Efficient Neural Style Transfer for Volumetric Simulations

JOSHUA AURAND, DisneyResearch|Studios, Switzerland

RAPHAEL ORTIZ, DisneyResearch|Studios, Switzerland
SILVIA NAUER, DisneyResearch|Studios, Switzerland

VINICIUS C. AZEVEDO, DisneyResearch|Studios, Switzerland

Fig. 1. High Resolution dark-matter stylization. Volumetric Style Transfer computed in a high-resolution a simulation of 645 x 609 X 1553. Inference time

took only roughly one minute per frame.

Artistically controlling fluids has always been a challenging task. Recently,
volumetric Neural Style Transfer (NST) techniques have been used to artisti-
cally manipulate smoke simulation data with 2D images. In this work, we
revisit previous volumetric NST techniques for smoke, proposing a suite of
upgrades that enable stylizations that are significantly faster, simpler, more
controllable and less prone to artifacts. Moreover, the energy minimization
solved by previous methods is camera dependent. To avoid that, a compu-
tationally expensive iterative optimization performed for multiple views
sampled around the original simulation is needed, which can take up to sev-
eral minutes per frame. We propose a simple feed-forward neural network
architecture that is able to infer view-independent stylizations that are three
orders of the magnitude faster than its optimization-based counterpart.

CCS Concepts: « Computing methodologies — Physical simulation.

Additional Key Words and Phrases: machine learning, style transfer, smoke
simulation

ACM Reference Format:
Joshua Aurand, Raphael Ortiz, Silvia Nauer, and Vinicius C. Azevedo. 2022. Ef-
ficient Neural Style Transfer for Volumetric Simulations. ACM Trans. Graph.

Authors’ addresses: Joshua Aurand, DisneyResearch|Studios, Switzerland, joshua.
aurand@inf.ethz.ch; Raphael Ortiz, DisneyResearch|Studios, Switzerland, raphael.
ortiz@disneyresearch.com; Silvia Nauer, DisneyResearch|Studios, Switzerland, silvia.
nauer@bluewin.ch; Vinicius C. Azevedo, DisneyResearch|Studios, Switzerland, vinicius.
azevedo@disneyresearch.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2022/12-ART257 $15.00

https://doi.org/10.1145/3550454.3555517

41, 6, Article 257 (December 2022), 10 pages. https://doi.org/10.1145/3550454.
3555517

1 INTRODUCTION

Artistically manipulating physically-inspired simulations creates
a magic connection between two worlds that can simultaneously
express physical realism and an artistic expression conveying deeper
meaning. Such connection can be seen when the full power of the
dragon’s gem is released to vanquish the Druun in Raya and the
Last Dragon - the blast effect patterns took inspiration from Chladni
patterns, cymatics and the symmetry of mandalas [Collier 2022]. For
this case, the effects team employed a Neural Style Transfer (NST)
[Navarro and Rice 2021] method that enabled artistic control of
simulations with given input images. NST, in its original form [Gatys
et al. 2016], is a popular technique for artistically stylizing an image
while keeping its original content. It computes styles by extracting
statistic filter activations of Deep Convolutional Neural Networks
(CNNs) pre-trained for image classification tasks, providing a rich
range of styles that can model both artistic [Johnson et al. 2016] and
photo-realistic [Luan et al. 2017] style transfers.

Recent methods for computing volumetric Neural Style Transfer
extend image-based ones by manipulating 3D fluid data through
Eulerian (TNST) [Kim et al. 2019b] or Lagrangian (LNST) [Kim et al.
2020] frameworks. Both approaches rely on an iterative optimization
which minimizes differences between filter statistics of a given tar-
get style and the style of a rendered smoke frame. Given a specified
camera viewpoint, a differentiable volumetric renderer automati-
cally enables the transfer of gradients computed in image-space to
volumetric data. Temporally coherent smoke stylizations are ob-
tained either by subsequently aligning and smoothing stylization
velocity fields (TNST) [Kim et al. 2019a] or by smoothing particle

ACM Trans. Graph., Vol. 41, No. 6, Article 257. Publication date: December 2022.

https://doi.org/10.1145/3550454.3555517
https://doi.org/10.1145/3550454.3555517
https://doi.org/10.1145/3550454.3555517

257:2 « . Aurand, R. Ortiz, S. Nauer, V. C. Azevedo

corrections over multiple frames (LNST) [Kim et al. 2020]. While
the temporal coherency enforcement in LNST was more efficient
than its Eulerian counterpart, it required a costly conversion step
from smoke data to particles. This conversion is impractical for
production pipelines, specially when employing such effect at large
scales or when applying it to simulations that are continuously
changing through artistic direction. In this paper, we revisit the
original grid-based approach, proposing a suite of upgrades that
enable volumetric stylizations that are significantly faster, simpler,
more controllable and less prone to artifacts.

Firstly, we replaced TNST’s costly Mac-Cormack [Selle et al. 2008]
advection by a simpler linear mapping function. This simplification
did not impact the quality of the results, since the advection order
played a minor role on the quality of the stylizations. Crucial to
TNST’s slow performance is its inefficient temporal coherency step
that required recursive advections to align adjacent stylization ve-
locities. Thus, we replace TNST’s Gaussian window smoothing by
an Exponential Moving Average method that accumulates contribu-
tions from multiple frames, and therefore needs only one advection
step to enforce temporal coherency. These upgrades allow volumet-
ric stylizations without the need of a grid-to-particle conversion,
with a speed-up of more than two orders of magnitude when com-
pared with the original TNST approach.

Lastly, the energy minimization solved by previous methods is
camera dependent. To avoid that, a computationally expensive iter-
ative optimization performed for multiple views sampled around
the original simulation is needed, which can take up to several min-
utes per frame. We propose a simple feed-forward neural network
architecture that is able to infer view-independent stylizations that
are three orders of the magnitude faster than its optimization-based
counterpart. The summarized contributions of this paper include:

o A simplified and more efficient optimization formulation -
costly advection algorithms were replaced by simpler map-
ping functions without loss of quality;

e An improved temporal smoothing algorithm that improves
the transport-based algorithm running time by more than
two orders of magnitude;

e An extension of the original transport-based approach to
work directly with density values through a multiplicative
factor;

o An efficient feed-forward architecture that is able to stylize
volumetric simulations from arbitrary viewpoints.

2 RELATED WORK

Neural style transfer (NST) methods can be classified into online and
offline. The former class transfers the style by iteratively optimizing
an image, while the latter trains a generative Convolutional Neural
Network (CNN), computing the stylized result with a single forward
pass. In Section 3, we present an online approach that is highly
tailored for efficiency, requires a low number of iterations, and
therefore can stylize volumetric simulations with fast turnaround
times. The choice of parameters (iterations, learning rate, number
of octaves, activation layers) impacts the stylization tremendously,
and having an efficient optimization scheme allows artists to try dif-
ferent styles without having to train a neural network. In Section 4,

ACM Trans. Graph., Vol. 41, No. 6, Article 257. Publication date: December 2022.

we present an offline view-independent approach that efficiently
stylizes smoke simulations. We further discuss previous online and
offline neural style transfer works and review methods that employ
deep learning for fluid simulations.

