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Fig. 1. We compare our proposed approach—a jointly trained adaptive sampling and reconstruction method using analytic distributions and a global summary
module (Ours-GS)—to uniform sampling followed by a neural denoiser, akin to the one proposed by Vogels et al. [2018]. For both methods, we show insets
before and after the reconstruction. For Ours-GS, we additionally show the sampling distribution, where brightness scales with sample count. We show the
samples per pixel (spp) across the entire image, and the average mean relative squared error (MRSE) over the entire reconstructed image.

We propose an adaptive sampling and reconstruction method for offline
Monte Carlo rendering. Our method produces sampling maps constrained
by a user-defined budget that minimize the expected future denoising error.
Compared to other state-of-the-art methods, which produce the necessary
training data on the fly by composing pre-rendered images, our method
samples from analytic noise distributions instead. These distributions are
compact and closely approximate the pixel value distributions stemming
from Monte Carlo rendering. Our method can efficiently sample training data
by leveraging only a few per-pixel statistics of the target distribution, which
provides several benefits over the current state of the art. Most notably, our
analytic distributions’ modeling accuracy and sampling efficiency increase
with sample count, essential for high-quality offline rendering. Although
our distributions are approximate, our method supports joint end-to-end
training of the sampling and denoising networks. Finally, we propose the
addition of a global summary module to our architecture that accumulates
valuable information from image regions outside of the network’s receptive
field. This information discourages sub-optimal decisions based on local
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information. Our evaluation against other state-of-the-art neural sampling
methods demonstrates denoising quality and data efficiency improvements.
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1 INTRODUCTION

Rendering high-quality images with accurate lighting currently re-
lies on running Monte Carlo (MC) simulations of the light transport.
Unfortunately, these methods are expensive, as rendering a single
image in high quality in offline setups can require dozens or hun-
dreds of CPU hours. At its core, MC rendering methods repeatedly
sample random light paths to estimate the color values of pixels.
However, these estimates suffer from variance that is inversely pro-
portional to the number of evaluated samples. Interestingly, not all
pixel colors are equally difficult to estimate and may thus require a
different number of samples to achieve acceptable quality.

One common strategy to reduce render costs is adaptive sam-
pling, which takes the varying estimation error of pixels into ac-
count by adjusting the sample densities over the image plane during
rendering. Another is denoising, which is a cheap post-processing
reconstruction step that removes remaining noise in renderings.
Modern rendering systems make extensive use of both strategies to
keep the rendering cost low. Note that since the sample distribution
influences the denoising quality, an ideal adaptive sampling strategy
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should be aware of how additional samples will affect the denoised
image.

Adaptive sampling and reconstruction based on data-driven neu-
ral methods has been shown to outperform non-neural counterparts
by a large margin [Kuznetsov et al. 2018]. Current denoiser-aware
adaptive sampling methods that are compatible with neural denois-
ers either do not take into account the effect of future samples on
the denoising error, such as in the case of direct error prediction
(DEP) [Vogels et al. 2018], or require significantly more data to train,
such as the deep adaptive sampling and reconstruction approach
(DASR) [Kuznetsov et al. 2018].

We propose a novel, end-to-end trained neural adaptive sampling
and reconstruction approach that yields results superior to DASR
and DEP when using commensurate training datasets. Further, our
approach produces results equivalent to or better than DASR when
using the same volume of data for training as required by DEP or a
neural denoiser such as KPCN [Bako et al. 2017; Vogels et al. 2018].
As a result, smaller legacy datasets used to train denoisers may be
used to train our sampler and denoiser in an end-to-end fashion.

Our method performs on-the-fly synthesis and sampling of plau-
sible future renderings using per-pixel analytic distribution models
that are easy and efficient to construct and sample from. Further, we
propose the addition of a global summary module that provides the
network with non-local information about the input data, further
improving the sampling distributions.

We designed our method for the specific use case of high quality
offline rendering of single frames, where the sampling distribution
is refined iteratively during rendering.

We evaluate the effect of our design decisions through ablation
studies and provide an extensive evaluation with qualitative and
quantitative comparisons against state-of-the-art methods, showing
that our method can achieve superior results with equal training
data. In our experiments targeting high-quality renderings, we ob-
served a reduction of 26 — 37% in the samples needed to reach the
same average quality as other state-of-the-art adaptive sampling
methods. Such a reduction amortizes to considerable cost savings
in demanding production settings.

Our main contributions can be summarized as follows;

e We propose a method to jointly train a neural sampler and
denoiser in an end-to-end fashion by constructing future
renderings from analytic distributions instead of assembling
them from large amounts of rendered data as in previous
work.

e We propose a global summary module that allows the sam-
pler to leverage non-local information to improve sampling
decisions.

e We provide a thorough theoretical analysis, proving that un-
der certain assumptions on the loss and the denoiser we can
use an analytical distribution to generate data while still yield-
ing an exact solution to our problem formulation.

e We demonstrate that the approximation error of our chosen
distribution vanishes at high sample counts even when our
assumptions do not hold.
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2 RELATED WORK

Early work on adaptively sampling within the image plane was
based on contrast [Kirk and Arvo 1991; Mitchell 1987], confidence
bounds of the mean [Tamstorf and Jensen 1997], or on image dis-
continuities [Bala et al. 2003; Guo 1998]. While easy to apply, these
methods do not adjust for variance or bias introduced by the denois-
ing techniques and can therefore lead to sub-optimal sampling maps
when the goal is to minimize the rendering error after denoising.

Methods to couple denoising with adaptive sampling have been
explored extensively in the past decade under the umbrella of adap-
tive sampling and reconstruction. While many such methods have
been proposed, most adaptive sampling methods are specifically tai-
lored to the denoising method with which they are coupled [Bauszat
et al. 2015, 2011; Bitterli et al. 2016; Li et al. 2012a; Moon et al. 2014,
2015, 2016; Overbeck et al. 2009; Rousselle et al. 2011, 2013].

Some exceptions exist that can operate on arbitrary reconstruc-
tion methods. One such example is adaptive sampling based on the
empirical two-buffer variance after denoising [Rousselle et al. 2012].
This approach requires rendering multiple independent images that
are then denoised separately. However, this is not always practical,
as it can lead to noisy variance estimates and cannot detect bias in
the denoised image due to under-sampling. Another general adap-
tive sampling method is based on Stein’s unbiased risk estimator
(SURE) [Li et al. 2012a; Rousselle et al. 2013]. Unfortunately, SURE
requires the partial derivative of the output of the denoiser with
respect to its input during inference, which can be very expensive
to obtain. Alternative adaptive sampling methods operate on ad-
ditional dimensions other than the image plane [Hachisuka et al.
2008] or rely on analytic properties of the integrand to determine
the sampling budget [Durand et al. 2005].

Neural networks have had tremendous success in recent years
in the task of denoising Monte Carlo renderings. Chaitanya et al’s
[2017] interactive method utilizes a network that directly outputs the
denoised image. It utilizes a recurrent convolutional neural network
that leverages temporal information from past frames. Kalantari
et al. [2015] learn optimal parameters to denoise using traditional
filters. Bako et al. [2017] introduce a kernel-predicting convolu-
tional network (KPCN), which, instead of learning parameters for
traditional filters, predicts individual per-pixel kernels. This offline
denoising method was then extended to use an efficient multi-scale
reconstruction and to leverage temporal information [Vogels et al.
2018]. A further extension of the method decomposes the image
automatically into easier-to-denoise components [Zhang et al. 2021].
More recently, Isik et al. [2021] proposed an interactive denoiser that
produces temporal kernels based on pairwise affinity between pre-
dicted features of neighboring frames. Although any differentiable
denoiser would work with our proposed end-to-end method, we
decided to use an offline kernel-predicting denoiser akin to KPCN
[Bako et al. 2017; Vogels et al. 2018; Zhang et al. 2021].

