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Fig. 1. We present FRAN, a production-ready face re-aging network that can automatically re-age face images in video without identity loss and with great
artistic control. FRAN provides temporally stable results on videos depicting faces under free viewpoint, depth, motion, and illumination conditions. Here we
show several video frames of an individual (age 35), re-aged to 65 (top row) and 18 (bottom row).

Photorealistic digital re-aging of faces in video is becoming increasingly
common in entertainment and advertising. But the predominant 2D painting
workflow often requires frame-by-frame manual work that can take days
to accomplish, even by skilled artists. Although research on facial image re-
aging has attempted to automate and solve this problem, current techniques
are of little practical use as they typically suffer from facial identity loss,
poor resolution, and unstable results across subsequent video frames. In
this paper, we present the first practical, fully-automatic and production-
ready method for re-aging faces in video images. Our first key insight is in
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addressing the problem of collecting longitudinal training data for learning
to re-age faces over extended periods of time, a task that is nearly impossible
to accomplish for a large number of real people. We show how such a
longitudinal dataset can be constructed by leveraging the current state-of-
the-art in facial re-aging that, although failing on real images, does provide
photoreal re-aging results on synthetic faces. Our second key insight is
then to leverage such synthetic data and formulate facial re-aging as a
practical image-to-image translation task that can be performed by training
a well-understood U-Net architecture, without the need for more complex
network designs. We demonstrate how the simple U-Net, surprisingly, allows
us to advance the state of the art for re-aging real faces on video, with
unprecedented temporal stability and preservation of facial identity across
variable expressions, viewpoints, and lighting conditions. Finally, our new
face re-aging network (FRAN) incorporates simple and intuitive mechanisms
that provides artists with localized control and creative freedom to direct
and fine-tune the re-aging effect, a feature that is largely important in real
production pipelines and often overlooked in related research work.
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1 INTRODUCTION
The use of digitally aged or de-aged human characters in movie
productions and advertising has increased dramatically over the
last few years. Whether for making Robert De Niro younger in The
Irishman [2020], or David Beckham older in an ad campaign against
malaria [2020], digital re-aging is quickly becoming an essential
tool in every visual effects studio. The re-aging process typically
starts by filming a stand-in actor, who is often the target actor at
the present day age, and then digitally re-aging the performance
in post-production. In general, there are two different approaches
commonly used for CG digital re-aging. One approach follows the
traditional 3D facial modeling pipeline, where a complete 3D re-
aged face rig is modeled, animated and rendered to replace the
original likeness in the scene. Normally, this rendered rig is driven
by the captured performance of the stand-in actor, thus often re-
quiring a second complete 3D face rig of the present-day actor
(before re-aging) to facilitate performance retargeting. Due to the
overwhelming complexity and time required for this approach, it is
often only considered for hero characters that occupy a lot of screen
time, with many close-up shots. The second approach to digital
re-aging follows a purely 2D “painting” workflow. Given the filmed
performance of the present-day actor, the goal is to consistently
edit each video frame to synthetically change the actor’s age. While
this method offers less overall control than the full 3D approach
(e.g., large changes to viewpoint or scene illumination are typically
out of the question), there is a large benefit in the simplicity of the
method over the 3D approach, as there is no requirement to scan
the actor ahead of time and build a face rig, fit the face rig to new
performances, model a second re-aged face rig, transfer the per-
formance to the re-aged version and realistically render the result
back into the scene. Therefore, in-camera 2D digital re-aging has
grown in popularity and has been used on a number of blockbuster
film productions such as re-aging Michael Douglas in Ant-Man and
Samuel L. Jackson in Captain Marvel [2019].

While the 2Dworkflow for digital re-aging is the more straightfor-
ward one, it still comes at the cost of manually editing a performance
video, often frame by frame. For instance, when making an actor
older, each frame must integrate the expected growth of ears and
nose, the loss of muscle tone and the sagging of facial skin, the
addition of dynamic wrinkles, and even changes in skin pigmenta-
tion and blood flow. This process requires skilled artists to achieve
high-quality photorealistic and temporally coherent results, and
it can take several days to re-age even a single shot. In the fol-
lowing, we present a new automatic and controllable method for
high-resolution facial re-aging that is directly applicable to video
images and can be used to re-age complete shots, taking under just
five seconds per re-aged video frame.
In this work, we aim for a practical, production-ready solution

to digital face re-aging that complements traditional re-aging tech-
niques that already work well in film production. For example, when
shooting an actor who is meant to be playing a different age, produc-
tion teams use dedicated costumes and hairstyles to depict the new
age, with the goal of practical re-aging of every part of the character
except the face, which is to be re-aged digitally in post-production.
A concrete example is shown in Fig. 2, where a present-day actor

Present-Day Actor
(Age 46)

Present-Day Actor
(Costume & Hair at Age 20)

Re-Aged Actor (FRAN)
(Final Shot at Age 20)

Fig. 2. Our method targets the production use-case of practically re-aging
the costume and makeup (center) for a present day actor (left) and then
digitally re-aging only the face (right).

