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Figure 1: Details of our encoder and decoder network architecture. We adapt the basic comb model of [NHSW20] with separate texture
and geometry decoders per identity to disentangle both domains. The encoder and the first part of the two decoders are shared across both

identities, to achieve an accurate expression transfer [NHSW20].

In this supplemental material we provide insights into the details
of our implementation, discuss the effect of illumination on our
results, present the findings of a user study, and show further face
swaps.

1. Implementation Details

Network Architecture Details Figure 1 shows the details of
our autoencoder network. We extend the basic comb model of
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[NHSW20] by two identity-specific decoders. One for learning the
dynamic face texture and one for learning the geometry deltas.

Face model Our method requires initializing the static geome-
try with a coarse face mesh S at the start of training. We also re-
quire image-specific pose parameters R and tq4, respectively the
rotation and translation, which are applied to the learned geome-
try before rendering. For both purposes we utilize the 3D Dense
Face Alignment (3DDFA) model with clipped parameters as in
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[GZL18,ZLLL17,GZY *20]. 3DDFA is based on the 3DMM from
Blanz et al. [BV03], which utilizes PCA to construct 3D faces.

The 3D face can be described as S = S + Ajq0q + AexpOexp,
where S is the mean shape, Ajq is the principal axis, and g
the shape parameter of the identity’s neutral expression from the
Basel Face Model [PKA*09]. The principal axis Aexp is trained
with the displacement between expression and neutral face scans
from FaceWarehouse [CWZ*14], where Oexp 1S the expression
parameter. In total 3DDFA provides the model parameters w =
[ﬁR,tgd,ocid,(xexp]T, which can be used to project the 3D face to
the 2D image plane: V(w) =f * Pr « R x S + t,4, where Pr is the
orthographic projection matrix and f the scale factor [ZLLL17]. To
fit the face model to an image, we downscale our normalized image
to 120 x 120, as this is the input size that 3DDFA requires. We ap-
ply parameter averaging to improve the face model fit as well as the
temporal stability. To achieve better temporal stability, we shift the
bounding box derived from the landmarks in the image plane by y
with strength B = 0.05, where v is the width of the bounding box,
and perform n = 9 face model fits per image [NHSW20,Ett20]. The
average parameters across all n fits produce the final face parame-
ters, which are saved for training. We also adjust the 3DDFA model
crop for face swapping purposes by removing the ears and neck. We
then close the mouth and nostrils in order to learn a texture for these
face parts. We take the UV coordinates for the Basel Face Model
from Bas et al. [BHS*17] and adjust them to our cropped mesh
via an affine transformation. Next, similar to [Ett20], we scale the
mouth region by a non-uniform multivariate Gaussian to learn a
more detailed representation of the teeth and lips.

2. Effect of Illumination

In the main document, we explained that the dataset from Naruniec
et. al. [NHSW20] contains sequences from 8 identities under 3 dif-
ferent lighting conditions, which we use to train networks to swap
between pairs of identities. Importantly, not all identities were cap-
tured under all lighting conditions, leading to two different swap
scenarios - one where the same illumination conditions for both the
source and target of a particular swap were seen by the network
during training, and a second more challenging scenario where the
source identity was not seen under the target illumination of a par-
ticular swap during training.

Our results indicate that swaps look visually more realistic when
the illumination condition of the target video was also available for
the source identity at training time, as compared to the second sce-
nario where the source identity lit by the target illumination was
unavailable. Some examples are shown in Figure 2. We believe this
limitation comes from the fact that illumination is not explicitly
modeled by our method, and thus the texture prediction network
must predict both albedo as well as shading for each frame. Explic-
itly incorporating illumination and allowing the texture network to
predict pure albedo could alleviate this issue, and would be an in-
teresting avenue for future work.

3. Perceptual User Study

We conducted a perceptual user study with 59 participants. The
goal of the study was to visualize dynamic (video) swap results

generated from our method along with four state of the art methods
[NHSW20, PGC*20, NKH19, CCNG20], and ask the user several
questions about the swap quality.

Each participant saw four video clips that show each of the meth-
ods performing face swaps on the same sequence. To create the four
test clips fairly, we randomly selected four 10-second subsequences
from all our available data. Figure 3 shows a screenshot from each
of the four clips in the user study. Participants saw the methods
in each video in random order. For evaluation, we asked for the
method that best retains the identity of the source person (identity),
the one that keeps the target lighting, pose and expression of the
target the best (attributes) and the one that displays the most real-
istic video swap (realism). The questions are similar to those asked
in [LBY™19] but applied to the video context. In total the partici-
pants had to answer 18 questions, and were asked to provide the top
three votes per question, in order to rank the top three performing
methods.

The results of the user study are summarized in Table 1, which
sums the total number of votes per category across all sub-
sequences. The summary table indicates that no single method out-
performs the others in all categories, and also that our 3D-based
approach performs comparably to existing 2D methods.

Method Identity Attributes Realism
Naruniec et al. [NHSW20] 181 458 208
DFL [PGC*20] 196 364 178
FSGAN [NKH19] 50 165 29
SimSwap [CCNG20] 103 464 162
Ours 178 319 131

Table 1: The total number of user votes per category across all
subsequences.

To further analyze the results we refer back to Figure 3, where
we see that three out of the four randomly picked sequences con-
tain source identity and target performance in different lighting
conditions (sequences 1, 2 and 4). Only one sequence (sequence
3) captures them in similar lighting conditions. As discussed in
the previous section, our method performs visually better in the
latter case. This is verified by the user study, where our method
ranks first in terms of user votes for both identity preservation
and realism on this illumination-consistent sequence, indicating
that our method has potential to perform very well when light-
ing conditions are the same. On the other three videos, Naruniec
et al. [NHSW20] followed by DeepFaceLab [PGC*20] rank best,
accumulating the most user votes across all questions. While the
magnitude of our study is perhaps not large enough to make defini-
tive conclusions (with only 4 test videos), we believe our method
shows large improvements over previous 3D-based face swapping
methods such as [NMT* 18], and is starting to close in on the per-
formance gap between 2D and 3D-based face swapping methods.
While related work such as [LBY *19] performs a user study on in-
dividual frames, our study is performed on dynamic video swaps,
in the hopes of achieving a more meaningful comparison.
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Figure 2: Swapping in different lighting condition makes it more difficult for our method to create photorealistic swaps (left), because a lot
of the light is baked into our texture. In contrast, when the lighting conditions of source identity and target performance are the same our

method performs very well (right).

4. Additional Face Swaps

We show further face swaps created by our method in Figure 4.
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Figure 3: Four screenshots from the four sequences in the user study, showing video results from all methods at the same time.
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Figure 4: Additional face swaps created by our method.
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