graphics but not in
retargeting methods, and 11% were familiar with retargeting). The
results of the user study are illustrated in Fig. 10 and Table 1. Fig. 10

3www.eisko.com/louise/virtual-model
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Fig. 4. Several examples of high quality facial performance retargeting obtained by our method. Each row corresponds to a unique source performance and
each column is a unique target character. Our method is consistently able to output convincing performances with a high degree of realism while staying
faithful to the target character’s facial anatomy.
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Fig. 5. We highlight the flexibility of our method by retargeting perfor-
mances from several human characters to a fantasy creature.

Fig. 6. Our results (using only 20 input shapes) are comparable to large-scale
production blendshape rigs containing hundreds of shapes. The 20-shape
global blendshape result is included for comparison.

tallies the total number of votes for each method over all 10 static
examples and all 10 animations, separated by question. As can be
clearly seen, our method (blue) was the most popular choice for all
categories. Table 1 additionally shows the sum over the set of retar-
geting examples where each method was the chosen winner, per
question. Again, the proposed technique was clearly a favorite, in-
dependent of the source/target character pair, independent of static
expressions versus dynamic performances, and across all questions.
Interestingly, the users were able to identify that global blendshape
retargeting (with so few shapes) is unsuitable for high quality ani-
mations, as this method was least preferred. Deformation transfer
and delta transfer showed a similar performance, likely owing to
their similar algorithmic nature.

4.4 Ablation Studies and Evaluations
We now show the effects when varying certain parameters of our
method, starting with its dependence on the patch layout. Fig. 11
shows the effects of varying both the number and the layout of
the patches . For this experiment, we held out a subset of valida-
tion shapes from both the source and target models, and compared

Table 1. Number of retargeting examples where the method was chosen as
top performing (out of 10). Note that ties are counted twice.

Method Expressions Animations Animations
(best retarget) (best retarget) (most real)

Global Blendshapes 1 0 0
Deformation Transfer 1 1 1
Delta Transfer 1 1 2
Ours 7 9 8

the reconstruction accuracy for one of the held-out shapes under
different configurations. As indicated by the error maps, accuracy
decreases when there are too few patches (last two layouts), but for
a sufficient density of patches the exact layout has little effect (first
two layouts). All our results are created with the first layout.
A second parameter that is user-controllable is the amount of

overlap between patches, defined by the number of closed vertex
rings in the mesh connectivity. Fig. 12 illustrates the effect of dif-
ferent overlap values during retargeting. The quality of the patch
retargeting step is severely degraded with too little overlap, while
too much overlap it results in over-smoothed shapes. In all our
results, we use 6 overlap rings. Furthermore, the weight for the over-
lap consistency term 𝜆𝑂 in Eq. 10 also has an effect on the results, as
we illustrate in Fig. 13. The first row shows the patch fit results to a
source shape with corresponding error maps for 𝜆𝑂 values of 0, 25,
100 and 500. Rows two and three illustrate retargeting results to two
different characters using local blendshape transfer only (without
the anatomical reconstruction step). When the overlap weight is
very small, individual patches fit the source shape better but the
patches are extremely disconnected. When the overlap weight is
very high, the local patches align almost perfectly, but at the cost
of losing expression fidelity to the source shape. A good tradeoff is
found around 𝜆𝑂 = 100; the value we use for all of our results.

Our local model for retargeting is naturally more expressive than
a global blendshape rig, given the same number of input shapes.
In Fig. 14, we show the accuracy of reconstructing a source shape
using a global blendshape model in comparison to our local model
while varying the number of shapes in the models. The ground truth
that is being evaluated was left out of both models. As can be seen
in the heatmaps and in the accompanying plot, our method with
only as few as 7 shapes still significantly outperforms a traditional
blendshape rig with asmany as 19 shapes. Continuing the evaluation
of input shape cardinality, Fig. 15 illustrates how our retargeting
pipeline degrades with fewer and fewer input shapes . As shown,
reducing from 20 to 15 shapes introduces only a small error, which
becomes increasingly larger with fewer shapes. For this experiment,
we progressively removed shapes so as to keep the most overall
facial deformation within the given shape budget.
We also evaluate our decision to embed the rigid motion of the

patches into the blendshapes, in contrast to separating the rigid
and non-rigid components as Wu et al. [2016] . As described in Sec-
tion 3.2, separating the rigid motion is undesirable due to differences
in scale and range of motions between characters. Fig. 16 illustrates
this issue on a retargeted character obtained in two different ways,
one where the rigid motion is separated from the blendshapes and
ours, which leads to fewer artifacts.
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Fig. 7. We present qualitative comparisons of the proposed method against commonly used facial retargeting techniques in production. The source subject is
shown in the first column and the retargeted expression for a unique target character is shown in each row. Our method clearly produces the most expressive,
yet artifact free retargeting in all cases. Kindly refer to our supplemental video for additional comparisons.
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Fig. 8. Quantitative Comparison of the proposed method against common approaches, achieved by leaving a subset of shapes out of the models for validation.
Rows 1 and 2 show one of the held-out expressions retargeted from two different source characters to the same target character. Row 3 adds a new held-out
expression from the same source character as row 2.

Fig. 9. Example frame from the user study, showing the source expression
and resulting target expressions from the different methods (top in blue) as
well as example real target expressions for guidance (bottom in gray).