at age 46 is transformed to a character at age 20, through practical
hair and costume changes followed by digital face re-aging. This
highlights the goal of our method, which is to digitally re-age skin
regions in a way that blends naturally with the rest of the image.
Furthermore, in production settings, extreme re-aging to very young
ages (e.g., children) already has a well established, plausible solution
that is to cast stand-in actors of the target age, which also properly
addresses the large changes in size and appearance of the whole
body. Therefore, we formulate our digital re-aging solution without
such extreme changes, focusing only on adult ages. Within this
scope, we still face an extremely challenging problem that has no
single “ground truth" solution. Nevertheless, we present a method
for a tractable solution with high quality and degree of automation.
The main challenge researchers face when modeling the facial

aging process is in obtaining high-quality, longitudinal data of the
same individuals, from a variety of ethnicities, over a long period of
time spanning several years or decades; collecting such data for a
large number of real people is nearly impossible. For this reason, the
current state of the art in facial re-aging often leverages powerful
neural face models that are pre-trained on thousands of images
of different faces without any age pairing [Karras et al. 2020b].
The parameter space of the model is then traversed along highly
elaborate “semantic dimensions” to provide realistic edits such as
re-aging [Abdal et al. 2021; Alaluf et al. 2021; Härkönen et al. 2020;
Shen et al. 2020]. However, these re-aging approaches only perform
optimally on synthetic images with static, nearly frontal faces.When
re-aging real faces in video, we inevitably see a loss in the identity
features, since the neural model cannot always faithfully represent
the characteristic facial features that are unique to the person at
hand. Even with little or no re-aging at all, these models generate
inconsistent identities across subsequent video frames with different
expressions, viewpoints, and lighting (see supplemental video).

Here, we leverage these recent advances in neural face modeling
while taking a different approach for re-aging. Our first key insight is
to show that, although current state-of-the-art re-aging approaches
often fail on real face images, one can still leverage these methods
to generate rich longitudinal datasets comprised of fully synthetic
faces with photorealistic and consistent aging effects. In such a
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dataset, although the identity is synthetic it remains consistent
across ages. This solves the first main challenge that is to obtain
paired training images that depict the same person and background,
under the same viewpoint and lighting, and with the same facial
expression, differing only in age (see suplemental material).

As our second key contribution, we leverage this synthetic, paired
dataset and formulate facial re-aging as a practical image-to-image
translation task, for which a natural solution is to train a well-
understood U-Net architecture, without the need for more complex
network designs. We demonstrate how such simple U-Net, surpris-
ingly, helps us improve upon the state of the art for re-aging real
faces on video, providing unprecedented temporal stability and
preservation of facial identity across variable expressions, view-
points, and lighting conditions. Our new face re-aging network,
FRAN, allows for photorealistic and continuous face re-aging within
18 and 85 years of age, both forward and backwards in time. FRAN
also incorporates simple and intuitive mechanisms to provide artists
with localized control and creative freedom to direct and fine-tune
the re-aging effect, a feature that is largely important in real pro-
duction pipelines and often overlooked in related research work.
We believe FRAN has the potential to drastically reduce time

and costs involved in digital re-aging for the entertainment and
advertising industries. We demonstrate our method by automati-
cally re-aging both still images and videos of actor performance, in
comparison to the current state-of-the-art in re-aging.

2 RELATED WORK
The problem of modeling aging effects and age estimation from
face images has been studied for several years and for different
application domains, ranging from entertainment to advertisement,
medical, cosmetics, and forensics, to name a few. Here, we focus
on the more recent, closely related work on digital face re-aging,
and refer the reader to the excellent in-depth surveys on facial age
estimation [Angulu et al. 2018] and modeling [Georgopoulos et al.
2018; Ramanathan et al. 2009].
As mentioned, collecting paired longitudinal data of many real

people, over years or decades, is a nearly impossible task. Often,
the few available samples have to be partitioned into a small num-
ber of discrete age groups [Kemelmacher-Shlizerman et al. 2014],
which prevents the modeling of the continuous re-aging process.
This issue is further exacerbated by the fact that the most promis-
ing deep learning tools for building data-driven models are also
data-hungry, with a large number of tunable parameters. To help
alleviate this problem, considerable progress has been made in re-
cent years by deriving new strategies for training on unpaired data,
using self-supervision via cycle consistency [Zhu et al. 2017] or us-
ing adversarial training. Generative Adversarial Networks (GANs)
[Goodfellow et al. 2014] can be trained in an unsupervised way over
a very large corpus of nearly uncurated face images, to learn highly
expressive neural face models [Gal et al. 2021; Karras et al. 2020a,
2019, 2020b]. These models can synthesize an unlimited number
of photo-realistic human portraits with male and female faces of
different identities, ethnicities, ages, expressions, viewpoint, light-
ing, hair styles, accessories (glasses, ear rings) and backgrounds.
Today, end-consumer software such as Adobe Photoshop [Adobe

