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1 METHOD DETAILS

1.1 Architecture Details
The detailed architectures of the three main MLPs in MoRF are
illustrated in Fig. 1. The design of our deformation MLPs is similar
to the one in [Park et al. 2021], while the canonical NeRF is designed
after [Mildenhall et al. 2020], except for the addition of the input
canonical identity code and another output branch for the separate
specular distribution. To model this distribution smoothly, we use a
𝐾-th order spherical harmonics representation, with 𝐾 = 3 (9 coeffi-
cients). For the identity network, we trained with 𝐷-dimensional
id codes where we set 𝐷 = 4, and the output idw and idc have 128
dimensions. Position encoding is done with 8 frequency bands.

1.2 Deformation Details
Following Park et al. [2021], we use the well-known axis-angle
rotation representation and Rodrigues’ formula to deform a point x
to x′ given translation t, rotation axis r and rotation angle 𝜃 . Let
x′ = xrot + 𝑝 , where

xrot = x cos(𝜃 ) + (r × x) sin(𝜃 ) + r(r · x) (1 − cos(𝜃 ) (1)
𝑝 = t sin(𝜃 ) + (r × t) (1 − cos(𝜃 )) + r(r · t) (𝜃 − sin(𝜃 ) (2)

1.3 Fitting MoRF to a New Subject
As mentioned in the main text, during fitting, we first quickly fit an
id to initialize a pair of idw and idc codes, which are then optimized
further in their own latent subspaces. We fit id for 100 iterations, and
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we fit idw and idc for 1000 iterations. In this fitting stage, we freeze
the network weights and only update the latent codes. Optimization
on a single NVidia GTX3090 takes less than a minute for id, and
around 10 minutes for idw and idc.
As we don’t expect a pre-trained MoRF to faithfully represent

image detail such as particular identity features that are unique
to an arbitrary person not seen during training, this fitting stage
is applied to input images that are downscaled by a factor of 6,
and only looks at coarse rendering (we resize the camera frame
accordingly). To obtain more robust fits to images of novel subjects,
whose pixels may correspond to “outliers” that the pre-trainedmodel
cannot represent, we also adapt our rendering lossL𝑅𝐺𝐵 (main text)
and replace its L2-norm with the L1-norm. Additionally, following
established practice when fitting StyleGAN models, we also apply a
VGG-16 perceptual loss L𝐿𝑃𝐼𝑃𝑆 as done in [Abdal et al. 2019],

L𝐿𝑃𝐼𝑃𝑆 = 𝜆𝑃
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which is similar to our L𝑅𝐺𝐵 loss in the main text. Here, 𝜆𝑃 = 0.05
and we first render the complete image before applying the per-
ceptual loss: Φ(·) denotes the set of feature activations from layers
conv1-1, conv1-2, conv3-3 of a pre-trained VGG-16 network; and | | · | |𝐹
is the Frobenious norm. If the input includes a registered 3D mesh,
we also apply our deformation loss L𝐷𝐹 (main text), unmodified.

We also enforce L𝐼𝐷 in the initial stage. Then, when fitting idw
and idc, we modify this loss slightly to

L′
𝐼𝐷 = 𝜆𝐼𝐷

(idw − id0w
2
2 +

idc − id0c
2
2

)
. (4)

Above, [id0w, id0c] = 𝐼𝐷 (id0) are the codes initially predicted from
the optimized id0 code fed into MoRF’s ID network.

1.4 Tuning MoRF to a New Subject
Our network tuning is a simplification of the method in [Roich
et al. 2021]. After fitting idw and idc to the unseen subject, we can
freeze these codes and further optimize the network weights to
obtain more faithful fits. We fine-tune the pre-trained MoRF MLPs
for another 2000 iterations (1% of the total iterations in training a
standard NeRF for a given subject). On a single NVidia GTX3090,
this fitting stage takes about 30 minutes (less than 5% of the total
time to train a standard NeRF for this subject from scratch).