Our approach is most closely related to two recent adaptive sam-
pling methods based on deep neural networks using supervised
learning. The first one is the direct error prediction approach (DEP)
described in Section 5 of Vogels et al. [2018]. In a first step, DEP
learns to predict the remaining error after denoising by training on
pairs of denoised images and their corresponding denoising error
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Fig. 2. A schematic representation of our training (top) and inference (bottom) pipelines. Training: Given the rendered data at the current iteration, X;,
rendered with a sampling map S; and the desired total budget B;+1, we utilize an analytic noise distribution ¥} to synthesize noisy data Y for jointly training
an adaptive sampling network Sg and a denoiser D,, to minimize the loss £ of denoised result given ground-truth reference X,. Inference: During rendering
we can use the optimized sampler Sy« to produce adaptive sampling maps given the current rendered data X; and current sampling map S; along with the
next iteration budget By.1. The jointly trained denoiser D« can be used to denoise the adaptively sampled result from the renderer R.

maps. In a second step, DEP obtains sampling maps by normalizing
the predicted error image and re-scaling it to obtain a desired sam-
pling budget. DEP assumes that the future error reduction at each
pixel is proportional to its current denoising error. While intuitively
reasonable, this is only a heuristic that can lead to sub-optimal
solutions. For instance, this heuristic does not account for how addi-
tional samples in a pixel may affect the error in surrounding pixels.
Another drawback of DEP is that it only allows a one-way coupling
between the denoiser and sampler. That is, the sampler optimizes
its distributions for the denoiser, but the denoiser does not learn
to optimally denoise renderings with the sampling distributions
obtained from the sampler.

The second method closely related to our work is deep adap-
tive sampling and reconstruction (DASR) originally introduced by
Kuznetsov et al. [2018], which minimizes the expected future de-
noising error for a given budget and was originally designed for
interactive rendering. DASR has been extended to the temporal
domain by Hasselgren et al. [2020] and has also been used in the
two-stage denoising method of Xiang et al. [2021]. DASR and re-
lated methods train a sampler and a denoiser simultaneously in
an end-to-end fashion: Given a rendered noisy input, the sampler
produces a sampling map used to render a less noisy image that is
then denoised and compared against a ground-truth reference. Such
end-to-end training requires the rendering after sampling to be com-
puted on the fly, since it depends on the output of the sampler being
trained. The naive way to obtain those renderings is to include an
actual renderer in the training loop. However, this is typically too
expensive and poses challenges for the backpropagation step. DASR
circumvents the need to include a renderer in the training loop by
constructing the renderings after sampling from pre-computed data.
More specifically, sample count cascades in powers of 2 are generated
for every training example, which allows for efficient composition
of plausible renderings and for simple analytical computation of

the gradients for backpropagation. The drawback of this method
compared to DEP [Vogels et al. 2018] is that it requires significantly
more training data and longer training times due to excessive I/O
disk usage and limited GPU memory. We found these issues to be
amplified in the high-sample-count regimes targeted by our work.

While our method is similar to DASR, we sidestep the need to
store and load sample count cascades by synthesizing new render-
ings from analytic noise distributions. This makes our approach
significantly faster to train and less data reliant.

3 METHODOLOGY

In this section, we describe our method for predicting optimal sam-
pling maps for an iterative unbiased Monte Carlo renderer. We
provide an overview of our pipeline in Figure 2.

In this work, we assume images are progressively generated by
dividing the rendering process into T+1 consecutive iterations, each
refining the previous result by allocating additional samples that im-
prove the pixel estimates. Based on these estimates, we progressively
improve the distribution of the rendering budget over the image
plane. To each rendering iteration ¢t € [0, T] we assign a budget B;
that controls how many samples will be computed for all pixels P in
that iteration. A sampling map S; = {sp(t)} with 2peP Sp (t) = By
controls the specific number of path samples to compute in any pixel
p € P during iteration ¢. In the first iteration, samples are distributed
uniformly, i.e. according to s,(0) = Bo/|P| Vp € P, yielding the
initial pixel estimates. In all subsequent iterations, the sampling
maps S; are generated according to the procedure described in the
following subsections.
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Fig. 3. We compare the pixel means from the empirically rendered distribution R (top) with ones synthesized from our proposed gamma distribution Y),
(bottom) across low and high sample counts (left and middle column). For the central pixel in each inset we show the histograms of rendered pixel means
collected over 1024 independent renderings (blue) and our proposed analytic approximation based on the gamma distribution (red). Some of the distributions
at low sample count are poorly approximated by our gamma distribution (green inset), leading to different noise characteristics in the synthesized images.
However, at higher sample counts all distributions become Gaussian-like and can therefore be represented well by our approximation. The right-most column
shows how our denoiser discussed in Section 4.5 can properly denoise real and synthetic data.

3.1 Optimizing the Sampling Map
Starting from an iteration t, we define the optimal sampling map for
the next rendering iteration t + 1 as

St41(Xe, Bre1) = arg;ninEyNR(yw,ghXt) [L(D(Y);Xg)] (1)
subject to

Z sp=Br+1 and sp 2 0, Vp € P, @)
peP

where R(Y|S, S, X;) is the distribution of rendered outputs ob-
tained after adding samples to X; according to sampling map S,
S = {25‘:0 sp(j)} is the accumulated sampling map up to iteration
t, and L is a per-pixel loss aggregated over the image, with denoiser
D and ground-truth reference image X;.

Sampling from the distribution R(Y|S,S;, X;) to produce the
next iteration rendering Y can be performed by calculating?

Y= StXt +S YS
St +S8

where every pixel p in Yg is the average of s, newly rendered i.i.d.
samples. The solution to Equation (1) is the sampling map S that
minimizes the loss of the denoised rendering after the next iteration.
Since the values of the samples drawn in the next iteration ¢ + 1
are not known during the current iteration t, S is optimized in
expectation over the distribution of the next iteration’s renderings.
The method described by Kuznetsov et al. [2018] samples Equa-
tion (1) by assembling the next iteration rendering Y from pre-
computed sample count cascades with different seeds. This requires
additional data for every training example, which is expensive to

®)

'Throughout the text, all products and quotients on multidimensional arguments are
assumed to be element-wise.
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generate, store, and process. In the next section, we present our an-
alytic noise synthesis method, which does not have such additional
data requirements but still allows us to approximately sample and
minimize the loss (Equation (1)).

3.2 Analytic Noise Distribution Synthesis

Instead of composing pixel values for the next iteration from expen-
sive pre-rendered data as in DASR, we approximate the distribution
of the rendered mean values with an easy-to-sample analytic dis-
tribution that can directly produce a sampled mean value. With
the help of the ground-truth mean and variance of each pixel, and
under the assumption that the renderer is using i.i.d. samples, we
can analytically model the expected mean and variance of both the
rendered and analytic distributions as a function of sample count.
We can then directly generate as many samples as needed at each
pixel with the desired sample count.

We start by analyzing the behavior of the next iteration’s ex-
pected denoising error, EY~R(Y|S,S,,Xt) [L(Z)(Y), Xg)], in a more
constrained setup. Let S; be the cumulative samples distributed up
until iteration ¢, and let X; = [I;, F] be the rendered (noisy) data
composed of color I; and features F; at iteration t. We propose the
following theorem:

Theorem 1. For a kernel-based denoiser D with kernels that do
not depend on the specific values of future samples Ys, the following
equality holds when either the mean squared error or mean relative
squared error is used as the loss (i.e. L = MSE or £ = MRSE):

ERy1s.sox) [LDM).X)] =By(yis.5,x,) [L(DY).Xg)],

©
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Fig. 4. We assess the similarity of our distribution models with the empiri-
cally rendered distribution of sample means. To do so, we show Q-Q plots,
i.e. we plot the CDF of the empirical distribution against the CDF of the
modelled distribution. The distributions are over the luminance values of
the color means for various pixels across different sample counts. Green
shows the gamma distribution, blue the truncated normal distribution, and
red the log-normal distribution (See Section 3.3 and Section 5.4.) The closer
the Q-Q plots to the diagonal line, the more similar the distributions are to
the empirical one. We can see that the log-normal and gamma distribution
fit the empirical data reasonably well, even at lower sample counts.

where ¥(Y|S, 8, X;) is any distribution with the same mean and
variance as the true rendered distribution R(Y|S, St, X¢). That is,

By(v15.5.x) Y1 =Eryis.8,x,) [Y]:
Vvis.8.x) V1= Vryvis.5,x,) [Y]- ©)

Our proof, provided in appendix A.2, relies on a distribution-
agnostic bias-variance decomposition of the expected future error
(Equation (1)) when MSE is used as the loss. We show that when
samples are generated from a distribution with the same mean and
variance as the true rendered distribution, we recover a loss with
identical bias and variance.