Online Neural Style Transfer algorithms perform feature match-
ing by iteratively solving an unconstrained minimization problem
through back-propagation, modifying values independently to ap-
proximate second-order statistics of a given input. The seminal
work of Gatys et al. [2016] enabled transferring styles between im-
ages, and since then, NST has been a topic of active research. Li et
al. [2017a] proposed an efficient way to compute style statistics by
measuring discrepancies between two distributions, improving com-
putational efficiency over the traditional Gram matrix [Simonyan
and Zisserman 2014]. Further improvements include reduction of
instabilities and artifacts by histogram [Risser et al. 2017] and Lapla-
cian [Li et al. 2017b] regularizations, tailoring stylization for portrait
[Selim et al. 2016], and enabling long term correspondences in video
sequences [Ruder et al. 2018].

Outside the realm of images, mesh stylization was enabled by
differentiable renderers with approximate [Kato et al. 2018] and
analytic [Liu et al. 2018] derivatives. Further works explored mesh-
to-mesh [Yin et al. 2021] and text-to-mesh [Michel et al. 2021] styl-
izations. Handcrafted energy functions can be used to artistically
manipulate meshes without Neural Networks filter activations for
cubic [Liu and Jacobson 2019] and Gauss stylizations [Kohlbren-
ner et al. 2021]. Our work is built upon the transport-based NST
(TNST) [Kim et al. 2019b], which proposes an online technique to
stylize volumetric smoke data from example images. TNST supports
complex styles generated from single images or from network ac-
tivation maps, creating volumetric stylizations. Kim et al. [2020]
further extended this method for better temporal coherency and
improved efficiency by reformulating the problem into a Lagrangian
framework modelling fluids as sets of particles.

Offline Neural Style Transfer. Computing an unconstrained opti-
mization is computationally expensive, especially when considering
3D density fields. Thus, modern offline approaches train deep CNNs
to efficiently obtain stylized results, and Johnson et al. [2016] pro-
posed the first feed-forward approach for image stylization. Their
method introduced perceptual losses for capturing high-frequency
information, which are also widely employed in image super-reso-
lution [Zhu et al. 2017]. Offline approaches were further improved
by instance-normalization [Ulyanov et al. 2016], capturing styles
across distinct texture scales [Wang et al. 2016], and fine-control
over stroke brushes [Jing et al. 2018]. These architectures are lim-
ited to the style of a single image, and recent extensions focus on
multiple [Dumoulin et al. 2017] or arbitrary [Li et al. 2019] images
per-model stylization. Our work belongs to the same category as
we use a feed-forward network to achieve high performance styl-
izations of smoke data. For a thorough review of both online and
offline neural style transfer methods we refer to Jing et al. [2019].

Deep Learning for Fluids. Utilizing machine learning architectures
to regress fluid representations was first demonstrated by Ladicky
et al. [2015]. The authors approximated a Lagrangian fluid solver
by Regression Forests, achieving impressive efficiency in particle-
based fluid computations. CNN-based architectures were employed

in Eulerian-based solvers to substitute the pressure projection step
[Tompson et al. 2016; Yang et al. 2016], to synthesize flow simula-
tions from a set of reduced parameters [Kim et al. 2019b] and to
approximate steady-state velocity fields for predicting aerodynamic
forces [Umetani and Bickel 2018]. Low-resolution fluid simulations
are upsampled with patch [Chu and Thuerey 2017; Xie et al. 2018]
and dictionary-based [Bai et al. 2019, 2021] approaches to better
match their high-resolution counterparts. Differentiable simulation
pipelines [Holl et al. 2020; Hu et al. 2018, 2019; Schenck and Fox
2018] that can be automatically coupled with deep learning [Um et al.
2020] architectures are a recent trend due to their natural ability to
interface with computer vision. Deep learning was also employed to
reconstruct volumetric flows from images with transport constraints
and self-supervision [Franz et al. 2021], graph-based Lagrangian
fluid simulation [Li and Farimani 2022], super resolution of unsteady
data [Han and Wang 2022], interactive modelling of liquid [Yan et al.
2020] and smoke [Kim et al. 2022] with sketches, and for learning
meaningful controls [Chu et al. 2021]. For a more complete review
of Physics-based Deep Learning we refer to Thuerey et al. [2021].

3 AN EFFICIENT NEURAL STYLE TRANSFER FOR
VOLUMETRIC SIMULATIONS

In this Section, we review previous volumetric style transfer algo-
rithms [Kim et al. 2019a, 2020], highlighting differences with our
current approach, which is purely Eulerian. The combined proposed
changes increase the efficiency of the original TNST, while also
making the method simpler and more ready to be integrated into
production pipelines.

3.1 Simplified Transport by Linear Mapping

The Transport-Based Neural Style Transfer (TNST) [Kim et al. 2019a]
extends the original optimization-based NST algorithm [Gatys et al.
2016] to support volumetric smoke stylization. TNST proposes a
multi-level velocity-based approach that naturally follows the input
simulation, since the optimization is constrained to deform densi-
ties indirectly through transport. A velocity field v is iteratively
optimized for stylizing an input density d, minimizing the loss

¥ = arg min Z L(Re(T (d,v)),p), (1)
V. beo

where 7" is a transport function, R is a differentiable renderer, 0 is a
camera configuration from a set of camera views ©, and p denotes
user-defined parameters. To obtain volumetric 3D structures, the
optimization integrates multiple camera configurations sampled
within a specified range of settings, each optimizing the loss for an
individual camera viewpoint. The loss function L is the style loss
described by Kim et al. [2020].

TNST velocities v can be irrotational (v = V¢), incompressible
(v = V X ¢) or a mixture of both. While incompressibility is desired
for fluid simulations, it can be an overly restricting requirement
for optimization, particularly when coupled with higher order inte-
grators [Tang et al. 2021]. Since the optimizer is mostly concerned
with matching screen-space gradients that get back-propagated to
3D through the shape/transmittance function of the input smoke,
advection-order and incompressibility play a secondary role in styl-
ization quality. This observation allows us to make the method

Efficient Neural Style Transfer for Volumetric Simulations « 257:3

more efficient by simplifying the transport function to be a Semi-
Lagrangian method with a first-order Euler integrator. In practice,
the optimizer finds a linear velocity field to warp densities as

T(d,v)=I(dg+v), (2)

where 7 is an interpolation function and g represents grid density
locations, respectively. All the results presented in this paper adopt
trilinear interpolation. A comparison between different advection
schemes is shown in Figure 2: the linear mapping is 1.5 times faster
than Mac-Cormack advection used in [Kim et al. 2019a].