2022] and even smartphone applications such as FaceApp [2022]
can plausibly re-age a facial portrait in seconds. However, control
over this process is still very limited or even non-existent; often the
user is simply left with a few options for a handful of target ages.
Furthermore, it can be extremely challenging to re-age video se-
quences consistently, including facial performance dialog and head
pose changes, without temporal jitter and artifacts.
For low resolution re-aging, we also refer the reader to to the

survey by Shu et al. [2016]. In this context, Hsu et al. [2021] pro-
posed an adversarial approach where a discriminator guides the
re-aging network to mimic aging effects on the face, while two
other networks ensure that facial identity and other attributes are
retained during the age transformation. Fang et al. [2020] propose
a triple translation approach to learn common aging modalities
across multiple identities in an adversarial fashion. Liu et al. [2021]
use facial attributes that are common across identities to guide an
attribute-aware, attention-based generator to re-age the input; their
network is trained in an adversarial fashion alongside a wavelet-
based discriminator that determines if the output of the generator
corresponds to that of an individual with similar facial attributes. A
multi-task learning approach is taken by Huang et al. [2021] to learn
a unified embedding of age progression and facial identity; they
show how learning such a unified embedding of age and identity
can not only help in synthesizing re-aged images, but also in face
recognition. Duong et al. [2019] demonstrate aging results on short
videos using a deep reinforcement learning method. Despite the
great progress achieved in these works, the quality and resolution of
the re-aged images are still quite limited, with the output showing
artifacts and instability across video frames.
Among the techniques that handle high resolution images, Li et

al. [2021] approach re-aging by embedding an age estimator into
a generative network and by training both the age estimator and
the generator simultaneously. Their method supports high resolu-
tion and continuous re-aging that also preserves the input identity.
Similarly, Yao et al. [2021] propose a network for continuous high-
resolution re-aging that is conditioned by the target age using an age
modulation layer. This network is trained in an adversarial fashion
with a cycle consistency loss and an age classifier. Makhmudkhu-
jaev et al. [2021] also use an age modulation layer coupled with an
encoder-decoder architecture. He et al. [2021] explicitly model the
variation in shape, texture and identity in their lifespan face syn-
thesis method. Unfortunately, the applicability of these methods to
video sequences is not demonstrated. Like us, Despois et al. [2020]
also explore convolutional image-to-image translation to provide
localized control on re-aging: the input image is presented with
an associated map of aging scores that modulate image decoding
via SPADE blocks [Park et al. 2019]. Instead of longitudinal data,
their dataset was captured in studio and comprises 6000 frontal,
neutral faces of different ages, genders and ethnicities, with manu-
ally labeled aging scores. Training is done using a cycle-consistency
loss on re-aging, and an adversarial loss for photo-realism. This
method performs well in preserving subject identity, but results are
only shown for static, nearly frontal faces, in studio conditions. In
comparison, our method provides similar level of control while also
generalizing well across different facial expressions, viewpoints and
lighting conditions, with temporal consistency across video frames.
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Recent re-aging research has also turned to exploring the latent
space of powerful pre-trained face GANs. Leveraging the semantics
learned by the neural model, this body of research work seeks to
re-age a face, represented as a particular latent point, either by
interpolating an age code explicitly or by traversing the latent space
along a linear or non-linear path (a “semantic dimension”) as steered
by a pre-trained age classifier [Abdal et al. 2021; Alaluf et al. 2021;
Antipov et al. 2017; Härkönen et al. 2020; Or-El et al. 2020; Shen
et al. 2020; Yang et al. 2021]. This strategy has provided realistic
re-aging for synthetic faces that are perfectly represented in the latent
space. Typically, for real face images, a loss in identity is observed
when the real image is encoded into the GAN’s latent space and
then “filtered” through the neural generator [Tov et al. 2021]. That
is, although these models can generate an unlimited number of
realistic faces that do not exist in reality, they cannot accurately
represent all the particular skin detail and identity features that are
unique to a particular real individual not seen during training. Even
when the model is optimized further to overfit the new face [Tzaban
et al. 2022], re-aging performance may be lost. Another drawback of
latent-space traversal methods is that control over re-aging is very
limited, lacking any form of localized edits on the different areas of
the re-aged face. Furthermore, temporal continuity when re-aging
video sequences is hard to achieve. Closer in spirit to our approach,
Viazovetsky et al. [2020] investigate speeding up such semantic edits
in the latent space by training a feed-forward “student” network
for similar tasks. They demonstrate results on different operations
but do not properly evaluate re-aging in particular, nor consider
identity preservation, consistency across video frames, and level of
control. In the following, we demonstrate how our longitudinal data
sampling and U-Net design allow us to derive a production-ready
approach that advances the state of the art for re-aging real faces
on video, with unprecedented performance and artistic control.

3 METHOD
This section presents our identity-preserving, controllable re-aging
approach for video images depicting faces in arbitrary expressions,
viewpoints, and lighting. We formulate the problem as image-to-
image translation with a fully convolutional neural network ar-
chitecture with skip links. Our network is trained in a supervised
fashion on a large number of face image pairs showing the same
synthetic and photorealistic person, labeled with the corresponding
source and target ages. The first key component of our solution
is thus to derive an effective strategy for bypassing the seemingly
impossible task of acquiring annotated, longitudinal image datasets
depicting a variety of identities, ages, and ethnicities in different
viewpoints (Section 3.1). A second key factor is in designing an
appropriate parameter space for our solutions, to allow for identity
preservation over changing expressions and viewpoints, with good
consistency across video frames, as detailed in Section 3.2.