Note that in Theorem 1 the denoising kernel is still allowed to
be a function of the current data X;, the current sampling map S,
the future sampling map S, and any other rendered statistics that
future renderings will have. As an example, the result of Theorem 1
is still valid for the optimal expected denoiser

P5(S. 8. X1) = argminBy g (y(s., x,) [L(Dy(Y), Xy)] -
¢

The optimal expected denoiser (pE is a function of the current values
(Sr, X;) and the next iteration’s sampling map S. However, for
Theorem 1 to hold, the denoiser cannot react to outliers (e.g. fireflies)
sampled in the future. Since the effect of outliers decreases with
the sample count, Theorem 1 holds in the limit as the sample count
increases to infinity in a more general setting.

Thus, under the aforementioned assumptions, we can exactly
solve the original problem in Equation (1) by replacing the rendered
samples with samples from any analytic distribution ¥(Y|S, S¢, X;)
whose first two moments match those of the rendering distribution.

For each pixel, we sample from a distribution with the same mean
and variance as the rendered pixel distribution. The expectation of
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the future rendered mean at each data channel (e.g. color, normal,
albedo) after allocating S additional samples can be analytically
computed from Equation (3) as

StXt + SXg

St +S8 (6)

Ererissix V1=
where Xj is the ground-truth. The variance of each channel is then
given by

. SEV[X:] + SV,
R(Y]S,80%,) TGE @)
where V[X,] is a numerical estimate of the variance of the current
data and Vi is the reference sample variance.

Note that the relation in Equation (4) is exact only when the loss
is MSE or MRSE, and for other losses it is only an approximation. We
will show that by judiciously choosing an approximate distribution
¥ that closely matches the rendering distribution, we can efficiently
produce high-quality results with a fraction of the data required by
competing methods.

3.3 Choice of Distribution

The noise distribution of rendered pixel mean values has been stud-
ied by Elek et. al [2019] in detail. They observe that the shapes
of rendered pixel mean distributions commonly resemble gamma
distributions.

In Figure 3 we provide a comparison between rendered pixel
mean values and a gamma distributions with corresponding statis-
tics, while in Figure 4 we provide Q-Q plots to illustrate the quality
of fit for several analytic distributions. We observe that despite some
discrepancies between the rendered and analytical distributions in
low sample count cases, these discrepancies vanish with higher sam-
ple counts. This can be justified by the central limit theorem, which
states that the averages of random variables converge to Gauss-
ian distributions. Indeed, the sample-averages from our analytic
distributions and rendered pixel means both converge to Gaussian
distributions with the same mean and variance. Furthermore, for the
gamma distribution it is easy and efficient to analytically compute
the distribution of the average of N such samples (Zf\] xi/N), as
this is also gamma distributed. This allows us to directly sample the
mean with only a single sample from the “mean distribution” instead
of sampling from the sample distribution N times and averaging.

Thus, to approximately sample Y in Equation (3), we generate
new samples from a gamma distribution and combine each sample
Yy ~ gamma (a(S), B(S)) with the current data:

St +S Y s Ot AL)-

The combined sample distribution (8) will have the same expected
mean (6) and variance (7) as the rendered data when the gamma
distribution has the ground truth value X as its mean and a vari-
ance of Vx_/S. The shape o and rate f parameters of a gamma
distribution with these properties can be computed as a function
of the new samples S, the ground truth value Xy, and the ground

ACM Trans. Graph., Vol. 41, No. 6, Article 259. Publication date: December 2022.
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Vx, = 0.9, we show the combined sample distribution from Equation (8) at
different sample counts S given a sampled mean of X; = 0.78 at S; = 16
samples. The solid red line shows the expected mean of the resulting distri-
bution (Equation (6)) and the various shades of yellow show the different
quantile ranges.
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In Figure 5 we visualize an example of the combined sample distri-
bution (8) generated by the aforementioned procedure.

We can now replace the rendering distribution R(Y|S, Sz, X;)
with ¥, (Y1S, St Xy), sample from it efficiently, and use it to opti-
mize Equation (1).

3.4 Jointly Optimizing Sampling and Denoising

So far we discussed how to optimize the sampling map S to minimize
the expected loss of the denoised rendering after the next iteration
for a given fixed pre-trained denoiser O (Equation (1)). However,
a lower loss can be achieved by optimizing the sampler S and the
denoiser D jointly. To that end, we model both as convolutional
neural networks parameterized by trainable parameters 6 and ¢,
respectively. We can optimize them by solving

argmin D Byt (V1808 XeBean) Sexe) [£(Dp(Y),Xg)] (10)
P eT

over alarge training set 7~ comprised of tuples 1; = (X, Sy, Xy, Br+1)
made up of rendered data, the corresponding sampling maps, ground-
truth data, and the desired sampling budget for the next iteration.
Note that Equation (10) is also subject to the constraints Equation (2).

4 IMPLEMENTATION

We implement our method in TensorFlow [Abadi et al. 2015], which
we utilize both for training and evaluation. In this section, we de-
scribe in detail the architectures of the denoising and sampling
networks, our global summary module, how to sample and back-
propagate through our analytic distributions, our datasets, and our
training procedure.

ACM Trans. Graph., Vol. 41, No. 6, Article 259. Publication date: December 2022.
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Fig. 6. Schematic representation of our 5-scale U-net architecture for sam-
pling map prediction. The network receives as input rendered data and
the desired sampling budget for the next iteration. The output is a scalar
value per pixel that is soft-maxed and then multiplied by the desired total
sampling budget. Each residual block consists of two 3x3 convolutions each
prefaced with a ReLU. At the coarsest scale, our global summary module
extracts statistics from the encoder’s output which we can provide as input
to the following decoder.

4.1 Denoiser and Sampler Architectures

We use a two-pass kernel-predicting denoiser with a U-net archi-
tecture, similar to KPAL-DS in Zhang et al. [2021] but with minor
changes to the architecture. By “two-pass”, we mean that we denoise
the specular image contribution separately from the diffuse image
contribution. We do not perform albedo division on the diffuse
channel as proposed in [Vogels et al. 2018].

We use a U-net with five scales instead of three. The convolution
bandwidth starts at 64 at the finest scale and doubles at each coarser
scale until a maximum of 256, which is repeated for the remaining
scales.? For the color input to the denoiser (I), we use either the
mean of the diffuse (I3) or specular (I;) channel, depending on the
pass; in both passes we use the albedo F, and the surface normal
Fy. Both albedo and color are log transformed, leading to the input
Xy = [log (1+1),log (1+F,), Fy] 7.

The sampler networks for all adaptive sampling methods com-
pared in this paper employ a U-net architecture similar to our de-
noiser, but predict a single scalar value per pixel instead of kernels.
We provide a schematic of the shared sampler architecture in Fig-
ure 6. We also visualize the addition of our global summary module,
which aims to provide context from the entire input image to our
sampling network (see Section 4.2).

To produce a sampling map, we normalize the output of the
sampler network ®y with a softmax and multiply it by the next
iteration’s budget Bs11:

Sg(Xt, St, Br+1) = Byyq softmax(®g(Xz, St, Brv1)),  (11)

where S; is the current accumulated sampling map and By =
Bi+1/|P| is the desired average pixel sample budget. This tells the
network how many samples will be distributed over the image on
average. Note that this is an important input feature, since changing
the iteration budget has a non-linear effect on the optimal sampling
map (Figure 11). After applying our transforms, the input to the

2That is, the bandwidths are 64, 128, 256, 256, 256.



sampler network is:

log (1+15)
log (1+1y)
~ log (1+F,)
X s
t Fa
log (1 +_St)
log (1 + Br+1)

where I; and I4 are the specular and diffuse components of the color
buffer.