Fig. 2. Stylization results using distinct advection schemes: linear
mapping (left), Semi-Lagrangian with RK-2 (middle) and MacCormack with
RK-2 (right). All the stylizations were generated with an arbitrary velocity
field (no incompressible or irrotational velocity fields).

3.2 An Exponential Moving Average Algorithm For
Temporal Coherency

TNST optimizes Equation (1) iteratively per-frame due to memory
limitations. To enforce temporal coherency, neighboring stylization
velocities were first aligned by advection with the baseline simula-
tion. After alignment, these velocities were combined by Gaussian
smoothing with a compact kernel that spans w frames. While this
approach was able to create temporally coherent volumetric styliza-
tions with 2D input images, it had a crucial limitation: (w? — 1) /4
advections were required per single-frame iteration, which made
the method extremely inefficient. A Lagrangian version of the al-
gorithm (LNST) [Kim et al. 2020] greatly improves this limitation
by recasting the optimization of Equation (1) to a particle-based
framework as

2° =argmin)" L(Rg(Ipag(x°,1°), P), 3)
2 geo
where A° are per-particle attributes (e.g., density (p°) or positions
(x°)), and I is a transfer function that maps particle attributes into
a grid. LNST enforces temporal coherency by Gaussian smoothing
of particle attribute changes, which is simple and efficient since it
requires no alignment between adjacent frames.

LNST, however, requires a pre-processing step for converting grid-
based smoke simulations to particles. This conversion has to enforce
a minimal amount of well-distributed particles through the entire
simulation, which is crucial for both the efficiency of the stylization
and for guaranteeing a good reconstruction quality of the original

ACM Trans. Graph., Vol. 41, No. 6, Article 257. Publication date: December 2022.

257:4 « . Aurand, R. Ortiz, S. Nauer, V. C. Azevedo

grid-based smoke. The grid-to-particle conversion is implemented
through a multi-level optimization process that it is time consuming
and has several parameters that require careful tuning. It can be
specially burdensome for productions [Navarro and Rice 2021], since
it does not scale well for large simulations, generating considerable
amounts of data in storage-bound production environments.

These shortcomings inspired us to revisit the original Gauss-
ian smoothing temporal coherency algorithm. We experimentally
observed that contributions from adjacent frames exponentially
decrease as separation between frames increased. This inspired us
to employ an Exponential Moving Average (EMA) [Smith 1997]
algorithm, which consists of averaging accumulated contributions
by

‘A’; _ {Vo,) N t=0, (4)
(I-a)¥+aT (¥_ju-1)), t>0

where u; and V; are the simulation and stylization velocities at

the frame t, ¥* is the velocity after EMA smoothing, and « is a

weight that determines how temporally smooth the stylization will

be. Figure 3 shows the effect between using different EMA a weights

during the stylization process.

Fig. 3. Testing how different values of o affect EMA temporal co-
herency. While lower EMA values yield sharper results, resulting patterns
flicker through time (better represented on the accompanying video).

The biggest advantage of such an approach is that since it accu-
mulates contributions from multiple frames, it requires only one
advection step to enforce temporal smoothness of per-frame itera-
tions. Thus, EMA smoothing allows us to directly use TNST without
having to convert the grid into particles, while still being able to
maintain temporal coherency and computational efficiency. Fig-
ure 4 shows a comparison between TNST and LNST methods for
a smoke sequence that uses the same stylization parameters. We
used a density-based version of TNST (Section 3.3) to ensure a fair
comparison between both approaches.

One particular distinction of EMA is that each iteration of the
stylization can cycle through the entire frame range of the input
simulation. By swapping the time direction during the cycle, tempo-
ral coherency is implemented holistically, producing patterns that
will be affected both by the previous and next frames relative to
it. The algorithm that outlines the EMA smoothing coupled with a
velocity-based stylization is shown in Algorithm (1). Note that we
apply the optimization in multiple octaves to achieve multi-scale
features in the stylized result, similar to [Kim et al. 2019a].

ACM Trans. Graph., Vol. 41, No. 6, Article 257. Publication date: December 2022.

Algorithm 1: Velocity-based stylization with EMA

Data: Grid-based smoke densities d; and velocities u¢
Number of total iterations njzer

Number of frames nf,qmes

Set of cameras ©

Augmented rendering functions Ry for 8 € ©
Style-loss parameters p

Maximum velocity norm ||Vyax||

Result: Stylized densities d* stored on a grid

1 fbegin — 1 fena < N frames> Vr 0.0
2 fori < 1to njer do

3 for t « fpegin t0 fena do

4 Apply EMA Smoothing for ¥;:

5 Vi — (1-a)¥ + a7 (Vr-1,uz-1)

6 Clip velocity norms according to ||Vmax||

7 Compute density by df = 7 (d, ¥;)

8 Reset total loss Lo < 0

9 for 6 € © do

10 Render image Iy = Ry(d}) for camera 6
1 Accumulate style-loss Lior < Lior + L(Ig; p)
12 end

13 Compute gradient Vg, Lyor

14 Update velocity ¥ using Vg, Ltor

15 end

16 Swap(fbegim Jend)
17 end

3.3 Density-based Stylization and Constrained
Optimization

The Lagrangian Neural Style Transfer has two modes: optimizing
for densities carried by the particles (p°), or optimizing for the par-
ticles positions (x°). The majority of the results presented by the
previous LNST method used per-particle density attributes, which
were easier to tune, converged faster and had higher quality for
high-frequency styles. Naively implementing the same approach in
a grid-based framework will produce undesirable artifacts such as
time-incoherent sinks and sources which may hinder the conver-
gence of the optimization, especially with simulations that change
significantly over time.

We therefore introduce an adaptation to TNST that only allows
changes by modulating the input density with a scaling factor s

§ = argmin Z L(Rg(d-s)),p), s.t.3(x) € [SminsSmax] (5)
s 0cO

where [$min, Smax] is a bounded interval that constrains the mini-
mum and maximum values of the density modulation in a certain
grid voxel. The approach presented in the equation above is spe-
cially useful for view-independent stylizations (Section 4), or when
using images that have fine-detail structures. This approach also
allows us to better compare our method with EMA smoothing and
the results shown in LNST (Figure 4). The changes needed in the
Algorithm (1) to model the density-based stylization are minimal:

Fig. 4. A comparison between density-based Eulerian (left) and La-
grangian (right) algorithms.. Both approaches achieve similar results;
the Lagrangian approach takes about 9 minutes for stylizing 90 frames,
while the Eulerian one takes 12 minutes (the time to sample particles is not
included). Due to memory limitations of the Lagrangian approach a lower
resolution version of the billowy smoke was used.

the stylization velocity V; is replaced by a density modulation field
S¢, the transport 7 (d;, V) is replaced by d; - §; and scale factors $;
are clamped to the interval [smin, Smax]-

We notice that implementing hard-limiters for changes during
the optimization are also useful for the velocity-based version of
TNST (Equation (1)). In this case, however, velocity magnitudes are
constrained to be inside a parameter ||¥(x)|| < ¥max. In [Kim et al.
2019a], the authors used an expanded and blurred density mask that
modulates velocities in order to prevent the smoke to "leak-out”
from its original shape. While effective, this choice created temporal
coherency issues across the border of the smoke, due the smoke
changing abruptly in its boundary regions. The velocity magnitude
limiter is a more intuitive control, since artists can directly control
the amount of stylization and also how much the stylization will
expand the original simulation with a single parameter. Figure 5
show different values for the velocity magnitude, and their effects
on the stylized result.