3.1 Synthesizing high-quality, longitudinal aging data
To train our re-aging network in a simple and fully supervised fash-
ion, our goal here is to generate a large number of input-output
image pairs, where the images in each pair depict the same (arbi-
trary) identity, with the same facial expression, pose, lighting, and

background, but at two different and known ages. Clearly, this task
is impossible to accomplish if the dataset must contain real people.
We thus seek to achieve this goal using photorealisc synthetic faces,
taking inspiration in recent work that leverages semantic manip-
ulations within the latent space of powerful neural face models
pre-trained on thousands of real faces [Abdal et al. 2021; Alaluf
et al. 2021; Härkönen et al. 2020; Shen et al. 2020]. As we demon-
strate in Section 4, manipulations within these models often perform
poorly on real faces from video since real-world faces have to be
projected into the latent space, an operation that is only approxi-
mate, and leads to identity drift; even when the model is further
optimized (fine tuned) to overfit newly given images [Tzaban et al.
2022], temporal artifacts are still clearly noticeable, especially across
viewpoints, even with little to no re-aging.

Our first key insight is that these methods above are nevertheless
powerful re-aging solutions for synthetic faces that are already per-
fectly represented within the model’s latent space. And the re-aged
synthetic faces do seem to capture the semantics of the aging process
nearly as convincingly as real training images would. We highlight
that this property makes such latent space traversal methods suit-
able for synthesizing a high-quality, longitudinal aging dataset on
which we can train a simpler network for re-aging real faces. Given
this insight, and using any of the traversal approaches above, we
can consider an arbitrary point in latent space, representing a par-
ticular identity and age, and then begin traversing the latent space
along a path that is steered by a pre-trained age regressor, under
the combined influence of identity consistency constraints. Follow-
ing this traversal both forwards and backwards in time generates
a continuous age progression for the particular identity at hand,
leading to a large number of image pairs for training. This process
can be repeated for a virtually unlimited number of identities, which
can also be sampled under different viewpoints, facial expressions,
lighting conditions, and backgrounds (see supplemental video).
Among the many methods recently proposed to carry out such

guided latent space traversal, here we chose to sample our training
dataset using the recent method for Style-based Age Manipulation
(SAM) by Alaluf et al. [2021]. The main reason for this choice is
the method’s superior ability to follow a non-linear path in latent
space that alters age exclusively, with little side-effect on the other
facial attributes, thus matching our goal of maximizing the quality
of digital re-aging on facial skin areas. Following the strategy above,
we have created a training dataset for face re-aging comprising 2000
identities, each with 14 different ages in the range of 18 to 85 years,
thus providing a total of 196 training pairs per sampled identity (in-
cluding same age pairs). This solves the first main challenge, which
is to acquire high-quality training data that would be impossible
to capture from real people. Since data is extremely important in
deep learning, this achievement goes a long way into solving our
re-aging problem, by enabling a simple solution as described next.

3.2 High-quality Face Re-Aging Network (FRAN)
We now turn back to our main goal of identity-preserving, high-
resolution face re-aging. This section presents our fully convolu-
tional, controllable image-to-image translation solution that is su-
pervised by the synthetic dataset described in Section 3.1. We refer
to our network as the face re-aging network, FRAN.
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input image, input age, target age generated image, target agepredicted aging delta

BiSeNetV2

FRAN

Conv2d (3x3), BatchNorm2d, ReLU MaxBlurPool2D 2x BlurUpsample 2x Skip connection

real/fake ?

LPIPS

L1

Fig. 3. The U-Net architecture of the proposed Face Re-Aging Network (FRAN) takes as input a 5-channel tensor with the RGB image to be re-aged and two
additional channels indicating the current and target age of each pixel. Optionally, a pre-trained face segmentation network (BiSeNetV2 [Yu et al. 2021]) can
be used to limit re-aging to skin areas and to set localized input and output age values. We use blur-pooling [Zhang 2019] in both FRAN and the discriminator
to accommodate small shifts in the positions of wrinkles and other high frequency details.

Given the image-to-image translation nature of our task, we adopt
the familiar and proven U-Net architecture design for FRAN and
make small adjustments for translation quality and re-aging control.
FRAN takes as input a 5-channel tensor comprising the RGB image
to be re-aged and two single-channel age maps that specify the input
and output age for each image pixel (e.g., two uniform channels
with two different ages). The U-Net then predicts per-pixel RGB
deltas (offsets) that are added on top of the input image to create the
final re-aged result (Fig. 3). FRAN is trained using paired, synthetic
data with L1, perceptual, and adversarial losses as detailed below.