For faithfully fitting, this stage operates on input images in their
original resolution and uses our unmodified L𝑅𝐺𝐵 , L𝐷𝐹 , and mat-
ting loss (on density), as in the main text. Here, we do not use the
depth-map component of the density loss. Empirically, we obtained
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Fig. 1. Architecture detail of the three main MLPs in MoRF.

better convergence and results when enabling the perceptual loss
L𝐿𝑃𝐼𝑃𝑆 only in the first 10% of the fine-tuning iterations.

2 ADDITIONAL RESULTS
In the following, we present additional evaluations and results that
supplement our main paper. Experiments include an evaluation on
novel view renders, an ablation of different architectures, and an
evaluation of the depth estimation in MoRF. We further highlight
the reconstructions of all 15 subjects in our dataset, and illustrate the
effect of pairwise mixing of the deformation and canonical identity
codes. Finally, we show results of fitting and tuning a pre-trained
MoRF to 5 novel subjects not seen during training.

2.1 Evaluation of Novel View Renders
To train MoRF, we augment the training data using synthetic images
that are obtained from a combination of traditional techniques, such
as multiview stereo (MVS) reconstructions, high-quality capture
of appearance maps (e.g., diffuse and specular albedo), and skin
rendering via ray tracing [Riviere et al. 2020]. Besides synthesizing

Fig. 2. Additional synthetic views generated for validation, using traditional
techniques: 3D mesh from multiview stereo, high-quality appearance maps
and traditional skin rendering [Riviere et al. 2020]. A set of 22 views were
left out of training, used for validation.

Fig. 3. Rendering error for all 12 real images (top) for two training subjects,
used to supervise MoRF. Errors are overall small and predominantly on
hair areas, due to complex hair (dis)occlusion and the small number of real
training images depicting hair.

35 novel views for training, as shown in Fig. 5(b) of the main text, we
also synthesized 22 additional views for each subject, which were
left out of training and reserved for validation. This validation set
includes sequences of views that go left to right, top to bottom, as
illustrated in Fig. 2. Just as during training, these synthetic images
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Fig. 4. Comparison ofMoRF and two variants of its architecture and training
losses: rendering quality when interpolating between two training subjects
deteriorates when removing the deformation loss (V2) and deformation
network (V1) altogether; note artifacts on the sides of the face, center
columns.

depict only facial skin areas, as traditional techniques cannot capture
the other head components with high quality (thus motivating the
development of neural rendering alternatives, such as ours). After
training, we use our single MoRF model to render all 15 subjects
under the same 22 validation views. We then compare our neural
renderings against the well-established, high-quality ray tracing
method, as measured by a PSNR of 36.13 on the validation views
(skin areas only). In comparison, PSNR for the full head on the
training images (including hair areas) was slightly lower, 35.98.
Color-coded error maps for real training images are shown in Fig. 3,
showing that errors are overall small and predominantly located
on hair areas, which are supervised by only a small number of
real views during training. Note that the skin areas of the face are
assigned more ray samples during training (due to augmentation
with synthetic training images) and thus present lower error.

2.2 Ablation of Different Architectures and Losses
Note that the architecture of MoRF is similar to that of the Ner-
fies method in [Park et al. 2021], with two main differences: (1)
MoRF includes an additional Identity Network, and (2) MoRF’s idc
appearance code is also used to condition the density output. We
now compare MoRF against two variants of its design: variant V1
does not include the deformation network and is thus closer in
spirit to [Schwarz et al. 2020]; the second variant, V2, includes the
deformation component but is not explicitly supervised using our
deformation loss (i.e., using cross-subject semantic correspondences
from the registered, 3D template mesh). For this comparison, MoRF
and its V1, V2 variants were trained on 4 subjects, over 200K iter-
ations. While we observed similar PSNR values on the rendered
validation views (respectively, 35.75, 35.86, and 35.9), we found that
MoRF behaves better than V1 and V2 when interpolating id codes
in between training subjects, Fig. 4. Finally, for the canonical NeRF,
we also found that the Nerfies variant of this MLP (also similar to
that in “NeRF in the Wild” [Martin-Brualla et al. 2021]) could not
model the variable hair styles presented by our training subjects (all