[lVmax|l = 1.0 [lVmax|l =15

[lVmax|l = 0.5

Fig. 5. Comparison between different maximum velocity magnitude
values. Lower maximum velocity magnitudes limit the stylization, produc-
ing softer results while higher ones yield sharper outputs that can go beyond
the original smoke shape.

4 A FEED-FORWARD NETWORK FOR
VIEW-INDEPENDENT STYLIZATIONS

The volumetric stylization presented in the previous section is heav-
ily dependent on the camera configuration: it matches the style for

Efficient Neural Style Transfer for Volumetric Simulations « 257:5

a set of specified cameras. While this approach allows screen-space
control when using a single perspective camera, it fails to stylize for
views that were oblivious to the optimizer. One example of how the
camera setup impacts the volumetric stylization is shown in Figure 6
(top). To minimize view-dependent artifacts, the stylization can use
a larger set of cameras per-frame to be sampled around either a
pre-specified path [Kim et al. 2019a] or on a surface of the sphere
enclosing the object [Liu et al. 2018]. When the camera is sampled
on a sphere around the volume, we call it omniview camera distribu-
tion. Our omniview setup is created by first uniformly sampling on
a sphere, and optimizing its positions to follow a Poisson-disk dis-
tribution. The issue, though, is that makes the stylization inefficient,
up to several minutes per frame.

View angle: 0°

View angle: 45°

View angle: 90°

Fig. 6. View-dependent (top) and view-independent stylizations (bot-
tom). The top sequence shows a result obtained with a single-view optimiza-
tion; while the bottom sequence shows the result of applying the proposed
feed-forward neural network for view-independent stylization.

To overcome this limitation, we implemented a feed-forward
3D convolutional neural network that takes volumetric density as
input and outputs its stylized version. Our neural network trains
to minimize either Equation (1) (velocity-based) or Equation (3)
(density-based) in an unsupervised fashion, which avoids the need
to generate input-output pairs to train the network in a supervised
manner. We decided not to make a generalized architecture that can
infer stylizations for arbitrary images [Guo et al. 2021], because not
all images can produce style features that are consistent across mul-
tiple viewpoints. Furthermore, images that fail to represent the style
faithfully in 3D can wash-out stylization features into often-times
circular or isotropic patterns (Figure 11), which could create poten-
tial local minima to a neural network approach that takes arbitrary
images as input. What works well in practice is first to test if an
image is suitable for omniview stylization by running a specified
configuration on a single frame with the efficient Eulerian approach
described in the Section 3. This will be a good approximation for

ACM Trans. Graph., Vol. 41, No. 6, Article 257. Publication date: December 2022.

257:6 « J. Aurand, R. Ortiz, S. Nauer, V. C. Azevedo

what the artist will obtain once the network is finally trained. Re-
sults for the feed-forward omniview approach for a dark-matter
style image are shown in Figure 6 (bottom): notice that since this
style has an inherently volumetric nature to it, single-view features
closely match with the omniview stylization.

By limiting training to a single stylization configuration (e.g., in-
put image, size, etc), the network can remain lightweight. Figure 7
shows results of the network for training times that took between 2
and 18 hours. Notice that stylizing the full sequence for the same
example with the optimization approach takes about 12 hours, and
it cannot be reused for other examples. The training procedure takes
individual patches of the input training dataset, stylizing them inde-
pendently. Since the network is convolutional in its implementation,
it can be evaluated for a different resolution than it was originally
trained for — all results for the billowy smoke example (Figure 11)
used a single patch with a resolution of 250 X 500 X 250 during
inference, while the corresponding models used patch sizes of 1283
during training.

Loss
«n
&

0 40k 80k 120k 160k 200k
Number of iterations

Fig. 7. Training convergence vs quality of the feed-forward results.
As iterations progress and the loss gets lower, high-frequency details are
more visible on stylized results.

Our feed-forward network generalizes surprisingly well, extend-
ing to distributions that were not in the training dataset. Figure 8
shows results of the dark-matter style applied to the smokejet and
bunny datasets from [Kim et al. 2019a]. These datasets were gen-
erated with Mantaflow [Thuerey and Pfaff 2018], while the billowy
smoke sequence that was used to train many results in this paper
was generated with Houdini. Moreover, we do not explicitly enforce
temporal coherence for the feed-forward network (as opposed to
Xie et al. [Xie et al. 2018]). Instead we rely on the translational
equivariance and continuity of the architecture output to produce
temporally coherent stylizations. We hypothesize that since the loss
is trained on the style-space of the rendered volume, it is better able
to enforce filters that are transformation-invariant, generalizing
well for sequences that were not seen during training time.

5 RESULTS
5.1 Implementation

The proposed volumetric style transfer algorithm was implemented
in PyTorch [Paszke et al. 2019]. While we implemented both TNST
and LNST methods (Figure 4), our work focused on improving the
grid-based version of the volumetric style transfer, so the presented

ACM Trans. Graph., Vol. 41, No. 6, Article 257. Publication date: December 2022.

results do not include liquid stylizations. We used the smoke jet and
bunny datasets from Kim et al. [2019a] for comparisons with TNST,
which were simulated with mantaflow [Thuerey and Pfaff 2018]. The
billowy smoke dataset was simulated with Houdini’s Pyro FX billowy
smoke template applied to a unit sphere source, and all parameters,
apart from the grid-spacing which was set to 0.02, used default
values. All scenes were rendered with Houdini’s Mantra renderer.
The ADAM optimizer [Kingma and Ba 2014] was used both for the
direct optimization of smoke data and for training the feed-forward
network. Our network consists of a simple encoder-decoder pair,
and its architecture is shown in (Figure 9).

Differentiable Renderer. Our method builds upon the lightweight
differentiable renderer from TNST, which measures how much of a
light ray r gets transmitted through the smoke [Fong et al. 2017].
Transmittance T and image pixel grayscale values I;; are computed
according to

t(xr) = eV o d(rydr

Ymax (6)
I = /0 d(x)r(x,rij)d(x)

where r;; is a ray traced from the origin of the perspective camera
through pixel ij with maximum length rpax, d(x) is the density
at position x and y is the transmittance absorption factor. This
integral can be efficiently evaluated by ray-marching in the regular
grid, which amounts to simple back-to-front summations that can
conveniently be implemented in PyTorch.