The two spatial age maps that are provided as input to FRAN are
single channel images at the same spatial resolution as the input
RGB image. The pixel values in these age maps are normalized
between 0 and 1, representing a continuous age interval (years/100).
By providing not only the target age, but also the input age, we
allow FRAN to focus on the re-aging task (predicting aging deltas),
rather than spend its capacity to try and estimate the current age of
the input, which is already done well by existing, pre-trained age
regressors. Furthermore, these input age channels do not necessarily
need to be spatially constant and, thus, can be filled with non-
homogeneous values to control different amounts of re-aging on
different areas of the face to provide spatially-varying control on
re-aging (e.g., see Fig. 14). Even the input age map can be edited
non-homogeneously to create different re-aging effects (by altering
the subjectively perceived input age), thus providing more creative
freedom to artists who wish to direct and fine tune the re-aging
result (see supplemental material). Using these age maps to control
FRAN also makes it easy to integrate pre-trained face segmentation
networks (e.g. BiSeNetV2 [Yu et al. 2021]) that can automate control
over the produced effect, limiting it to specific areas of the face.
Our formulation of re-aging as an image-to-image translation

task has several benefits. The first of these is identity preservation
which is a result of a U-Net architecture that is well known for
preserving the spatial layout of the input; this is due to the U-Net’s
skip links providing the output layers with direct access to input
image features at high-resolution. Additionally, the network does

not need to learn how to fully generate faces of different identities,
under different expressions, viewpoints, and lighting; it only needs
to predict re-aging output as RGB offsets on top of the input image,
which also prevents substantial loss on the input identity. And
the temporal smoothness over the input video frames naturally
contributes for the good temporal consistency in FRAN’s output.
Combined, these factors make FRAN an excellent, production-ready
solution for re-aging real faces on video.

Discriminator. The discriminator (top-right of Fig. 3) provides
additional adversarial supervision to our re-aging network. We use
a modified implementation of the PatchGAN discriminator [Isola
et al. 2017], which takes as input the re-aged RGB image and the
input target age map. The task of the discriminator is to judge
whether or not the generated re-aged appearance looks consistent
with the target age, given our training dataset. The discriminator
is trained alongside the main re-aging U-Net; samples from our
synthetic dataset with the correct age label are provided as ‘real’
examples and those generated by our re-aging network are provided
as ‘fake’ examples. We also provide real images with incorrect age
maps as additional ‘fake’ examples.

Losses. Let 𝐼 and 𝑂 denote an input-output image pair in our
training dataset, with known age labels 𝑎𝑖 and 𝑎𝑜 , and let �̃� denote
the re-aging output of our network. We train our network using a
combination of L1, perceptual, and adversarial losses,

L = 𝜆𝐿1L𝐿1 (�̃�,𝑂)+𝜆𝑃L𝐿𝑃𝐼𝑃𝑆 (�̃�,𝑂)+𝜆𝑎𝑑𝑣L𝑎𝑑𝑣 (�̃�, 𝑎𝑜 ),
using the VGG [Simonyan and Zisserman 2015] variant of the pop-
ular LPIPS perceptual loss [Zhang et al. 2018]. The effect of each
individual loss is analyzed in the supplemental material, along with
more detailed information about our network architecture and train-
ing procedure.

4 RESULTS AND EVALUATION
We now present results of our face re-aging network (Section 4.1),
with qualitative and quantitative comparisons to previous approaches
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Fig. 4. FRAN consistently re-ages input photos realistically, while maintaining the target identity. The age progression is temporally continuous and smooth.

(Section 4.2 and Section 4.3), including a user study evaluation (Sec-
tion 4.4). Finally, we demonstrate interesting artistic age manipula-
tions enabled by the control mechanisms in FRAN (Section 4.5).

4.1 Face Re-Aging
We start by re-aging several still photos in Fig. 4. For each input
photo with the estimated original age (left), we ask the network to
individually output images at varying ages from 20 to 80 years old,
in 10 year steps. Not only are our results smooth and continuous
in age, but they also very closely match the identity of the input
image. Furthermore, our method works well in both increasing and
decreasing the age realistically.
Next, we demonstrate the temporal stability of aging video se-

quences in Fig. 5, which shows the aging of two people in two
different videos (3 frames per video are shown). Another example is
shown in Fig. 1, with several more in the supplemental video. Our
method can robustly handle varying head pose and extreme light
conditions, and produces temporally consistent re-aging results.
We further evaluate re-aging consistency in Fig. 6 by applying our
method to controlled variations in expression, head pose, and illumi-
nation. In all cases, the face is successfully re-aged with consistency.
We wish to point out that our method works well even in the

presence of typical motion effects such as blur, as shown in Fig. 7.
This benefit allows us to readily apply our network on video frames
without the need for pre- or post-processing steps, such as pre-
sharpening or post-applying blur filters tomatch the original footage.
Finally, we compare our re-aging results to real world imagery

in Fig. 8. It goes without saying that it is not possible to obtain

Fig. 5. When applied on video frames, FRAN produces consistent re-aging
results, and can seamlessly deal with varying depth and position of the head
in the frame, plus different head poses and changes in lighting conditions.
Please refer to complete result in the supplemental video.

pixel-aligned real-world images of the same person taken several
years apart, which could be used as a reference result in the absence
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Fig. 6. Results of FRAN under extreme conditions, with controlled variations
in expression (row 1), head pose (row 2) and illumination (row 3). The first
column shows one original image used as input.

Fig. 7. When re-aging video frames, FRAN provides realistic results even in
the presence of typical video effects such as motion blur.

of real ground truth. However, reference photography of a person
across different ages with similar expression, head pose, and lighting
allows us to qualitatively evaluate our network’s performance. Fig. 8
shows such a reference, of a subject taken in 2007 and again in 2022.
Our FRAN result, de-aging the 2022 face to the time period of 2007
shows that our method achieves very plausible re-aged faces.