Fig. 5. When the canonical appearance code idc is used to condition only
the output color branches, but not density, the canonical NeRF variant
cannot generate densities to model different hair styles (bottom) and fails
to properly represent the real training subjects (top).

subjects were modeled with short hair). This is because this variant
uses the input appearance code idc to condition only the output
color values, but not the output density. Therefore, the network
is unable to generate new density for long hair in areas that had
previously been occupied by empty space, Fig. 5 (i.e., the warp MLP
alone could not prevent this issue).

2.3 Density (Depth) Supervision
MoRF is trained with losses derived from traditional multiview
stereo (MVS) reconstructions, which are used to constrain the den-
sity field output by the canonical NeRF for each subject. Note that
the density field is used to derive depth maps from this neural
model [Mildenhall et al. 2020]. Fig. 6 shows examples of the re-
sulting differences between the depth maps rendered using MoRF
and depth maps from traditional MVS: both solutions largely agree
on facial skin areas (RMS difference of 5mm), while MoRF is free
to improve depth estimates on the areas where MVS confidence
is low (e.g., hair). Also of note, the depth estimates by MoRF also
diverge from the MVS reconstruction on the neck areas, which we
have found to be less accurate in the 3D meshes used to provide
supervision during training.

2.4 Spherical Harmonics Constraints
We have empirically verified that our use of a spherical harmonics
(SH) subspace better constrains the specular radiance output branch
when training from few camera views (i.e., by regularizing the
output and enforcing smoothness across viewpoints). In particular,
for the specular radiance on scalp hair, we only have supervision
from 8 camera views (4 narrow-baseline stereo pairs). Here we show
an ablation in which we replace the SH output branch with an MLP
with positional-encoded view direction as input, as in the original
NeRF. We compare the specular signal estimated with and without
SH in Fig. 7. For synthesized novel views, we can see that the SH
output of MoRF is better constrained, while the MLP output without
SH shows spurious fluctuation in underconstrained head areas and
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Fig. 6. Results of depth supervision based on traditional multiview stereo
(MVS): (a) example training subject; (b) final depth rendered by MoRF; (c)
3Dmesh reconstructed via MVS, used to constrain the density values output
by MoRF; (d) MVS confidence (high on skin, low on hair areas); and (e) four
views showing depth differences (close agreement) between the results from
MoRF and from MVS on areas where MVS has high confidence. MoRF is
free to improve depth on the other areas.

Fig. 7. Comparison of MoRF with (a) positional-encoded view direction as
network input and (b) with spherical harmonics. We can see that in (a), the
specular signals on hair is inconsistent, while spherical harmonics does not
suffer from the artifact.

viewpoints. Another advantage of our SH-based architecture is that
the Canonical NeRF becomes omnidirectional and can be densely
sampled only once (and cached), then allowing for fast rendering
under arbitrary views [Yu et al. 2021]. This is a functionally that we
intend to explore in future work.

2.5 Modeling Facial Expressions
The seminal work by Blanz and Vetter [1999] presented a 3D face
model that also had two codes, for shape and texture (appearance),

Fig. 8. As a proof of concept that MoRF can also naturally model different
facial expressions for each subject, we train MoRF normally, but using
training data from a single subject under three different facial expressions
(neutral, surprise, frown). Here we show these expressions as rendered by
the MoRF model in 4 views.