Simply rendering the volumetric grid in its original form pro-
duces low-resolution images (e.g., a grid of 200 x 300 X 200 voxels
would typically generate an image of 200 X 300 pixels) that once fed
through the image classification Neural Network result in low qual-
ity stylization gradients. Therefore, we double the resolution of all
rendered images before the back-propagation step: this effectively
reduces the size of the generated patterns while also guaranteeing
high-quality stylization gradients. The size of the stylization pat-
terns is then controlled by resizing the style image input with a
user-specified scaling factor.

Regions of high density can be an issue for
the optimization as they result in contrastless,
uniformly white patches (inset image, right
half), which hinders the creation of stylization
patterns. We alleviate this problem by employ-
ing a differentiable approximation of histogram
equalization which improves contrast in flat im-
age regions (inset image, left half). Image pixels
are transformed according to

Lij = Lij - cdf (1))
where cdf (I;;) is the cumulative distribution function of the pixel
grayscale values I;;. We employ a cumulative distribution function
computation that ignores black background pixels. This approxi-
mation is close to proper histogram equalization since it is only
employed for regions with mostly bright pixels (i.e. I;; ~ 1).

Perspective Camera. TNST used a set of orthographic cameras
with jittered positions to create an illusion of a perspective cam-
era. For single view, we avoid jittering by adding a perspective

Efficient Neural Style Transfer for Volumetric Simulations « 257:7

Fig. 8. Generalization tests for the smoke jet and bunny sequences from [Kim et al. 2019a]. The feed-Forward network was only trained on patches of
the single billowy smoke sequence using the dark matter style, which demonstrate the generalization capabilities of the proposed approach.

4x

Conv3D

Fig. 9. Feed-forward network architecture for view-independent styl-
izations. We use a simple Encoder-Decoder architecture for our Feed-
Forward Network. The Encoder E consists of two strided convolutions,
a5 x5 x5 convolution followed by a 3 X 3 X 3 convolution, to decrease the
spatial resolution by a factor of 4. Once the original density is downsampled
we apply 4 3 X 3 X 3 convolutions with stride 1. The Decoder D first applies
two upsampling steps, trilinear upsampling and a 3 X 3 X 3 convolution,
followed by a final 3 X 3 X 3 convolution reducing the number of channels.
Every convolution, apart from the final one, is followed by a LeakyReLU
activation function with a negative slope of 0.01.

transformation into the rendering pipeline. Camera parameters are
automatically extracted from Houdini setups to ensure maximum
compatibility between the final rendered result and the internal
differentiable renderer employed for stylization. The perspective
transformation effectively re-samples a truncated pyramid grid from
the original simulation - the warped grid can then be directly used
for the transmittance computation by back-to-front summations.
However, this introduces a complication; contrary to orthographic
projection, the perspective rendering is depth dependent - a problem
that is exacerbated if the input is moving because it changes the

scale of the created patterns. To produce features scaled indepen-
dently from the camera, stylization is done relative to the original
smoke resolution, e.g., independent from zooming in or out. This
is accomplished by back-projecting the object bounding box from
camera to object space to measure its resolution. We resolve the
inherent depth ambiguity by estimating the height and width at the
bounding plane closest to the camera.

Performance comparison. The timings in this paper present a sig-
nificant speed-up when compared with the original transport-based
approach of Kim et al. [2019a]: some of our entire sequences of 120
frames took about 5 minutes, while previous work reported up to 13
minutes for a single frame. The aforementioned improvements in
the advection and temporal coherency algorithms (Section 3) do not
fully explain such a big performance improvement, and there are
other aspects that significantly impacted the performance. Our adap-
tive rendering coupled with a single perspective camera enabled us
to use smaller grid resolutions for rendering while also removing
redundancy - TNST needed 9 camera samples jittered around the
camera view, while we only need one perspective transformation.
Moreover, when reimplementing the pipeline into PyTorch, we op-
timized previous memory throughput by asynchronous GPU/CPU
calls that helped maintaining high GPU utilization. Due to these
improvements, a performance speed-up can also be measured for
our Lagrangian Neural Style Transfer implementation: it took 0.1
minutes per frame for the billowy smoke sequence, which employs a
grid resolution of 175 X 250 X 175 and particle count of 2M, against
0.45 minutes of a similar setting (Colored smoke) in [Kim et al. 2020].

ACM Trans. Graph., Vol. 41, No. 6, Article 257. Publication date: December 2022.

257:8 « J. Aurand, R. Ortiz, S. Nauer, V. C. Azevedo

Feed-Forward Training. Our training procedure extracts patches
out of the simulation data. For the billowy smoke sequence we used
patches with 1283 voxels. Data augmentation is performed by ran-
domly mirroring and rotating patches, which encourages the net-
work to produce stylizations for arbitrary viewpoints. Gradient
clipping is applied to avoid inconsistencies created by sparse vol-
ume patches that can not be meaningfully stylized according to the
target image. All of the results shown in Figure 11 were trained
for approximately 18 hours on a NVIDIA Tesla V100-SXM3. While
these GPUs have sufficient memory to utilize a batch size of up to 10,
a batch size of 1 lead to faster convergence and more stable training.
Visible results are already achieved after 2-4 hours of training, as
shown in Figure 7. The main advantage of increasing the training
time is the creation of sharper features, which can be especially
important for high-frequency style images. For the high-resolution
example (Figure 1), we used patch-sizes of 2563.

For most of the styles we sampled random orientations over the
full range of possible rotations, i.e. rotations around the x-axis in
the range of § € [-180°,180°] and rotations around the y-axis in
the range of ¢ € [—90°,90°], except for the fire and the foam styles.
Those styles can not be achieved from all possible views, hence
we limited the y-axis rotation to a range of ¢ € [-20°,20°]. Two
octaves were used during all view-independent examples to produce
features at different scales. Input densities are normalized to a range
of [0, 1] before being fed into the Feed-Forward network. We adopt
a OneCycle learning rate scheduler [Smith and Topin 2017] with
initial and maximal learning rates of 5x 107 and 1 x 10—4.

5.2 Neural style transfer results

Single-view Examples. Figure 10 displays various styles applied to
the billowy smoke dataset, with all examples employing the velocity-
based stylization (Equation (1)). For image-based stylizations, we
represented the input image style by computing the Gram matrices
of specified VGG-19 layers. A one-to-one matching with previous
implementations is not entirely possible, primarily because the net-
work weights from the classification networks used differ on their
TensorFlow and PyTorch versions. The running time and param-
eters used for these, along with other examples in the paper are
shown in Table (1). We highlight that the original TNST [Kim et al.
2019a] (Table 2) took up to 13 minutes for a single frame, while our
improved method takes less than 12 seconds per frame for stylizing
the smokejet dataset (Figure 2).