4.2 Qualitative comparison to Previous Work
We now compare the results of FRAN against those by three other
recent methods representing the state of the art in facial image re-
aging: LATS [Or-El et al. 2020], HRFAE [Yao et al. 2021], and SAM
[Alaluf et al. 2021]. Figure 9 shows the results of all these methods
side by side, for two different subjects illustrating outdoors and
studio-like conditions, respectively. The column corresponding to
age 35 clearly shows that LATS and SAM introduce a large identity
loss even with little to no re-aging (even the background is not

Present Day (Age 46) Reference 2007 (Age 31)FRAN Re-Aged (Age 31)

Fig. 8. Starting with a present-day image (left), we compare FRAN de-aged
results (middle) to a real-world reference image (right) from 2007.

preserved in the result). In contrast, our newmethod better preserves
the input identity and the characteristic skin detail of the particular
subject, followed by HRFAE whose results show some attenuation
of skin detail. The figure also demonstrates that our method and
SAM do not model the characteristic graying of the hair, which
is slightly apparent in the results of HRFAE and LATS. However,
note that hairstyle is not a focus of our assumed scenario for digital
re-aging (see discussion in Section 5). Overall, our method compares
favorably, with the additional advantage of demonstrated stable
results when re-aging video images. We provide a more in depth
comparison with previous work and a quantitative evaluation of
our method in the supplemental material.

4.3 Quantitative Evaluation
An important contribution of this work is in preserving facial iden-
tity while re-aging, as already demonstrated qualitatively by the
results in Fig. 9 and the additional results in the supplemental mate-
rial. To provide a more objective evaluation of facial identity preser-
vation, Fig. 10 presents a quantitative comparison of FRAN against
the state-of-the-art re-aging method SAM [Alaluf et al. 2021] that
was used to synthesize our training dataset and HRFAE [Yao et al.
2021]. In this evaluation, we used a pre-trained face recognition
network [Schroff et al. 2015] to compute an identity loss (distance)
between the original image and the re-aged output of each method.
This was done for 100 different test subjects across a number of
age groups (14 for FRAN and SAM and 9 for HRFAE). We picked
randomly generated StyleGAN2 subjects as input images for all
the methods (examples are shown in the supplemental material).
As shown in Fig. 10 (left), the results of FRAN consistently remain
closer to the identity of the original image for all age groups. This
result quantitatively demonstrates that our method is able to pre-
serve the identity of the original image better than state-of-the-art
re-aging methods. We additionally ran the same experiment with
LATS [Or-El et al. 2020] and DLFS [He et al. 2021], which only allow
selecting a target age class instead of a continuous target age. For
these two methods, we compute the metric by masking out the
constant gray background from the output re-aged image. We show
the mean identity loss across all subjects and ages for all methods
in Table 1. As discussed in Section 3.2, our choice of architecture
and training strategy helps preserve the input identity better than
the other methods. Larger identity distances between the input and
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Fig. 9. Side-by-side comparison between the results of FRAN (OURS) and those by other recent methods, representing the state of the art in facial image
re-aging, on two different subjects under outdoors and studio-like conditions, respectively. The column corresponding to age 35 is closest to the actual input
ages and demonstrates that our method better preserves the input identity and the characteristic skin detail of the particular subject, followed by HRFAE
whose results show some attenuation of skin detail. SAM and LATS largely alter the original facial identity (and even the background). Please refer to the
supplemental material for additional comparisons.

Table 1. Average identity loss (distance) between original and re-aged im-
ages, as given by a pre-trained face recognition network (lower is better).

Method Mean Identity Score ↓
LATS [Or-El et al. 2020] 0.856
DLFS [He et al. 2021] 0.703
HRFAE [Yao et al. 2021] 0.646
SAM [Alaluf et al. 2021] 0.839
FRAN (ours) 0.616

the result re-aged by FRAN are observed for very old target ages,
Fig. 10 (left). For the sake of illustration, the result with the largest
identity distance in this test is shown in Fig. 10 (right).
Note that a perfect score at maintaining the identity could be

easily achieved by a method that consistently produced no re-aging
at all. Thus, we must also quantitatively evaluate how well each
method is achieving the desired output age. To this end, we com-
puted an estimate of the facial age by feeding the output of each
method though a pre-trained age prediction network [Rothe et al.
2018]. The results of this evaluation are plotted in Fig. 11, as an av-
erage (percentage) error in achieving the desired target age. While
for older ages (50+) FRAN is under-aging the results slightly (in
comparison to SAM), FRAN also consistently reaches the target age

better for younger ages. For all methods, we do expect re-aging
performance to drop at some very old age. For FRAN, in particular,
we aim at balancing several performance metrics; the small degree
of under-aging is a very small trade-off for the better performance
in terms of identity preservation and stability on video, which make
all the difference in achieving a practical, production-ready solution
for visual effects workflows. Finally, in an artist-driven production
environment, another essential factor is the level of control and free-
dom to achieve the envisioned look for the face, rather than a simple
absolute age value (see artistic intensified re-aging in Section 4.5).
As FRAN is trained exclusively using synthetic, photorealistic