4



MoRF: Morphable Radiance Fields for Multiview Neural Head Modeling
(Supplementary Material) SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

which can be used to encode variations across identity or expres-
sions. Here, MoRF is focused on disentangling geometry and ap-
pearance for modeling vastly different identities and appearances.
Nevertheless, modeling facial expressions (with smaller variations
in appearance) is a natural next step, which we demonstrate next
(see also the relation between MoRF and Nerfies, as noted above).
We now show a preliminary result demonstrating that MoRF can
be easily extended to model changes due to facial expression (a
simpler case when compared to the abrupt changes in appearance
across different subject identities). This is done simply by consider-
ing additional training data for non-neutral expressions, without
modifying MoRF’s architecture. As a proof of concept, we train our
MoRF architecture normally but on a training dataset that included
three different expressions of a single subject. Fig. 8 shows these
expressions as rendered by the single MoRF model in four different
views.

2.6 Modeling Quality of MoRF versus Single-Subject NeRF
We also compare MoRF’s reconstruction quality to that of a regular
NeRF trained on a single subject. Given enough data, the simple
NeRF can overfit this single person, while MoRF will focus on do-
ing an overall good job for several subjects, simultaneously, but
no subject in particular. We compare MoRF’s performance against
single-subject NeRF using the first subject as shown in Fig. 9 (top).
MoRF’s PSNR on validation views is 35.84, and on the real training
image is 33.91. For the single-subject NeRF, PSNR on validating
views is 37.98 and on the real training image it is 35.79. Although
PSNR for MoRF is slightly lower than for the single-subject NeRF,
visual quality is still very similar. Note that MoRF and this single-
subject NeRF also have similar network capacity.

2.7 All 15 Subjects
For all the 15 subjects used to train our single MoRF model, we show
examples of novel “turntable” views in in Fig. 9, Fig. 10, and Fig. 11
(with other views shown in the supplementary video). For each
subject, we see a pair of real images used for training, where one
image is cross-polarized (captures only diffuse reflections) and the
other real image below it is parallel-polarized (captures both diffuse
and specular components). Next to them, we see five synthetic novel
views rendered in three different layers, which separately show only
diffuse colors, only specular colors, and full reflected color (diffuse
plus specular). Note that not only are these renderings consistent
across views but also realistically capture the diffuse and specular
reflection of the different head components such as hair, eyes, and
skin areas. Finally, the estimated depth map is also rendered for
each view.

2.8 Pairwise Code Mixing
As described in the main text, a simple way to generate novel, syn-
thetic subjects using MoRF is to simply mix and match the deforma-
tion and canonical identity codes, idw and idc, taken from two real
training subjects. The results of this simple operation carried out
on the full set of 15 × 15 pairs of training subjects in our dataset is
shown in Fig. 12 (over 200 new synthetic subjects). The figure should
be interpreted as mixing the appearance (idc) of the person at the

top with the shape (idw) of the person on the left. Despite the small
number of training subjects, note the variety of novel synthetic
subjects that can be generated with MoRF via such simple mixing.
All these subjects can be rendered realistically under novel views,
with full separation of diffuse and specular layers (see additional
views in supplementary video).

2.9 MoRF Fitting and Tuning Results
We also compute results of pre-training MoRF on 15 subjects and
then fitting and tuning the model to images of 5 novel subjects
not seen at training, effectively producing a NeRF from as few as
one image and an optional 3D mesh. Fig. 13 shows the synthesized
“turntable” views of these 5 out-of-sample subjects, after fitting and
tuning the network to 11 input views and the registered 3D mesh.
For each subject, the second image on the left column shows the
real frontal view left out of the fit, with rendering PSNR of 32.8, 35.9,
34.2, 31.9, 32.0, respectively (average 33.3) after 2K tuning iterations.
Finally, Fig. 14 shows the results of tuning MoRF to a single (frontal)
input view and the registered 3D mesh of each new subject; the
second image on the left column now shows the real view included
in the fit for each subject. Rendering PSNR, computed over the other
11 images held out, is lower in this case, 24.3, 27.6, 28.0, 24.5, 27.6,
respectively. After removing the 3D mesh from the input, Fig. 15,
these PSNR values drop slightly from an average of 26.4 (with) to
25.8 (without). Still, noticeable errors are seen on face silhouettes
(e.g., shape of nose). In practice, our mesh topology could be adapted
to work with any method that estimates a 3D mesh from a single
face image [Feng et al. 2021, 2018; Guo et al. 2020]. Finally, results of
only the initial id-fit, without the tuning step, are shown in Fig. 16,
Fig. 17, and Fig. 18.
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(a) real (b) rendered diffuse-only, full color novel views (c) rendered depth, specular components