View-independent results. The inference of the proposed compact
feed-forward architecture is very efficient: 120 frames of the billowy
smoke sequence are stylized in only 2 minutes, including data I/O.
The neural network evaluation takes less memory than training,
so all feed-forward inferences were performed in a NVIDIA RTX
2080 TI with 12GB memory. Figure 11 shows stylizations computed
for the respective inset images. We notice that stylizing in a view-
independent setting sometimes yields less sharp results. Particularly,
the starry stylization (second row) exhibits larger patterns when
compared to the single-view setting (Figure 10), even though this
example used a reduced rotation range. Currently, our pipeline still
involves a trial-and-error process that requires the artist to test
parameters such as the camera sampling patterns, neural network

ACM Trans. Graph., Vol. 41, No. 6, Article 257. Publication date: December 2022.

layers and rendering transmittance. Fortunately, the optimization
pipeline is efficient enough to iterate over these stylization parame-
ters - the whole process takes under 5 minutes for a single-frame
of the billowy smoke. This is the process we used to find optimal
parameters for the dark-matter example.

High-resolution view-independent stylization. The high-resolution
result shown in Figure 1 does not entirely fit on the GPU for in-
ference. Therefore the volume is partitioned into tiles of size 2563
that are stylized individually. To produce spatially consistent results,
the tiles overlap with each other with a margin of 50 voxels and
only the smaller non-overlapping portion of the patches are kept.
Since our network is convolutional and continuous, this method
produces a seamless stitching of the stylized result. Tiling greatly
increases inference time, as I/O overhead is added: the full volume is
stored on the CPU and each tile has to be transferred to the GPU as
the feed-forward network is evaluated. Asynchronous transfers are
employed to allow the overlap of computation and communication.
This improves inference time but is not able to completely alleviate
the I/O bottleneck. The advantage of tiling is the new possibility of
stylizing large-resolution volumes on consumer grade GPUs. The
full stylization of 180 frames took 3 hours using a NVIDIA RTX 2080
TI Due to the memory requirements of the direct optimization it
would not be feasible to stylize the whole sequence in a temporal
coherent manner. Having a GPU with enough memory to simulta-
neously fit one frame of the full volume and the trained model onto
its dedicated memory would greatly improve the inference time.

6 CONCLUSIONS AND FUTURE WORK

In this paper we presented an efficient volumetric Neural Style
Transfer for smoke simulations. Our method is faster, simpler and
easier to integrate into production pipelines than previous works.
Our central contribution is to allow temporally coherent volumet-
ric stylizations without the need of an expensive particle-to-grid
conversion step. Moreover, we propose a simple and lightweight
architecture that is able to produce view-independent stylizations
for high-resolution datasets.

Our method, however, is not without its limitations. Firstly, the
generalization capabilities of the proposed view-independent feed-
forward network were not thoroughly tested for widely different
smoke datasets. An ablation study is needed in order to properly
evaluate the trade-off between network size and generalization. We
experimentally observed that the proposed feed-forward approach
has a bounded output: if the input was never seen, the output of
the network at least preserves the original content. Moreover, we
did not explicitly included a term for ensuring temporal coherency
in the feed-forward architecture. Our method might benefit from
such treatment, since only relying on the translational equivariance
of the learned convolutional filters might not be enough to enforce
temporal coherence.

There are further directions that can be explored for future work.
Understanding which type of images can be used for omniview
stylizations is an area that needs more exploring. For the results
we presented, the dark matter exemplar produced stylizations that
were able to be extended to 3D consistently. Other stylization images
(e.g., fire or spirals) shown in Figure 11 exhibit discrepancy between

Efficient Neural Style Transfer for Volumetric Simulations « 257:9

Fig. 10. Single-view stylization for various styles. These results demonstrate that our method still produces similar stylizations as previous approaches,
but with improved computational efficiency. Running times for these examples are shown in Table 1.

Fig. 11. Feed-forward neural network results for different styles. Images display results that are all trained for the billowy smoke sequence.

Table 1. Performance table (Timings measured on a NVIDIA RTX 2080 Tl). The time needed for generating particles of the billowy smoke scene (Fig. 4) was 32

minutes.
Scene # Frames Resolution # Octaves Method Iterations Learning rate Time (per figure panel)
High Resolution (Fig. 1) 180 645 X 609 X 1553 2 Feed-Forward - - 181m
Smoke Jet (Fig. 2) 120 200 X 300 x 200 3 velocity 20 2 21m/30m/31m
Billowy Smoke (Fig. 3) 120 350 X 500 X 350 3 velocity 20 0.2 43m each
Billowy Smoke (Fig. 4) 90 175 X 250 X 175 3 density 20 0.2 12m (TNST), 9m (LNST)
Billowy Smoke (Fig. 10) 120 350 X 500 X 350 2-3 velocity 20 2 45m (average)
Billowy Smoke (Fig. 11) 120 350 X 500 X 350 2-3 Feed-Forward - - 2m (average)
Smoke Jet (Fig. 8) 120 200 X 300 x 200 2 Feed-Forward - - 48s
Bunny (Fig. 8) 120 200 X 300 x 200 2 Feed-Forward - - 53s

features that are generated in single and the omniview setups. We
believe that our work will further spark the interest in artistically
stylizing volumetric simulations with 2D images.

REFERENCES

Kai Bai, Wei Li, Mathieu Desbrun, and Xiaopei Liu. 2019. Dynamic Upsampling of
Smoke through Dictionary-based Learning. (oct 2019). arXiv:1910.09166 http:

//arxiv.org/abs/1910.09166

Kai Bai, Chunhao Wang, Mathieu Desbrun, and Xiaopei Liu. 2021. Predicting high-
resolution turbulence details in space and time. ACM Transactions on Graphics 40, 6
(dec 2021), 1-16. https://doi.org/10.1145/3478513.3480492

Mengyu Chu and Nils Thuerey. 2017. Data-driven synthesis of smoke flows with
CNN-based feature descriptors. ACM Transactions on Graphics 36, 4 (jul 2017), 1-14.
https://doi.org/10.1145/3072959.3073643

Mengyu Chu, Nils Thuerey, Hans-Peter Seidel, Christian Theobalt, and Rhaleb Zayer.
2021. Learning meaningful controls for fluids. ACM Transactions on Graphics 40, 4
(aug 2021), 1-13. https://doi.org/10.1145/3450626.3459845

Graham Collier. 2022. Raya and the Last Dragon. https://www.sidefx.com/community/
raya-and-the-last-dragon/

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. 2017. A Learned Repre-
sentation For Artistic Style. ICLR (2017). https://arxiv.org/abs/1610.07629

Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production
volume rendering. In ACM SIGGRAPH 2017 Courses on - SSIGGRAPH °17. ACM Press,
New York, New York, USA, 1-79. https://doi.org/10.1145/3084873.3084907

ACM Trans. Graph., Vol. 41, No. 6, Article 257. Publication date: December 2022.