4.2 Global Summary Module

One issue we observe while evaluating our implementation of DASR
[Kuznetsov et al. 2018] and our method (OURs) is the occasional
presence of halos in the predicted sampling maps (e.g. Figure 10).
We later demonstrate that this undesired behavior is due to the
narrow receptive field of the network and can be ameliorated by
providing context from distant regions.

Our solution to this problem utilizes our global summary (GS)
module as depicted in Figure 6. We place this module between
the encoder and decoder in the coarsest U-net scale. It computes
statistics on the output of the encoder, which, during inference, are
aggregated over the pixels of the entire input. We first compute the
mean and standard deviation on each channel of the output of the
coarsest scale encoder and concatenate the result along the channel
dimension. A 1x1 convolution then reduces the number of channels,
and we broadcast the result to the same image shape as the initial
input via nearest-neighbor upscaling. Finally, we concatenate the
global summary and encoder output and provide it as input to the
subsequent decoder.

Although this module produces statistics over pixels of finite
patches during training, we can apply it over the entire image during
inference. These extracted statistics provide valuable context to the
sampler about the input values outside of the network’s receptive
field and lead to higher quality sampling maps without the halo
artifacts we noted above. We provide an analysis of the benefits of
our global summary module in Section 5.4.

4.3 Analytic Noise Distributions

To compute the gradient of analytical distributions (Gaussian and
log-normal), we use the re-parameterization trick [Kingma and
Welling 2013]. For gamma distributed random variables, we found
that although their gradients can be computed with the implicit
re-parameterization [Figurnov et al. 2018], such gradients are often
unstable and result in divergence of the training. For better training
behavior, we adopt the finite difference technique introduced by
Kuznetsov et al. [2018] for DASR to estimate the gradient of the
rendered values with respect to the sampling map.

Our method relies on high-quality estimates of the per-pixel
sample variance Vx, . We estimate these quantities during the ren-
dering of our ground truth training data. We remove the remaining
noise from our reference sample variance estimates with a specially
trained kernel-based denoiser on our training dataset. This variance
denoiser follows a similar structure to our color denoiser, and we
train it by minimizing the SMAPE error [Vogels et al. 2018] between
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the denoised sample variance estimate of X;, namely S; - V(X;),
and the ground-truth variance Vi, .
The transformed input to our variance denoising network is then

[log (1+S; - V(X)) log (1+ Fa), Fn] .

Note that we only use denoised sample variance from reference
estimates during training of the sampler network to generate sam-
ples for color and feature channels. The RGB components of color
samples are often assumed to be correlated. Hence, to enforce the
correlation, we use the same seed when sampling the distribution
with the desired statistics for each channel of Yy in Equation (8).
Note that for the surface normal feature F,, we are using a Gaussian
distribution clipped between —1 and 1, since the gamma distribution
cannot produce negative values.

In Figure 13, we evaluate various sampler networks trained with
different analytic distributions. We observe that the choice of dis-
tribution is more important at lower sample counts and that the
gamma distribution yields the highest quality results. Experimen-
tally, we found that lowering the variance of the noise distribution
also lowers the variance of the gradients during backpropagation
and helps convergence, although this adds bias to the predicted
sampling map.

We settled on dividing the model variance by a factor of 5 as a
trade-off between improving training convergence and reducing
the quality of the results at low sample counts.

4.4 Dataset

As explained earlier, one of the tested baselines (DASR) requires
cascades of the pre-rendered images to generate future states. Hence,
we created two types of datasets: (1) a dataset with such cascades
used only by DASR, and (2) another dataset without cascades used
to train our method and the other baseline (DEP). For all methods,
we use the second dataset to train the denoisers. We ensured that
each method used an equal volume of data.

We have 17 base scenes, from which we generate training ex-
amples by perturbing the base scenes for the two datasets. The
perturbations modify the camera, lighting, and material parameters
of the base scenes and spawn new objects and area light sources
at random locations, scales, and orientations. We use 4000 images
for both datasets, resulting in approximately 800 gigabytes of data.
Unless stated otherwise, the dataset used by DASR contains about
200 scene perturbations, and the dataset used to train the denoiser
and our method contains about 800.

After generating the scene perturbations, we render them with
Mitsuba [Jakob 2010] at various sample count levels. We increase
the diversity of our data by rendering each scene perturbation four
times with different procedurally generated sampling maps with
an average sample count of 16, 64, 256 and 1024 samples per pixel.
The sampling maps were generated by combining Perlin noise im-
ages with different frequencies. We emphasize that spatial variation
in the sampling map of the training examples is crucial for both
the sampler and the denoiser to work well for iterative adaptive
sampling. Without it, both networks perform poorly in later sam-
pling iterations due to the sampling map S; having large spatial
variation. In the DASR training dataset, for each perturbation of
the base scene, we generate an additional cascade consisting of
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K €{0,1,2,---,13} independently rendered images with uniform
sampling at 2K samples per pixel. This cascade allows us to gener-
ate rendered data with up to 16000 samples. To increase the data
efficiency, we share the same cascade for all four training examples
of a scene perturbation. Despite this cascade-reuse optimization,
DASR still requires roughly four times more disk space per training
example compared to our method and DEP. Without increasing the
dataset size, using additional cascades will lower the number of
training examples for DASR, and we ultimately decided to prioritize
diversity in our training examples (i.e., more training examples from
a scene perturbation) over cascades.

We further augment our data during training by rotating the
patches, permuting the color channels and re-scaling the color chan-
nels by a random scale r and the corresponding variances by r2.
Finally, we render for every perturbation a reference image with
217 = 131072 samples per pixel.

Our evaluation set consists of 24 hand-crafted scenes, and we
perform quantitative comparisons with a variety of metrics in Sec-
tion 5. In this report we show qualitative results for only a small
subset of the test scenarios. The full evaluation set can be inspected
in our supplemental viewer.

4.5 Training

Our training is composed of two training phases. First we train the
denoiser network, and then we train the sampler network with the
pre-trained denoiser. For our method and DASR, the sampler and
denoiser networks are jointly trained end-to-end, whereas for DEP
the pre-trained denoiser is fixed and is not jointly trained. During
all phases, we extract patches of size 128 X 128 from each frame and
use mini-batches of size 4.

Denoiser Training. First, our five-scale kernel-based denoiser for
color is trained with the training loss proposed in DASR [Kuznetsov
et al. 2018],

5 '
1

where L is the Laplacian of Gaussian operator, and € = 0.01. As
in DASR, we use the log transform to control the range of colors,
x” = log(1 + x). We refer to this loss as logLoss in the following
sections. This loss penalizes the mismatch in the edges and can be
seen as a sort of perceptual loss. To train the variance denoiser, we
use the more robust Symmetric Mean Absolute Percentage Error
(SMAPE) [Vogels et al. 2018]. Our training schedule uses an Adam
optimizer with 2 million iterations at a learning rate of 2 X 107°.
This is followed by two fine-tuning phases of 250K iterations, with a
learning rate reduction factor of 10 in each phase. We provide more
details on the denoiser training in Section A.1.