Fig. 9. Synthesized “turntable” views using a single MoRF model to reproduce training subjects 1-5 (out of 15). Each pair of rows shows: (a) cross- and
parallel-polarized real training images; (b) novel views rendered in diffuse color only (odd rows) and full color (even rows); and (c) rendered depth and specular
components. This figure is best seen on a computer screen.
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(a) real (b) rendered diffuse-only, full color novel views (c) rendered depth, specular components

Fig. 10. Synthesized “turntable” views using a single MoRF model to reproduce training subjects 6-10 (out of 15). Each pair of rows shows: (a) cross- and
parallel-polarized real training images; (b) novel views rendered in diffuse color only (odd rows) and full color (even rows); and (c) rendered depth and specular
components. This figure is best seen on a computer screen.
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(a) real (b) rendered diffuse-only, full color novel views (c) rendered depth, specular components

Fig. 11. Synthesized “turntable” views using a single MoRF model to reproduce training subjects 11-15 (out of 15). Each pair of rows shows: (a) cross- and
parallel-polarized real training images; (b) novel views rendered in diffuse color only (odd rows) and full color (even rows); and (c) rendered depth and specular
components. This figure is best seen on a computer screen.
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Fig. 12. Novel synthetic subjects generated by mixing codes between all pairs of training subjects: the canonical identity code idc is taken from the subject at
the top, while the deformation code idw is taken from the subject on the left (best seen on computer screen).
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(a) real (b) rendered diffuse-only, full color novel views (c) rendered depth, specular components

Fig. 13. Synthesized “turntable” views of the 5 out-of-sample new subjects, after fitting and tuning the pre-trained MoRF network to 11 input views and the
registered 3D mesh. For each subject, the second image in (a) shows the real frontal view left out of the fit. Rendering PSNR is 32.8, 35.9, 34.2, 31.9, 32.0,
respectively.
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(a) real (b) rendered diffuse-only, full color novel views (c) rendered depth, specular components

Fig. 14. Synthesized “turntable” views of the 5 out-of-sample new subjects, after fitting and tuning the pre-trained MoRF network to a single frontal view
(second image in (a)) and the registered 3D mesh. Rendering PSNR, computed over the other 11 images held out, is 24.3, 27.6, 28.0, 24.5, 27.6, respectively.
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(a) real (b) rendered diffuse-only, full color novel views (c) rendered depth, specular components

Fig. 15. Synthesized “turntable” views of the 5 out-of-sample new subjects, after fitting and tuning the pre-trained MoRF network to a single frontal view
(second image in (a)),without the registered 3D mesh. Rendering PSNR, computed over the other 11 images held out, is 23.7, 27.0, 27.4, 24.1, 26.6, respectively.
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Fig. 16. Simple id-fitting results for out-of-sample subjects 1 and 2. From top to bottom: 4 of the 12 real views, fit to 12 views (with and without the input 3D
mesh), and fit to 1 frontal view (with and without 3D mesh).
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Fig. 17. Simple id-fitting results for out-of-sample subjects 3 and 4. From top to bottom: 4 of the 12 real views, fit to 12 views (with and without the input 3D
mesh), and fit to 1 frontal view (with and without 3D mesh).
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Fig. 18. Simple id-fitting results for out-of-sample subject 5. From top to bottom: 4 of the 12 real views, and fit to 12 views (with and without the input 3D
mesh), fit to 1 frontal view (with and without 3D mesh).
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