https://arxiv.org/abs/1910.09166
http://arxiv.org/abs/1910.09166
http://arxiv.org/abs/1910.09166
https://doi.org/10.1145/3478513.3480492
https://doi.org/10.1145/3072959.3073643
https://doi.org/10.1145/3450626.3459845
https://www.sidefx.com/community/raya-and-the-last-dragon/
https://www.sidefx.com/community/raya-and-the-last-dragon/
https://arxiv.org/abs/1610.07629
https://doi.org/10.1145/3084873.3084907

257:10 « J. Aurand, R. Ortiz, S. Nauer, V. C. Azevedo

Erik Franz, Barbara Solenthaler, and Nils Thuerey. 2021. Global Transport for Fluid
Reconstruction with Learned Self-Supervision. (apr 2021). arXiv:2104.06031 http:
//arxiv.org/abs/2104.06031

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image Style Transfer
Using Convolutional Neural Networks. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2414-2423. https://doi.org/10.1109/CVPR.
2016.265

Jie Guo, Mengtian Li, Zijing Zong, Yuntao Liu, Jingwu He, Yanwen Guo, and Ling Qi Yan.
2021. Volumetric appearance stylization with stylizing kernel prediction network.
ACM Transactions on Graphics (TOG) 40, 4 (jul 2021). https://doi.org/10.1145/
3450626.3459799

Jun Han and Chaoli Wang. 2022. TSR-VFD: Generating temporal super-resolution for
unsteady vector field data. Computers Graphics 103 (apr 2022), 168-179. https:
//doi.org/10.1016/j.cag.2022.02.001

Philipp Holl, Nils Thuerey, and Vladlen Koltun. 2020. Learning to Control PDEs with
Differentiable Physics. In International Conference on Learning Representations.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T.
Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2018. ChainQueen: A Real-
Time Differentiable Physical Simulator for Soft Robotics. (oct 2018). arXiv:1810.01054
http://arxiv.org/abs/1810.01054

Yuanming Hu, Xinxin Zhang, Ming Gao, and Chenfanfu Jiang. 2019. On hybrid
lagrangian-eulerian simulation methods: practical notes and high-performance
aspects. In ACM SIGGRAPH 2019 Courses. ACM, 16.

Yongcheng Jing, Yang Liu, Yezhou Yang, Zunlei Feng, Yizhou Yu, Dacheng Tao, and
Mingli Song. 2018. Stroke Controllable Fast Style Transfer with Adaptive Receptive
Fields. 244-260. https://doi.org/10.1007/978-3-030-01261-8_15

Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli Song.
2019. Neural Style Transfer: A Review. IEEE Transactions on Visualization and
Computer Graphics (2019), 1-1. https://doi.org/10.1109/TVCG.2019.2921336

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time
style transfer and super-resolution. In European Conference on Computer Vision.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3d mesh renderer.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
3907-3916.

Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. 2019a.
Transport-based neural style transfer for smoke simulations. ACM Transactions on
Graphics 38, 6 (dec 2019), 1-11. https://doi.org/10.1145/3355089.3356560

Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. 2020.
Lagrangian neural style transfer for fluids. ACM Transactions on Graphics 39, 4 (aug
2020). https://doi.org/10.1145/3386569.3392473

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and
Barbara Solenthaler. 2019b. Deep Fluids: A Generative Network for Parameterized
Fluid Simulations. Computer Graphics Forum (Proc. Eurographics) 38, 2 (2019).

Byungsoo Kim, Xingchang Huang, Laura Wuelfroth, Jingwei Tang, Guillaume Cor-
donnier, Markus Gross, and Barbara Solenthaler. 2022. Deep Reconstruction of 3D
Smoke Densities from Artist Sketches. Computer Graphics Forum (Proc. Eurographics)
41, 2 (2022).

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
https://doi.org/10.48550/ARXIV.1412.6980

M. Kohlbrenner, U. Finnendahl, T. Djuren, and M. Alexa. 2021. Gauss Stylization:
Interactive Artistic Mesh Modeling based on Preferred Surface Normals. Computer
Graphics Forum 40, 5 (aug 2021), 33-43. https://doi.org/10.1111/cgf.14355

L’ubor Ladicky, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross.
2015. Data-driven fluid simulations using regression forests. ACM Transactions on
Graphics 34, 6 (oct 2015), 1-9. https://doi.org/10.1145/2816795.2818129

Shaohua Li, Xinxing Xu, Ligiang Nie, and Tat-Seng Chua. 2017b. Laplacian-Steered
Neural Style Transfer. In Proceedings of the 2017 ACM on Multimedia Conference
- MM ’17. ACM Press, New York, New York, USA, 1716-1724. https://doi.org/10.
1145/3123266.3123425

Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang. 2019. Learning Linear Transfor-
mations for Fast Image and Video Style Transfer. In IEEE Conference on Computer
Vision and Pattern Recognition.

Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. 2017a. Demystifying Neural
Style Transfer. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI'17). AAAI Press, 2230-2236.

Zijie Li and Amir Barati Farimani. 2022. Graph neural network-accelerated Lagrangian
fluid simulation. Computers Graphics 103 (apr 2022), 201-211. https://doi.org/10.
1016/j.cag.2022.02.004

Hsueh-Ti Derek Liu and Alec Jacobson. 2019. Cubic Stylization. (oct 2019). https:
//doi.org/10.1145/3355089.3356495 arXiv:1910.02926

Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. 2018. Paparazzi: Surface Editing
by way of Multi-View Image Processing. ACM Transactions on Graphics (2018).

Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. 2017. Deep Photo Style
Transfer. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 6997-7005. https://doi.org/10.1109/CVPR.2017.740

ACM Trans. Graph., Vol. 41, No. 6, Article 257. Publication date: December 2022.

Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. 2021.
Text2Mesh: Text-Driven Neural Stylization for Meshes. (dec 2021). arXiv:2112.03221
http://arxiv.org/abs/2112.03221

Mike Navarro and Jacob Rice. 2021. Stylizing Volumes with Neural Networks. In ACM
SIGGRAPH 2021 Talks. ACM, New York, NY, USA, 1-2. https://doi.org/10.1145/
3450623.3464652

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
https://doi.org/10.48550/ARXIV.1912.01703

Eric Risser, Pierre Wilmot, and Connelly Barnes. 2017. Stable and Controllable Neu-
ral Texture Synthesis and Style Transfer Using Histogram Losses. (jan 2017).
arXiv:1701.08893 http://arxiv.org/abs/1701.08893

Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. 2018. Artistic Style Transfer for
Videos and Spherical Images. International Journal of Computer Vision 126, 11 (nov
2018), 1199-1219. https://doi.org/10.1007/s11263-018-1089-z

Connor Schenck and Dieter Fox. 2018. SPNets: Differentiable Fluid Dynamics for Deep
Neural Networks. (jun 2018). arXiv:1806.06094 http://arxiv.org/abs/1806.06094

Ahmed Selim, Mohamed Elgharib, and Linda Doyle. 2016. Painting style transfer for
head portraits using convolutional neural networks. ACM Transactions on Graphics
35, 4 (jul 2016), 1-18. https://doi.org/10.1145/2897824.2925968

Andrew Selle, Ronald Fedkiw, ByungMoon Kim, Yingjie Liu, and Jarek Rossignac. 2008.
An Unconditionally Stable MacCormack Method. Journal of Scientific Computing
35, 2-3 (jun 2008), 350-371. https://doi.org/10.1007/s10915-007-9166-4

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for
Large-Scale Image Recognition. (sep 2014). arXiv:1409.1556 http://arxiv.org/abs/
1409.1556

Leslie N. Smith and Nicholay Topin. 2017. Super-Convergence: Very Fast Training of
Neural Networks Using Large Learning Rates. https://doi.org/10.48550/ARXIV.
1708.07120

Steven W Smith. 1997. The Scientist and Engineer’s Guide to Digital Signal Processing.
California Technical Publishing, USA.