’ 7
X —Xg
7
X te

L(x") = L(Xg")
Xy +e

ox'. Xy') = 0.5‘ . (12

1

Joint training of Sampler and Denoiser. Second, we train the sam-
pler and denoiser jointly. We use the pre-trained denoiser in the
previous step as the starting checkpoint for the denoiser. We fol-
low the same training schedule as for the denoiser with logLoss
as the error metric. This is analogous to the joint training step
in DASR [Kuznetsov et al. 2018]. However, there are significant
differences. First, we found that directly minimizing Equation (10)
degrades the performance of the denoiser on real sampled data since
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loss Equation (10) operates on synthesized data. Thus we chose to
optimize the following combined loss for our training-set example
[Xt, St, Xg, Br1]:

Byt (Y180(S1 XeBn).Sexe) [£L(Dp (V) Xg) + LDy (X0). Xg)] -

(13)
The first term is the loss from Equation (10) while the second term
ensures that the denoiser still performs well on real data (see Ap-
pendix Equation (14)). £ is the mean of the logLoss (Equation (12))
over all image pixels. Second, during refinement we update the
parameters of both networks in every iteration step instead of in
an alternating fashion as described in Kuznetsov et al. [2018]. We
did not observe any degradation by doing so and can reduce the
training time by lowering the total number of iterations.

5 RESULTS
5.1 Baselines

Our proposed method operates on single-frame inputs and works
with iterative sampling schedules and arbitrary sample counts. We
adapt two state-of-the-art neural adaptive sampling methods to this
use case and compare them to our method. Namely, we compare to
direct error prediction (DEP) [Vogels et al. 2018] and deep adaptive
sampling and reconstruction (DASR) [Kuznetsov et al. 2018]. Gen-
erally applicable non-neural adaptive sampling approaches such as
SURE-based methods [Li et al. 2012b] or more traditional variance-
based methods were not considered due to their not being competi-
tive with the state of the art [Kuznetsov et al. 2018].

The original authors’ implementations of DASR and DEP dif-
fer significantly from each other in terms of network architecture,
training data, training schedule, target use case and input features
provided to the networks. Comparing the original versions of these
methods directly with our method would thus make attribution
of any performance differences challenging. Since we are mainly
interested in studying the effect of incorporating analytic distribu-
tions, discussed in Section 3, we modified the competing methods
to use the same input features and network architectures as our
method. Further, we kept the training schedule as similar as possible
across the methods (Section 4.5) unless explicitly stated otherwise.
We verified that these changes did not degrade the performance of
either competing method relative to their original setup and even
observed improvements in the quality and performance of these
methods when compared to the authors’ original implementations.
We describe those changes in detail below.

DEP. A noteworthy change to DEP [Vogels et al. 2018] is that we
provide the auxiliary features as additional input to the algorithm
and do not provide the denoised color as input. We did not observe
any quality degradation as a result. We speculate that this is because
we use a U-net based neural network to model the sampler instead of
aless-expressive sequence of residual blocks as proposed in Section 5
of Vogels et al’s [2018] work. Despite the more complex sampler
network architecture, this change significantly reduces the inference
time of DEP, since no denoising pass is required for preparing the
input of the sampler network during rendering. In contrast to our
method and DASR, DEP does not perform joint training of the
denoiser and sampler. This also allows for faster training iterations



Table 1. This table compares the percentage of the sample budget required
by various sampling methods to reach the same quality as uniform sampling
(UNIFORM) in terms of various error metrics over our entire evaluation set.
We show the percentages with respect to three quality settings for UNIFORM,
roughly corresponding to 16spp (low), 64spp (mid), and 512spp (high). For
all methods, adaptive sampling starts at 8spp. Ours-GS denotes our method
with the global summary module, which yields the best overall improvement.

Relative budget to same average error as UNIFORM
Quality DEP DASR Ours  Ours-GS

low 75% 79% 64% 62%

log-loss mid 67% 69% 56% 52%
high 60% 61% 50% 45%

low 72% 76% 60% 58%

1-SSIM mid 60% 66% 50% 45%
high 52% 59% 44% 37%

low 68% 69% 62% 60%

MRSE mid 49% 51% 44% 40%
high 40% 43% 36% 31%

since the denoised images required to compute the loss can be
cached.

DASR. The authors of DASR [Kuznetsov et al. 2018] originally
applied their method to interactive setups. In their described use case,
DASR is only used to predict a sampling map with three samples
per pixel on average from an image rendered with exactly one
sample per pixel. Our method, by contrast, targets iterative adaptive
sampling schemes for offline rendering. To directly compare DASR
with our approach and our use case, DASR needs to be able to predict
sampling maps from already adaptively sampled images with a wide
range of sample counts that it may encounter during later rendering
iterations.

As explained in Section 4.4, to make this possible we trained DASR
on data with various, spatially varying sample counts. Recall that
unlike DEP and our method, DASR requires an additional cascade of
rendered images for every training example, which affects storage
requirements and training time.

Kuznetsov et al. [2018] proposed a three-step training scheme,
consisting of first training the denoiser in isolation, then training the
sampler and finally both the denoiser and sampler jointly. We found
that skipping the second step and training DASR with the two-step
training scheme described in Section 4.5 performed slightly better
in terms of denoising quality while also reducing training time. We
use this simpler training scheme for all our versions of DASR.

The training time for 2.8M iterations with DASR is 20 days, OURrs
is 12 days and DEP is 5 days. During inference, the running time
of the denoiser is about 0.8 seconds, and all the sampler networks
require about 0.4 seconds for an image of size 720 X 1280 on a
GeForce GTX 1080 Ti.

5.2 Quantitative Analysis

For this experiment, we train all methods as described in Section 4.5.

All methods use a comparable amount of training data in terms
of disk space to keep comparisons fair. In particular, this means
that DASR uses roughly a quarter of the training examples used
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by DEP and our method, since each training example for DASR
requires roughly four times the amount of data due to the sample
count cascades. To keep the variety of training examples compa-
rable across all methods, we reduced the number of perturbations
per training base scene (see Section 4.4) but did not change the
number of base scenes. We compare our method to DEP, DASR,
and uniform sampling in an iterative rendering setup. All sampling
methods are tested in the same progressive rendering setup, where
the initial iteration uniformly distributes 8 samples per pixel and
each subsequent iteration doubles the sample budget. That is, the
sample budget is given by B; = 2*3 at iteration ¢.

Table 1 shows a quantitative comparison under the aforemen-
tioned setup. This table shows the relative sampling budget required
by each sampling method to match the quality after denoising a uni-
formly sampled image. Specifically, we match the average denoising
error of a uniformly sampled image for three quality levels achieved
at roughly 16 (low), 64 (mid), and 512 (high) samples per pixel. We
replicate this comparison and match the average error of uniform
sampling with three different error metrics (log-loss, 1-SSIM and
MRSE). We track the denoising error and sampling budget at each
iteration in order to estimate for each method the budget at which
it matches a target denoising error.

Note that we compare our method with and without the global
summary module (Ours-GS and Ours). By comparing DASR and
our method without the global summary module (OURs), we observe
that most of the performance improvements can be attributed to
the use of our analytic distributions during training. Overall, we
measure additional but smaller improvements due to our global
summary module across all loss functions and quality levels. For
these equal dataset size comparisons we also observe that DASR is
not able to improve over error prediction (DEP) even though it uses
a more accurate problem formulation for the expected future error.
This can be attributed to the higher data requirement of DASR per
training example compared to both other methods. In order to keep
the dataset size the same, DASR is trained with fewer training exam-
ples, which adversely affects its resulting quality. This occurs despite
our efforts to improve the data efficiency of DASR by reusing the
same cascade for four different training examples. Note that DASR
was originally designed for low sample count scenarios requiring
only small cascades, which allows for higher data efficiency than
our setup. We also provide a comparison with larger dataset sizes in
Section 5.4. It is important to note that all adaptive sampling meth-
ods provide higher relative improvement over uniform sampling at
higher sample counts. Finally, when augmenting our method with
the global summary module (OUuRrs-GS) we observe improvement
across almost all metrics and configurations.

