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10 SUPPLEMENTAL MATERIAL

10.1 Implicit Formulation for Actuation
We adopt the energy density function Ψ from shape targeting [Klár
et al. 2020] for modeling the internal actuation mechanism:

Ψ(F,A) = min
R∈SO(3)

| |F − RA| |2𝐹 , (6)

where F is the local deformation gradient, A is a symmetrical 3 × 3
matrix (assuming 3D simulation), which could be represented as a
vector b ∈ R6 using the following convention:

A =


1 + b1 b2 b3

b2 1 + b4 b5
b3 b5 1 + b6

 . (20)

The rotation matrix R is used to make Ψ rotationally invariant. The
optimal R∗ is the polar decomposition of FA, as mentioned in [Klár
et al. 2020]. We assign an actuation matrix to every spatial point x
in the object material space, i.e., A(x) = NA (x).
We introduce the following notations to simplify the derivation.

We define vec(·) as row-wise flattening of a matrix into a vector:

vec(A) =



A11
A12
A13
A21
A22
A23
A31
A32
A33


,

where the subscript 𝑖 𝑗 indicates row 𝑖 and column 𝑗 of the original
matrix A. We use the corresponding lower case letter with a symbol
·̌ to indicate that it is a vectorized matrix. Similarly, we have f̌ =

vec(F), ř = vec(R). We define the expanded symmetric matrix Â as

Â =


A 0 0
0 A 0
0 0 A

 . (7)

We add the symbol ·̂ to indicate that it is an expanded matrix. In
addition, F̂ and R̂ are similarly defined as

F̂ =



F11 0 0 F12 0 0 F13 0 0
0 F11 0 0 F12 0 0 F13 0
0 0 F11 0 0 F12 0 0 F13

F21 0 0 F22 0 0 F23 0 0
0 F21 0 0 F22 0 0 F23 0
0 0 F21 0 0 F22 0 0 F23

F31 0 0 F32 0 0 F33 0 0
0 F31 0 0 F32 0 0 F33 0
0 0 F31 0 0 F32 0 0 F33


.

With these notations, the matrix-matrix multiplication can be ex-
pressed as a matrix-vector multiplication, paving the way for deriv-
ing the hessian, e.g., vec(RA) = R̂ǎ = Âř, and vec(FA) = F̂ǎ.
The continuous energy function 𝐸 for the simulation is defined

as
𝐸 =

∫
D0

1
2


F(x) − R∗ (x)A(x)



2
𝐹
𝑑𝑉 , (21)

where D0 denotes the material space (undeformed space) of the
object. Following the standard practices of finite element method,
we discretize D0 using tiny elements connected by nodal vertices:

𝐸 ≈
∑︁
𝑒

∫
D0

𝑒

1
2


F(x) − R∗ (x)A(x)



2
𝐹
𝑑𝑉 , (22)

where 𝑒 denotes an element, D0
𝑒 indicates the continuous region

inside 𝑒 while 𝑉𝑒 is its volume. We sample 𝑁 points inside each D0
𝑒

to approximate the integral:

𝐸 ≈
∑︁
𝑒

𝑉𝑒

𝑁

𝑁∑︁
𝑖

1
2


F(x𝑒,𝑖 ) − R∗ (x𝑒,𝑖 )A(x𝑒,𝑖 )



2
𝐹
. (23)

The deformation gradient F at each point x can be approximated by
the nodal vertices u around it through differentiating the interpola-
tion weight𝑤 :

𝐸 ≈
∑︁
𝑒

𝑉𝑒

𝑁

𝑁∑︁
𝑖

1
2





 𝜕∑𝑗 𝑤 𝑗 (x𝑒,𝑖 )u𝑗

𝜕x𝑒,𝑖
− R∗ (x𝑒,𝑖 )A(x𝑒,𝑖 )





2

𝐹

(24)

=
∑︁
𝑒

𝑉𝑒

𝑁

𝑁∑︁
𝑖

1
2







∑︁𝑗 u𝑗 ⊗ ∇𝑤 𝑗 (x𝑒,𝑖 ) − R∗ (x𝑒,𝑖 )A(x𝑒,𝑖 )