data (Section 3.1), it is also important to evaluate the performance
of FRAN on real data. We thus computed the same identity and age
metrics as above for (𝑖) a test set of 50 real photographs randomly
extracted from FFHQ and (𝑖𝑖) a set of 50 random synthetic images
generated using StyleGAN2. We used the pre-trained age predic-
tion network [Rothe et al. 2018] to make sure all images contained
subjects exclusively in the range of 18 to 85 years old. We then ran
FRAN on all images and computed both the mean identity distance
and average age error. The results are reported in Table 2, and show
that FRAN operates nearly as well on real images as synthetic ones.
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Fig. 10. Identity-loss between the original image and the re-aged outputs
produced by our method (FRAN), SAM, and HRFAE, using latent features
of a pre-trained face recognition network [Schroff et al. 2015]: (left) identity
loss averaged over 100 subjects at 14 age targets, lower is better; (right)
FRAN result presenting the largest identity distance. On average, FRAN
presents lower identity loss than the other methods at all 14 target ages.

Fig. 11. We used a pre-trained age prediction network [Rothe et al. 2018]
to compute an estimate of the age of the output of each methods.

Table 2. We compute the average identity distance between the original and
re-aged images, as given by a pre-trained face recognition network [Schroff
et al. 2015] and the average age error, as given by a pre-trained age prediction
network [Rothe et al. 2018] for both a test dataset of synthetically generated
faces (StyleGAN2) and a test dataset of real faces (FFHQ).

Dataset Mean Identity Score ↓ Age Percentage Error ↓
Synthetic 0.64 13%
Real 0.40 21%

4.4 User Study
As an additional comparison, we ran a user study with 32 anony-
mous participants. The study included a total of 12 input images:
9 images from FFHQ, one studio-lit portrait, and 2 "in-the-wild"
images extracted from a video. We performed the FFHQ alignment
on all 12 images, picked a random target age (between 18 and 65
years of age), before running our method (FRAN), HRFAE [Yao et al.
2021], DLFS [He et al. 2021], LATS [Or-El et al. 2020], and SAM
[Alaluf et al. 2021] on all 12 images. We chose a common upper
limit of 65 years because only FRAN and SAM can re-age beyond
that. Also, since LATS and DLFS cannot do continuous re-aging,
we selected their output age group closest to the desired target age.

Fig. 12. User study comparison of our method (FRAN) against HRFAE, DLFS,
LATS, and SAM, with 32 participants and a total of 384 answers per question.

The corresponding outputs of the methods were grouped in ran-
dom order and each anonymous participant was asked: (1)Which
method does a better job at preserving the identity of the input image?
and (2) Which method does a better job at aging or de-aging to the
desired age? Participants were instructed to ignore the output image
background and only take into consideration the re-aging effect
on the face. The result comprises a total of 384 answers for each
question, as shown in Fig. 12. The clear majority of the participants
found that our method FRAN does a better job both at preserving
the input facial indentity and at reaching the target facial age.

4.5 Artistic Control
Artistic control is often neglected in research work, but is a fun-
damental feature in real production pipelines (which often include
super-human characters and fantastic events). FRAN provides intu-
itive and localized artistic control over the re-aging result. Since our
primary mode of control is the desired output age, and we process
video frames independently, this allows us to artistically vary the
output age over time in a video sequence. For example, in Fig. 13 we
continuously age an actor while they perform on camera, starting
at a young age and ending at an old age (please refer to the full
result in the supplemental video). Note how the aging is continuous,
smooth, and stable over time.

Frame 50 Frame 330 Frame 650 Frame 850

Fig. 13. Example of applying FRAN to artistically and progressively increase
the age over time in a video, during a performance (please refer to full
performance in the supplementary video).

We can further decompose the effect of aging beyond the temporal
domain and into the spatial domain, leveraging the target age map
that is input to our network. As hinted at earlier, this age map does
not need to contain a homogeneous value but can be filled with
different ages to control different amounts of re-aging on different
areas of the face. An example is shown in Fig. 14, where a painted
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Fig. 14. Painting a target age map allows for re-aging different parts of the
face with different age targets. Here we use a mask for the target age map
and re-age that image area to ages 18 and 85, while keeping the other pixels
fixed to the input age.
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Fig. 15. Artistically intensified re-aging by modifying the input age so that
it does not correspond to the actual apparent age in the input image.

mask is used to re-age only parts of the input image around the eyes.
We show re-aging the eye region to be either younger or older.

Finally, FRAN also takes a 2D age map indicating the input age.
While we train the network using valid age maps that correspond
to the detected age of the input image, at test time there is no
restriction that the input age map matches the input image, yielding
interesting artistic effects when combining old input age maps with
young input images or vice versa. We experiment with these artistic
effects in Fig. 15. It begins with traditional re-aging, where the input
age map was uniformly set to 45 for the 45 year-old man (top row)
and we illustrate re-aged images at 20 and 80 years. On the second
row, we show the corresponding output given the same input image
but with an input age map altered to 80 (second column) and 20
(third column). The effect is artistically intensified re-aging, where
the new 20 year-old looks younger than in the original young result,
and the new 80 year-old looks even older than in the original result.