4.5 Run time analysis
Our two step retargeting technique takes 1 min per frame in total
on a standard desktop CPU with an Intel(R) Core(TM) i7-7700K
processor and 32GB of RAM. This run time was measured while
using 20 blendshapes, and 400 patches, with each shape having
95,000 vertices. A bulk of this time (almost 90%) is spent in optimiz-
ing the ALM model [Wu et al. 2016] for anatomical reconstruciton,
where modern GPU solvers [Fratarcangeli et al. 2020] could offer
substantial speed ups. Our method is trivially parallelizable across
frames and works seamlessly on performance data without temporal
regularization. All results in our paper were produced using a CPU
based non-linear least squares solver [Agarwal et al. 2010].

Fig. 10. We performed a user study to compare our method (blue) with
global blendshape retargeting (red), deformation transfer (yellow) and delta
transfer (green), on both individual expression transfers (left) and animated
performance retargets (right) of multiple source and target pairs.

Fig. 11. Here we compare different number and layout of local patches for
our method on a left out shape. As indicated by the error maps, accuracy
suffers when there are too few patches (last two layouts), but for a sufficient
density of patches the exact layout has little effect (first two layouts).
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Fig. 12. The amount of overlap between the local patches (in vertex rings)
affects the quality of the retarget. Too little overlap results in larger dis-
continuities between patches, and too much overlap results in oversmooth
retargets. We use 6 overlap rings.

Fig. 13. The patch overlap weight 𝜆𝑂 affects the quality of the retarget.
Too small and the patches are very disconnected. Too large and the desired
source expression is compromised. We use 𝜆𝑂 = 100.

Fig. 14. We show the effect of varying the number of input shapes with
our approach vs. a standard global blendshape rig on a source shape recon-
struction task. Our model achieves a lower reconstruction error with only 7
shapes than what global blendshapes achieves with 19 shapes.

4.6 Artistic Manipulation
In addition to providing high fidelty results, our method allows a
certain amount of artistic control. We first demonstrate the user-
definable retargeting strength map, which is a spatially-varying

Fig. 15. We show a retargeting result using models with varying input
shapes, starting from our usual 20 shapes down to 15, 10 and 5 (top row).
The error as compared to the 20-shape result (bottom row) indicates that
the quality of the retarget degrades naturally with fewer input shapes.

Fig. 16. Separating the rigid motion from the local blendshapes leads to ar-
tifacts during retargeting (center), compared to our approach of embedding
the rigid motion into the patch blendshapes (right).

scalar value that increases or decreases the expressiveness of the
retarget. Fig. 17 illustrates using this strength map in extreme situa-
tions, like retargeting to only parts of the face as well as exaggerat-
ing the result with a strength of 1.5.
Additionally, although our model makes use of only a handful

of shapes for retargeting, it can certainly leverage additional blend-
shapes when being incorporated into an existing workflow. When
extra corresponding shapes between the source and target charac-
ters are available (we refer to these as calibration shapes), instead
of naively including them into the model, which might further un-
derconstrain the retarget and increase solve times, we propose a
simple calibration step that optimizes for a spatially varying weight
map (akin to the retargeting strength map defined above), given a
source and target model. For each source calibration shape, when
we fit the source model to obtain a collection of patch coefficients
𝛼 which when transfered over to the target model, should ideally
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Fig. 17. A retargeting strength map (top) can be painted to spatially control
the retargeting result (bottom). For columns 4 and 5, the patch blendweights
are amplified by a factor of 1.5 in the masked regions.

produce the corresponding target calibration shape. Based on this
insight, we optimize for a per-patch retargeting strength scalar that
re-weights the patch coefficients in a spatially varying manner, such
that the difference between the transferred target shape and the true
target calibration shape is minimized. Once such a map is optimized
for, it essentially remaps the patch coefficients during subsequent
retargeting, to respect the target manifold better. In Fig. 18, we
show the spatially varying retarget strength map resulting from
such a calibration, between a source character (left) and two target
characters (right half, first and second row). The spatially varying
weight map is applied before subsequent retargeting analogous to
the weightmap applied in Fig. 17. The calibration step can introduce
subtle variations in the retargeted performance as visualized in the
heatmap in Fig. 18. The optimized weight map can also serve as a
starting point for artists to achieve interesting retargeting effects.

Fig. 18. We show the effect of calibrating a weight map between a source
character (left) and two target characters (two rows on the right)

5 LIMITATIONS
While our method only requires a small number of shapes for each
character, we do require that these shapes are in semantic corre-
spondence and creating such shapes through capture or sculpting
requires time and effort from artists. This is a problem that we do not

address in this work and believe that techniques like Li et al. [2010]
can mitigate to a certain extent. In the absence of a shared topology,
a predefined mapping between the source and target patches needs
to also be provided. Finally, though our method provides several
ways for artists to intuitively control the retargeted result, these
edits (Fig. 12, Fig. 17) require re-solving the entire sequence.

6 CONCLUSION
In conclusion, we present a local anatomically constrained method
for high fidelity facial performance retargeting that is ready for use
in demanding production pipelines. Our offline algorithm leverages
the expressive power of local blendshape rigs to obtain an initial
estimate of the retargeted performance. Then in a second step, an
anatomical model built using the target character’s facial geometry
is used to constrain the retargeted performance to an anatomically
plausible subspace. The result is a powerful method that can perform
highly realistic retargeting given only a handful of shapes in corre-
spondence (20 shapes) when compared to full blown production rigs
with hundreds of shapes. Our method additionally allows artists
to control several aspects of the retargeted performance in order
to achieve the perfect look for their animation. We demonstrate
several benefits of our method with a detailed user study. We hope
that our new tool benefits animators that spend innumerable hours
in producing a realistic facial animation.
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