Finally, we compare the loss of the different methods during
training as a function of wall-clock time in Figure 7. We follow
the training scheme described in Section 4.5 for all methods except
DEP, for which we doubled the number of training iterations (5.6M
iterations). During the evaluation, we perform a single adaptive
sampling step that doubles the sample count of images rendered
with 256 uniformly distributed samples per pixel. We measure the
log-loss of every denoised image in the evaluation dataset after the
adaptive sampling step. During training, DEP can process more
batches per second compared to DASR or Ours, while DASR is the
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Fig. 7. Convergence plots comparing the evaluation error (logLoss) vs. train-
ing time (wall-clock) in high sample count scenarios. Each method receives
rendered data with an average of 256 samples per pixel and a budget of
256 samples. We trained all methods for 2.8M iterations except for DEP,
for which we used 5.6M iterations. (DEP can achieve double the speed of
our method, as it only trains the sampler and does not jointly train the
denoiser.) Ours and Ours-GS converge faster than DASR and reach a lower
error compared to all other methods.

Armadillo 128 Ref. Unirorm DEP DASR Ours-GS

Y

MRSE (full image) 8.31e-04 5.43e-04 6.05e-04 4.77e-04
1-SSIM (full image) 1.23e-02 9.64e-03 1.05e-02 8.52e-03

Fig. 8. Failure case: All compared adaptive sampling methods fail to detect
the thin shadow and end up distributing roughly half as many samples in the
inset region compared to uniform sampling. This leads to under-sampling
and failure to reconstruct the shadow. However, despite this local failure,
the error over the entire image is still significantly lower with the adaptive
sampling methods than with uniform sampling.

slowest. Note that DEP’s loss plateaus very quickly, indicating that
increasing the number of training iterations will not improve DEP
further. DASR converges more slowly but plateaus at a similar error
level. Both Ours and OuRrs-GS reach a significantly lower evaluation
loss and seem not to be fully converged at 2.8M iterations.

5.3 Qualitative Analysis

Next, we qualitatively compare the performance of the different sam-
pling methods. We reuse the same networks and sampling schemes
during rendering as in Section 5.2. In Figure 9 we compare our
method with and without the global summary module (Ours-GS
and Ours) to DEP, DASR and uniform sampling (UNIFORM) in an
iterative rendering setup. We show images at various samples per
pixel to cover a wider range of quality settings. Note that these
examples show only a small subset of our evaluation dataset used
in our quantitative analysis. In all shown examples either OURs
or OuRs-GS achieves the lowest MRSE and 1-SSIM error. Note that
the differences between Ours and OURs-GS are very subtle. This
is expected since OURs-GS should only yield benefits over Ours in
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specific types of scenes as discussed in Section 5.4 and showcased
in Figure 10.

In GrossYKITCHEN, we showcase a challenging scenario with
high noise at 16 samples per pixel. Despite the extreme amount of
noise in this case, our methods are able to reconstruct the shadow
of the knife and the darker top rim of the cupboard more faithfully
than the other methods.

In BOOKSHELF, we show another scene with excessive noise at 16
samples per pixel. Our methods are the only ones able to reconstruct
the text on the book spines and the highlight on the glossy flower
vase.

In MoDERNKITCHEN, we observe that all adaptive sampling meth-
ods improve over uniform sampling, with Ours-GS creating a higher
quality reconstruction of the metallic fruit basket. For the plant we
observe that our methods are best at reconstructing the textures on
the leaves in the center and are able to better separate the overlap-
ping fore- and background leaves.

In LiviNGRooM, our methods are the only ones that detect the
metal strip on the wall. In addition, the high frequency structure of
the plant is best preserved by Ours-GS.

Failure Cases. A general limitation of adaptive sampling—and
hence our approach—is that, by definition, it trades off quality in
one region for another based on the loss it tries to minimize. Hence,
the distribution of error in the final image with our approach is
highly dependent on the specific training loss. While our chosen
training loss (logLoss) leads to good results across many perceptive
and non-perceptive metrics, sometimes the chosen trade-offs were
not the ones that we believe would have led to the most perceptu-
ally pleasing results. We experimented with using perceptual error
metrics such as SSIM and FLIP [Andersson et al. 2020] as training
losses but found them to be less robust during training inconsistent
in general relative to logLoss. We note that perceptual quality is
highly subjective, and finding the ideal training loss would require
a dedicated user study. We considered this to be out of scope for
this project but believe it to be a interesting avenue for future work.

Another limitation is that the sampler might not be able to detect
fine details in the presence of excessive noise, leading to under-
sampling and ultimately failure to properly reconstruct some de-
tails. We mainly observed this in high variance regions with fine
structures that are not captured by any of the auxiliary features, e.g.
thin shadows or caustics. An example is shown in Figure 8. Note
that all compared adaptive sampling methods fail in this situation,
since they rely on the same input and, further, that the sampling
distribution still leads to a significant average error reduction over
the whole image, meaning that the failure happens in a few highly
localized regions only. One remedy to such situations might be to
input a richer set of auxiliary features to the network, such as visibil-
ity or caustic maps [Rousselle et al. 2013], to facilitate the detection
of such subtle image features. More generally, this poses the ques-
tion of what the best set of auxiliary features might be (similarly to
Zhang et al. [2022]).
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SamplingMap (OUrs-GS) Unirorm  DEP DASR Ours  OURs-GS Reference

GlossyKitchen 16

MRSE  9.04e-03 7.15e-03 7.61e-03 6.35e-03 6.24e-03
1-SSIM  4.30e-02 3.85e-02 4.07e-02 3.18e-02 3.26e-02

& = pa

Bookshelf 16

MRSE  4.14e-03 3.10e-03 3.20e-03 2.66e-03 2.67e-03
1-SSIM  3.94e-02 3.65e-02 3.94e-02 3.29e-02 3.20e-02

Moderr}Kitchen 32

MRSE  3.84e-03 2.07e-03 1.94e-03 1.83e-03 1.68e-03
1-SSIM  3.83e-02 3.17e-02 3.27e-02 3.04e-02 2.91e-02

LivingRoom 128

MRSE  1.72e-03 1.08e-03 1.17e-03 9.57e-04 9.12e-04
1-SSIM  1.59e-02 1.26e-02 1.34e-02 1.10e-02 1.06e-02

Fig. 9. Qualitative comparison of various adaptive sampling and reconstruction methods at equal sample counts. We compare uniform sampling (UNIFORM),
direct error prediction (DEP, [Vogels et al. 2018]) and deep adaptive sampling and reconstruction (DASR, [Kuznetsov et al. 2018]) to our proposed method
without and with the global summary module (Ours and Ours-GS). The noisy images on the left show the scene at the indicated sample count without
adaptive sampling or denoising. The numbers below the insets show the average mean relative square error (MSRE) and structural similarity index (1-SSIM)
over the entire images. For both metrics lower values are better.

5.4 Ablation Studies analytic models for training and the GS module—lead to substan-
tial improvements over the state-of-the-art in combination. We did
not test the effect of the GS module in isolation without analytic
distribution (i.e. DASR with a GS module) and leave this as future
work.

In the majority of scenes the GS module does not affect the quality
of our approach significantly (see Ours and OUrs-GS in Figure 9).
However, in some specific cases it can prevent our sampler from
wasting significant computation in the wrong regions. We demon-
strate this effect in Figure 10. In the sampling maps of the end-to-end

Effect of Global Summary Module. In Section 4.2, we propose the
addition of a global summary module to our architecture that ac-
cumulates valuable information from image regions outside of the
network’s receptive field. Table 1 shows that the GS module in
Ours-GS improves the budget to equal quality compared to OURrs.
As previously mentioned in Section 5.2 the main improvements of
our method over the baselines stem from using the analytic distri-
bution. This suggests that both of our contributions—namely the
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SamplingMaps

GlassOf Water 32

9}
2
&
j=)
O

OuRs Ours-GS Reference

MRSE 1.32e-02
1-SSIM 5.22e-02

1.65e-02
5.63e-02

1.89e-02 1.25e-02
5.80e-02 4.95e-02

Fig. 10. The original network architectures of our method (Ours) and DASR [Kuznetsov et al. 2018] have a limited receptive field, yielding sub-optimal
decisions based on local information. In this scene we observe relatively high sample allocation in the outer regions of the background at the cost of valuable
samples from the most difficult regions on the ice and glass. With the addition of our global summary module, our method is able to detect such cases and
save valuable samples for the most difficult image regions, yielding higher quality results.

methods without a GS module (DASR and OuRs), we observe that the
sampling densities increase as we move away from the challenging
central region. This leads to a perceived dark halo in the sampling
map around the glass of water. This behavior stems from the lack of
global knowledge in the networks. Due to a limited receptive field,
regions far away from each other in the image plane will not affect
each other’s predictions by the sampler. Together with the global
averaging (with soft-max in Equation (11)) this leads to a problem,
since local predictions from the sampler can have global effects in
the sampling map. If the network is oblivious to distant regions, this
can lead to simpler regions pulling away valuable samples from far
away, more difficult regions. This is especially problematic in situa-
tions in which highly localized parts of the image require orders of
magnitude more samples than the rest to converge. We note that
this is not a problem for DEP, which is trained to predict a globally
consistent error across images, as supported by the evidence in the
figure. Applying our GS module to OURs provides the network with
much-needed global context that results in more globally consistent
sampling densities, similar to DEP.