2

𝐹

(25)

We adopt hexahedral elements and a trilinear interpolation scheme.
Therefore, F at the location x𝑒,𝑖 is estimated only with 8 nodal ver-
tices associated with the element 𝑒 . By using trilinear interpolation,
we can apply a linear mapping matrix G ∈ R9×24 to calculate the
vectorized F as f̌ = Gu𝑒 , where u𝑒 ∈ R24 denotes the concatenated
nodal vertices associated with element 𝑒 . Therefore, the discretized
energy function 𝐸 is given as

𝐸 (u,A) =
∑︁
𝑒

𝑉𝑒

𝑁

𝑁∑︁
𝑖

1
2


G(x𝑒,𝑖 )u𝑒 − Â(x𝑒,𝑖 )ř∗ (x𝑒,𝑖 ))



2
2︸                                       ︷︷                                       ︸

Ψ𝑒,𝑖

, (11)

where A denotes all the sampled actuation matrices A from the
network NA.

10.2 Hessians
For deriving Hu and HΩ , we use the fact that vec(RA) = R̂ǎ = Âř,
vec(FA) = F̂ǎ = Âf̌ , and vec(F) = f̌ = Gu𝑒 .

Ψ𝑒,𝑖 in Eqn. (11) is the key for deriving Hu, since Hu is the accu-
mulation of all these tiny hessians ∇2Ψ𝑒,𝑖 . Now, we omit (x, 𝑒, 𝑖, ∗)
except u𝑒 for simplicity. Using projective dynamics,∇Ψ = G⊤ (Gu𝑒−
Âř). Taking the derivative of ∇Ψ, we have

𝜕∇Ψ
𝜕u𝑒

= G⊤G − G⊤Â
𝜕ř

𝜕Âf̌

𝜕Âf̌
𝜕u𝑒

= G⊤G − G⊤Â
𝜕ř

𝜕Âf̌
Â

𝜕f̌
𝜕u𝑒

= G⊤G − G⊤Â
𝜕ř

𝜕Âf̌
ÂG

= G⊤G − G⊤ÂHRÂG. (14)

Note that ř comes from the polar decomposition of FA, HR is thus
the rotation gradient. The closed form for HR has already been
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derived in [Kim and Eberle 2020], which can be constructed from
its off-the-shelf three eigenvectors and eigenvalues, as

HR =
𝜕ř

𝜕Âf̌
=

3∑︁
𝑖

𝜆𝑖 vec (Q𝑖 ) vec (Q𝑖 )𝑇

𝜆0 =
2

𝜎𝑥 + 𝜎𝑦
Q0 =

1
√

2
U


0 −1 0
1 0 0
0 0 0

 V𝑇

𝜆1 =
2

𝜎𝑦 + 𝜎𝑧
Q1 =

1
√

2
U


0 0 0
0 0 1
0 −1 0

 V𝑇

𝜆2 =
2

𝜎𝑥 + 𝜎𝑧
Q2 =

1
√

2
U


0 0 1
0 0 0
−1 0 0

 V𝑇

where UΣV⊤ is the singular value decomposition of FA, and 𝜎𝑥 , 𝜎𝑦 ,
𝜎𝑧 are the three diagonal entries in Σ. Similarly, we have 𝜕∇Ψ/𝜕ǎ
given as follows:

𝜕∇Ψ
𝜕ǎ

= −G⊤ 𝜕R̂ǎ
𝜕ǎ

− G⊤Â
𝜕ř
𝜕F̂ǎ

𝜕F̂ǎ
𝜕ǎ

= −G⊤R̂ − G⊤ÂHRF̂, (15)

which can be used for constructing HΩ .