Jingwei Tang, Vinicius C. Azevedo, Guillaume Cordonnier, and Barbara Solenthaler.
2021. Honey, I Shrunk the Domain: Frequency-aware Force Field Reduction for
Efficient Fluids Optimization. Computer Graphics Forum 40, 2 (may 2021), 339-353.
https://doi.org/10.1111/cgf.142637

Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon
Um. 2021. Physics-based Deep Learning. (sep 2021). arXiv:2109.05237 http:
//arxiv.org/abs/2109.05237

Nils Thuerey and Tobias Pfaff. 2018. MantaFlow. http://mantaflow.com.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2016.
Accelerating Eulerian Fluid Simulation With Convolutional Networks. (jul 2016).
arXiv:1607.03597 http://arxiv.org/abs/1607.03597

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2016. Instance Normalization:
The Missing Ingredient for Fast Stylization. (jul 2016). arXiv:1607.08022 http:
//arxiv.org/abs/1607.08022

Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. 2020. Solver-in-the-
Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers.
(jun 2020). arXiv:2007.00016 http://arxiv.org/abs/2007.00016

Nobuyuki Umetani and Bernd Bickel. 2018. Learning three-dimensional flow for
interactive aerodynamic design. ACM Transactions on Graphics 37, 4 (jul 2018), 1-10.
https://doi.org/10.1145/3197517.3201325

Xin Wang, Geoffrey Oxholm, Da Zhang, and Yuan-Fang Wang. 2016. Multimodal
Transfer: A Hierarchical Deep Convolutional Neural Network for Fast Artistic Style
Transfer. (nov 2016). arXiv:1612.01895 http://arxiv.org/abs/1612.01895

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. tempoGAN: A Tempo-
rally Coherent, Volumetric GAN for Super-resolution Fluid Flow. arXiv preprint
arXiv:1801.09710 (jan 2018). arXiv:1801.09710 http://arxiv.org/abs/1801.09710

Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang. 2020. Interactive liquid splash
modeling by user sketches. ACM Transactions on Graphics 39, 6 (dec 2020), 1-13.
https://doi.org/10.1145/3414685.3417832

Cheng Yang, Xubo Yang, and Xiangyun Xiao. 2016. Data-driven projection method
in fluid simulation. Computer Animation and Virtual Worlds 27, 3-4 (may 2016),
415-424. https://doi.org/10.1002/cav.1695

Kangxue Yin, Jun Gao, Maria Shugrina, Sameh Khamis, and Sanja Fidler. 2021.
3DStyleNet: Creating 3D Shapes with Geometric and Texture Style Variations. (aug
2021). arXiv:2108.12958 http://arxiv.org/abs/2108.12958

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired Image-
to-Image Translation Using Cycle-Consistent Adversarial Networks. In 2017 IEEE
International Conference on Computer Vision (ICCV). IEEE, 2242-2251. https://doi.
org/10.1109/ICCV.2017.244

https://arxiv.org/abs/2104.06031
http://arxiv.org/abs/2104.06031
http://arxiv.org/abs/2104.06031
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.1145/3450626.3459799
https://doi.org/10.1145/3450626.3459799
https://doi.org/10.1016/j.cag.2022.02.001
https://doi.org/10.1016/j.cag.2022.02.001
https://arxiv.org/abs/1810.01054
http://arxiv.org/abs/1810.01054
https://doi.org/10.1007/978-3-030-01261-8_15
https://doi.org/10.1109/TVCG.2019.2921336
https://doi.org/10.1145/3355089.3356560
https://doi.org/10.1145/3386569.3392473
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1111/cgf.14355
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/3123266.3123425
https://doi.org/10.1145/3123266.3123425
https://doi.org/10.1016/j.cag.2022.02.004
https://doi.org/10.1016/j.cag.2022.02.004
https://doi.org/10.1145/3355089.3356495
https://doi.org/10.1145/3355089.3356495
https://arxiv.org/abs/1910.02926
https://doi.org/10.1109/CVPR.2017.740
https://arxiv.org/abs/2112.03221
http://arxiv.org/abs/2112.03221
https://doi.org/10.1145/3450623.3464652
https://doi.org/10.1145/3450623.3464652
https://doi.org/10.48550/ARXIV.1912.01703
https://arxiv.org/abs/1701.08893
http://arxiv.org/abs/1701.08893
https://doi.org/10.1007/s11263-018-1089-z
https://arxiv.org/abs/1806.06094
http://arxiv.org/abs/1806.06094
https://doi.org/10.1145/2897824.2925968
https://doi.org/10.1007/s10915-007-9166-4
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.48550/ARXIV.1708.07120
https://doi.org/10.48550/ARXIV.1708.07120
https://doi.org/10.1111/cgf.142637
https://arxiv.org/abs/2109.05237
http://arxiv.org/abs/2109.05237
http://arxiv.org/abs/2109.05237
https://arxiv.org/abs/1607.03597
http://arxiv.org/abs/1607.03597
https://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022
https://arxiv.org/abs/2007.00016
http://arxiv.org/abs/2007.00016
https://doi.org/10.1145/3197517.3201325
https://arxiv.org/abs/1612.01895
http://arxiv.org/abs/1612.01895
https://arxiv.org/abs/1801.09710
http://arxiv.org/abs/1801.09710
https://doi.org/10.1145/3414685.3417832
https://doi.org/10.1002/cav.1695
https://arxiv.org/abs/2108.12958
http://arxiv.org/abs/2108.12958
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244

	Abstract
	1 Introduction
	2 Related Work
	3 An Efficient Neural Style Transfer for Volumetric Simulations
	3.1 Simplified Transport by Linear Mapping
	3.2 An Exponential Moving Average Algorithm For Temporal Coherency
	3.3 Density-based Stylization and Constrained Optimization

	4 A Feed-Forward Network for View-Independent Stylizations
	5 Results
	5.1 Implementation
	5.2 Neural style transfer results

	6 Conclusions and Future Work
	References