Different Sampling Budget. In Figure 11, we change the sampling

budget and compare the sampling maps that Ours and DEP produce.
The input to the networks is rendered with uniform sampling at 32
samples per pixel and the desired average per-pixel budget for the
next iteration B is either 32 or 480. The desired budget influences
the sampling densities with Ours while it does not affect DEP.
In the low-budget case, OURs focuses aggressively on high-error
regions. As we increase the budget B, Ours distributes samples
more uniformly, including low-error regions as well. Note that our
method is trained to minimize the expected denoising error after the
budget is spent, and that is why it adapts its sampling map. On the
other hand, DEP is distributing samples according to the predicted
denoising error of the current image, and its output does not change
significantly for different budgets. Note that DASR would exhibit a
similar behavior as OURs in this setup.

Effect of Joint Training. We examined the effect of the joint train-
ing step described in Section 4.5 on Ours. To do so, we trained OURs
with and without joint training. For the latter case, after training the
denoiser, we only trained the sampler and kept the denoiser fixed,
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akin to the second training step described for DEP in Section 5.1.
In Figure 12 we show side by side the evaluation losses of DEP
(blue) and both flavors of Ours (orange and green). The figure’s
caption provides details on how the loss was measured. All training
runs for this figure were stopped at 1M iterations. We clearly see
that Ours with joint training performs better than Ours without
joint training. On top of that, the plot shows that even without joint
training, OURs improves over DEP.

In an additional experiment, we compared the performance of
the jointly trained denoiser from OURs to a pre-trained denoiser
(as used by DEP and Ours without joint training) on uniformly
sampled data only. The intent of this experiment was to decouple
the change of performance of the denoiser due to joint training
from potential improvements due to better sampling distributions.
Somewhat surprisingly, we observed an improvement of roughly
five percent in in terms of 1-SSIM across varying sample counts
due to joint training. We see this as evidence that jointly training
the denoiser on synthetic data does not degrade the denoiser’s
performance on real data. In fact, these results could indicate that

Fig. 11. Given an image rendered uniformly with 32 spp, we compare the
normalized sampling maps predicted by DEP and OuRs for average per-pixel
budgets B = 32 and B = 480.
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Fig. 12. We compare Ours when only the sampler is trained with a pre-
trained denoiser (orange bar), and when the sampler and denoiser are
jointly trained starting from a pre-trained denoiser (green bar). We use
three evaluation data sets differing only in their sample counts (16, 64, and
256). The loss is measured after the sampler doubled the total sample count
and the image has been denoised. Even without joint training Ours-N]
outperforms DEP and with joint training Ours improves even further.

the synthetic data is actually valuable training data for a denoiser,
which might open new exciting applications.

Effect of Patch Size. To assess the effect of patch size on training,
we trained Ours with two different patch sizes, namely 128 x 128
and 256 X 256. Both use a batch-size of 4. When the two networks
trained with same number of iterations, the network trained with
256X 256 patch size yielded slightly better results. However, training
with 256 X 256 patch size almost quadruples the training time, and
training with 128 X 128 patch size yields better results when trained
for the same wall-clock time.

Choice of Analytic Distributions. We analyzed alternatives to our
proposed gamma distributions for generating future samples for our
method. We considered two additional distributions: The truncated
normal distribution and the log-normal distribution.

In Figure 13, we plot the evaluation losses during training for
Ours with the three considered distributions. We show three differ-
ent evaluation losses for scenes at three different sample counts; 16
(left figure), 64 (middle figure), and 256 (right figure). We see that
Ours trained with gamma distribution outperforms OuRs trained
with the other distributions across all spp levels. The difference is
however more pronounced for lower sample counts (left column).
The truncated normal distribution has the worst performance, the
reason being that the negative-valued samples are clipped to zero,
effectively biasing the mean of the distribution. At higher spp (mid-
dle and right figures), the difference is smaller. This agrees with
our observations in Figure 4 that the gamma and log-normal dis-
tributions nicely fit the rendered distributions, while the truncated
normal distributions does not at low sample counts.

Dataset Size. We compare OURs (without GS module) to DASR
when trained with differently sized training datasets. We create three
datasets; the smallest has 1K images (roughly 200 gigabytes), another
one with 4k images (roughly 800 gigabytes), and the biggest one has
14k images (roughly 3 terabytes). Recall that we keep dataset sizes
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Fig. 13. We train our method with color samples from various analytical
distributions (truncated normal, log-normal and gamma). The sampler net-
works double the sample counts on three data sets at different quality levels
(from left to right; 16spp, 64spp and 256spp). The largest error difference
is at low sample counts, where the gamma distribution yields the highest
accuracy, closely followed by the log-normal distribution.

consistent across all methods by adjusting the number of training
examples for DASR, as explained in Section 5.1.

In Figure 14 we compare the denoising error after rendering with
the sampling map predicted by each method. We provide as input
to all networks renderings with uniform sample counts (256spp in
Figure 14(a), and 16spp (left) and 256spp (right) in Figure 14(b)) and
double the budget for the next iteration. We see in Figure 14(a) that
Ougrs has a faster convergence than DASR regardless of the dataset
size.

Figure 14(b) shows that increasing the size of the dataset improves
both methods. But no matter the size of dataset, Ours performs
better than DASR, suggesting better data efficiency of our method.
Note that even with four times more data, DASR is not able to
outperform OuRrs. As discussed in Section 5.1, each training example
of DASR requires roughly four times more data than OuURs per
training iteration due to the need of sample count cascades. This
means a less diverse set of examples is available to train the sampler
and fine-tune the denoiser at equal dataset size. In addition, in
OuRrs, at each iteration of training we get new random future states
due to the randomness of sampling from the analytic distribution.
We speculate that this helps avoiding over-fitting to explicit noise
patterns in the available sample count cascades for DASR. We could
tackle this problem of DASR by using more random seeds and
images in the cascades, but that would further decrease the data
efficiency of the approach.