10.3 Network
Even though our network is primarily designed to animate the
human face, it is also applicable to other soft bodies. In our settings,
we only consider the the relative movement between skull and
mandible as bone kinematics, since that is enough to articulate
diverse expressions. Thus, the skull is fixed all the times.
The entire architecture consists of three parts, an encoder, an

actuation-generative coordinate-based network NA, and a bone-
generative network NB. The encoder outputs a latent code z rep-
resenting an input shape. NA is conditioned on z to generate an
actuation matrix A for each input spatial point in the soft tissue do-
main.NB is dependent upon z to produce the transformed mandible
position for each input spatial point in the bone domain (mandible
domain for the face). In practice, we parameterize A with a vector
b ∈ R6, as in Eqn. (20), which is the direct output ofNA. In addition,
the mandible motion is linked to the skull (fixed in our settings) via
a pivot point, represented as a joint with two degrees of freedom for
rotation and three for translation, as Θ = {𝜃𝑥 , 𝜃𝑦, 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 } ∈ R5,
which is the direct output ofNB. Θ is subsequently converted into a
transformation matrix T subsequently. The encoder is a global shape
descriptor, namely the blendweights fitted from 23 blendshapes fol-
lowed by 3 fully connected layers. We use our proposed modulated
SIREN layer as the backbone layer forNA, whose modulating coeffi-
cients are mapped from the latent code z with a tiny MLP. We use 4
such layers in total. The hyperparamter𝜔0 [Sitzmann et al. 2020] for
SIREN is set to 30. For NB, we simply use 3 fully connected layers
with LeakyReLU nonlinearity (0.01 negative slope). Fig. 11 shows the
detailed architecture. We have chosen 𝛼 = 0 for the normal weight
in the loss function for both the starfish and human body examples,
and 𝛼 = 1 for the face examples, as we found that the inclusion of
the normal constraint positively affects the fidelity of the resulting
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Fig. 11. Architecture of our network. Blocks with the same color share
the same function. The text 𝑛𝑖 → 𝑛𝑜 in each colored block means that
the dimentions of the input and the output feature vectors are 𝑛𝑖 and 𝑛𝑜
respectively. The text FC means the fully connected layer, LReLU indicates
the LeakyReLU nonlinearity, and SIREN represents a fully connected layer
followed by sine activation function, whose weights are W conditional on 𝑎.
For continuous resolution conditioning, we add another branch on top of
NA, as indicated by the dashed arrow.

wrinkles and facial details. We use the ADAM optimizer [Kingma
and Ba 2015] to jointly train our networks. We run 1700 epochs for
training stage 1 with a batch size of 4 and an initial learning rate of
0.0002. We run 30 epochs for training stage 2 with a batch size of
1 and an initial learning rate of 0.0001. The learning rates for both
stages are decayed to 0 gradually.

For continuous resolution conditioning, we add another branch on
top of NA, as indicated by the dashed arrow in Fig. 11, which starts
with a positional encoding layer to convert the 1 dimensional scalar
input into a 4 dimensional feature vector, followed by 3 fully con-
nected layers. We use our network pretrained without this branch
on one resolution (268K sampled points) to execute the transfer
learning for continuous resolution conditioning. For training, we
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Fig. 12. Transfer learning results. The top row shows training (left) and testing (right) on high and low resolutions respectively, and the bottom row vice versa.
For each row, from left to right: the results on the simulation mesh of the original resolution, the results with standard interpolation of the actuation signals,
the results of transfer learning.

uniformly sample 20 resolutions with the number of sampled points
ranging from 42K to 268K, and use our simulator-integrated pipeline.
We run a total of 30 epoches with a batch size of 1 and a learning
rate of 0.0001 (decayed to 0 gradually). For testing, we uniformly
sample 25 resolutions (different from training).

10.4 Experiments
In this section we discuss additional experiments and results.

Transfer Learning and Resampling Results. Transfer learning on
a single resolution can be used as an alternative strategy to the
proposed continuous resolution approach, but requires 1 epoch to
make the network consistent with the new discretization. We show
results on different resolutions in Fig. 12. At the top, we trained the
model on the resolution that entails sampling 268K points (left) and
applied it at test time to 42K (right). At the bottom, we trained the
model on a resolution of 89K (left) and applied it to 502K at test time
(right). Our results indicate that the trained model can accurately
represent the dominant frequencies of the actuation signal and
reproduce them at test time. The middle columns show the results
with standard up- and downsampling of the actuation values. While
the error magnitudes are comparable to our result, artifacts are
clearly visible on the surface, for example near the eyebrow and
forehead.
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