Evaluation at Different Sample Counts. In Figure 15 we evaluate
all methods at various sample counts. To enable comparisons at
low sample counts, we begin from uniformly sampled images with
2 samples per pixel, and we apply adaptive sampling iteratively
while doubling the budget at each iteration up to 128 samples. It is
important to note that all methods were trained with higher sam-
ple count input starting from 8 average samples per pixel. None of
the methods encountered training input with low sample averages
(e.g. 2 or 4 spp). We plot the average logLoss over our evaluation
set for each method relative to uniform sampling. The main obser-
vation is that all methods provide an improvement over uniform
sampling, even at low sample counts. Moreover, the improvement of
our method (Ours) compared to other methods becomes more no-
ticeable at higher sample counts. Note that at lower sample counts,
the expected gain from adaptive sampling is smaller than at higher

ACM Trans. Graph., Vol. 41, No. 6, Article 259. Publication date: December 2022.
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Fig. 14. Denoising error after rendering the images with the predicted sam-
pling maps as a function of the number of images in the training set. The
experiment shows the effect of the dataset size on the networks. For each
dataset size and input spp level, our method without the global summary
module (OuRrs) reaches a lower error than DASR. Interestingly, DASR re-
quires at least three to four times more data to match the quality of our
method. Note that in all other experiments, we used the middle dataset
configuration with roughly 4K images.
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Fig. 15. The rendering starts at 2spp uniformly. We continue the rendering
with adaptive sampling, each iteration doubling the sampling count. We
plot the 1-SSIM error relative to Uniform sampling.

sample counts. We believe this is due to the increased noise level
and thus less reliable predictions of our networks, and because our
networks were trained for higher sample count inputs. Further at
low sample counts, the proportion of samples distributed uniformly
during the warm up phase is higher, giving less margin for the
adaptive sampling methods to improve.
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Stability and Temporal Coherence. We analyze the stability of the
sampling maps and temporal coherency of denoised images. We
render two test images with 64 uniform samples per pixel, each with
a different seed. With a budget of 64 additional samples, we predict a
pair of sampling maps with each method. We compute the per-pixel
correlation coefficient for each sampling map pair and average it
over all pixels. DEP yields a value 0.98 and DASR and Ours-GS both
0.97. This indicates high resilience to noise for all methods. We can,
however, still observe some flickering between the denoised image
pairs in all methods for the chosen sample count. While flickering
diminishes with more samples, future work on using a temporal
denoiser, a temporal loss, and information from nearby frames could
improve the temporal coherency of all methods.

6 LIMITATIONS AND FUTURE WORK

Quasi-Monte Carlo Methods. Our model for future means and
variances of the mean (Equations (6) and (7)) implicitly assume that
the variance of our MC estimates reduces linearly with the number
of samples. While this is true for i.i.d. samples, this is in general
not true when quasi-Monte Carlo methods are used that change the
rate at which variance reduces. However, theoretically, our models
could be modified to account for this if we had a reliable way to
estimate the convergence rate per pixel.

Limitations of Analytic Distribution Models. While our distribu-
tions perform well in high-sample-count regimes due to the central
limit theorem, at low sample counts or for exotic multi-modal distri-
butions the limited expressiveness of our analytic distribution model
leads to higher approximation errors. Further, our models assume
perfect correlation in the noise of the different color channels and
features. This can lead to sub-optimal results in cases where this
assumption is violated. We leave the exploration of more complex
distribution models to future work.

Progressive Sampling Map Update. Similar to previous work on
adaptive sampling, we update the sampling map prediction every
time we double the sampling budget. As future work, it would be
interesting to investigate alternative update schedules.

7 CONCLUSION

We presented a neural approach for adaptive sampling aimed at high-
quality Monte Carlo renderings. Our method minimizes the future
denoising error by adaptively distributing a user-defined budget
to image regions that will benefit the most. Compared to previous
work that relies on heuristics based on the current image error (DEP,
[Vogels et al. 2018]), our method can account for the impact of new
samples on the future denoising error without requiring additional
training data.

We eliminate the additional data requirements of state-of-the-
art adaptive sampling methods [Hasselgren et al. 2020; Kuznetsov
et al. 2018] by efficiently utilizing analytic distributions to produce
rendered data during training. Our distributions are parameter-
ized by per-pixel statistics gathered during the rendering of the
ground-truth data. We demonstrate their effectiveness at generating
plausible renderings for joint training of high-quality adaptive sam-
pling and denoising networks. Moreover, we demonstrate that our



distributions converge to the ground-truth Monte Carlo distribution
in high-sample-count scenarios, leading to a lower approximation
error in such cases. We also propose the addition of a global sum-
mary module, which accumulates information from image regions
outside of the receptive field of our networks during inference. In
addition to the quality and data efficiency improvements over state-
of-the-art approaches [Hasselgren et al. 2020; Kuznetsov et al. 2018],
our method can be trained on the same data as neural denoisers.
This enables the reuse of legacy training datasets originally made for
denoisers, making it an attractive solution for production environ-
ments in which creating new extensive datasets can be prohibitive.

We believe that such analytic distributions are highly compact
and efficient representations of pixel value distributions stemming
from Monte Carlo rendering. We are excited to see how these can be
used in the future to accelerate the training of various data-driven
problems that rely on huge amounts of rendered data.
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A APPENDIX
A.1  Kernel-based denoising

In our first analysis, we will assume that the denoiser follows the
kernel-based convolutional network (KPCN) architecture [Bako
et al. 2017; Vogels et al. 2018]. KPCNs are neural networks K, with
trainable parameters ¢ that predict kernel weights for every pixel
p € P over a neighborhood of pixels ¢ € N'(p) from noisy rendering
outputs X = [I,F]. A pixel p € P of the denoised image is then
computed as Dy (X¢)p = quN(p) Ky (Xt)pqlq- The set of feature
channels F consists of specular, diffuse, albedo, and normals. The
parameters ¢ are optimized by minimizing the following loss over
a large training set 7~ consisting of image pairs with noisy and
ground-truth images (X;, Xy):

¢* = argmin Z

¢ Xy eT

[L(Dy(X:).Xg)]. (14)

where L is either SMAPE [Vogels et al. 2018] or logLoss defined in
Equation (12).

A.2  Proof of Theorem 1

We start the analysis by computing a bias-variance decomposition
of theloss Ey_g(y|s.5,.x,) [L(D(Y).Xy)].

LEmMA A.1. Under the assumptions of Theorem 1, when the mean
squared error (MSE) is used as the loss, we have

Ey R(v]8.85.x) [MSE(D(Y), Xg)] =

2, 2 Mg s Stq+sq Va

PP qeN(p)
Variance
5 2
S[’th,q + Sngq
2| 2 K s X
St,q + Sq p

PEP\qeN(p)

Bias

(15)

where Vg is the 1-sample variance of a pixel g, and q € N (p) rep-
resents the neighboring pixels within the denoising-kernel radius of
p. All expectations are taken by averaging over new samples Y ~
R(Y[S, S, Xy).
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Proor. We start with substituting the kernel denoising equation
in the expected loss

2
Z Kpq¥q - Xgp)
q

E [MSE(D(Y), Xy)| = ZE
P

2
Yyl) + (E[ ZquYq Xgp))

2
ERAIEDY ZKM]E Y,] - P)

p

—ZE Zqu(Yq
ZZZKIZDqE[(Yq
P q
+2)E : (E[Z KpqYq] —Xgp)
» q
=D D KigB [(Yq )2] +
p q P

In the last equality, we use the fact that E[Yy — E[Y4]] =0
The final rendered data Y is a mix of current data X; and next
rendered data Yg

ZKPq(Yq - E[Yq])
q

2
> KpqBlYg] —Xgp) .

q
(16)

_ StXt +S?S (17)
S[ +8 '
The expected value of Y is
StXt + SXgp
E[Y] = ———— (18)
St +8

that is because expectation is conditioned on the current data X;.
Plugging Equation (18) in the second term of Equation (16) yields
the bias term.

Substitute Equation (17) in E [(Yq - E[Yq] )2]
2 Sq
— - 1 — 2
E [(Yq E[Yq]) ] (St’q_'_sq)ZE[(Ynext,q ng) ]
___ S v (19)
(St,q + Sq)z ¢

where E[(Ynext,q — ng)z] is the variance of average of Sy samples,
that is V4/Sy. Plugging Equation (19) in the first term of Equa-
tion (16) yields the variance term of Equation (15) and concludes
the proof. O

Proor oF THEOREM 1. The proof of Theorem 1 follows directly
from the bias-variance decomposition in Lemma A.1. Note that in
Lemma A.1, we do not make any assumptions about the render-
ing distribution R. Hence, any other distribution that satisfies the
properties in Equation (5) results in the same bias-variance decom-
position. Note that MRSE loss can be written as

Ey_R(v]8,5,.X,) [MRSE(D(Y), Xg)]

By ®(v1s.8.%) [MSE(D(Y)stgp)

=2, e . @)
g

P P
from which the proof of Theorem 1 follows similar to the proof for
MSE. |
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