4.6 Extent of Re-aging
As discussed in Section 1, FRAN focuses only on adults and does not
aim to introduce changes in scalp hair or large changes on the shape
of the head, such as when re-aging to very young ages (children).
While textural changes (e.g., wrinkles) are easier to notice in FRAN’s
results, FRAN does alter other facial features and introduces geo-
metric changes that are also important for realistic re-aging. Some
of these changes are indicated in Fig. 16 by per-pixel differences and

input re-aged pixel difference optical flow

Fig. 16. We demonstrate how FRAN changes the input image by visualizing
the per-pixel difference between the input and output (predicted re-aging
deltas) and by visualizing the optical flow between the input and output.
We highlight the eye and mouth areas (best viewed by zooming in).

an optical flow visualization, both computed between the input and
the re-aged result. We highlight the changes introduced in the eye
region (such as wrinkling, sagging of the eyebrow and eye bag), in
the mouth region (such as lips becoming thinner), and in the altered
size of cartilage tissue (on ear lobes and nose).

4.7 Segmentation at Inference
We also evaluate the effect of using a segmentation mask to guide
the aging only on the skin pixels of the face, with results shown in
Fig. 17. Here, we first set the input age to 35 and target age to 65
uniformly for all pixels of the input image (i.e. the result "without"
the mask) and show the difference between the input and output,
aged, images. Because the target age is set to be different than the
input age also for the background pixels, the background contains
some undesired changes.We repeat the experiment setting the target
age to 65 only on the skin pixels defined by the segmentation mask
automatically computed using [Yu et al. 2021] and set the target
age to 35 (same as input age) for all pixels outside this mask (the
result labeled "with" the mask). The corresponding output image
does not have the unwanted changes in the background, as show
by the difference image.

4.8 Losses Ablation
As an ablation study, we trained multiple variants of FRAN, each
time enabling only a subset of the losses. More specifically, we used
a fixed budget of 20 epochs and trained FRAN with 100 subjects
and all 14 age classes, maintaining all the hyperparameters fixed
except for the losses. We demonstrate the effect of our loss terms
both individually, and by also incrementally adding them in the
order of their computational complexity and show the result of this
ablation in Fig. 18. With the L1 loss alone, the results lack sharpness
due to the loss being per-pixel only. The adversarial loss alone is not
sufficient for FRAN to produce aging effects with a fixed budget of
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input
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Fig. 17. We show the effect of applying a segmentation mask [Yu et al. 2021]
vs. not applying it when aging an input image from 25 years old to 75 years
old. Without using the mask (center), the target age is set to be different
than the input age also for the background pixels, and thus the background
contains some undesired changes. When using the mask (right), the target
age in the background region is set to 25 (same as input age), which prevents
changes in the background, as seen in the difference images.

20 epochs. Training only with LPIPS gives sharper results but adding
L1 gives a stronger aging effect. Finally, training with L1, LPIPS and
the adversarial loss increases the aging effect and sharpness.

5 CONCLUSION
This paper presents our practical, production-ready face re-aging
network, FRAN. Inspired by recent advances in facial re-aging
within the latent space of face GANs, we propose FRAN as a con-
trollable, temporally-stable, identity-preserving alternative to latent
space traversal methods. FRAN reformulates re-aging as a simple
image-to-image translation task that is naturally and effectively
solved using the familiar U-Net architecture. As with most deep
learning approaches, a large amount of high-quality training data
is key in enabling FRAN. Here, we overcome the impossible task
of collecting longitudinal aging dataset from real people by lever-
aging the current state of the art in digital face re-aging. Our key
insight is that, while these methods fail on real faces, they provide
highly realistic solutions on fully synthetic faces that are already
represented perfectly within the latent space of powerful GANs.
FRAN is trained in a simple supervised fashion by leveraging a

large longitudinal dataset of photo-realistically re-aged, synthetic
face pairs. As a result, FRAN provides realistic and continuous re-
aging within a range of 18 and 85 years of age. As far as we know,
FRAN is the first method to provide high-resolution, temporally sta-
ble re-aging results on videos showing faces in different expressions
and under free viewpoint, depth, motion, and illumination condi-
tions. Finally, its design provides artists with intuitive, localized
control for directing and fine tuning the resulting re-aging effect.
FRAN is a valuable, production-ready tool in different application
domains such as entertainment and advertising. Given that artistic
intervention is always desirable, no result is ever perfect on the
first try. Thus, FRAN has the potential to improve existing re-aging

workflows, reducing the time it takes to re-age complete shots from
a matter of days to just a few hours or even minutes, facilitating the
creation of high-quality visual effects at scale.

Ethical Impact. FRAN can synthetically modify images and videos
of human faces to make them look younger or older. It is designed
with entertainment applications in mind, but it is important to
acknowledge potential for misuse. While techniques for detecting
altered images do exist, it is also important to broadly educate people
about the dangers of image and video modification algorithms. By
publishing the details of our algorithm we hope to support the
efforts around automatic deep fakes detection.

Limitations. FRAN is, of course, not without its limitations. As
with typical U-Net architectures, large image changes are more
difficult to generate, making it challenging to re-age to and from very
young ages, which is not included in our application scenario. For
such cases (e.g., important applications involving missing children,
in which stability on video is not a focus), other methods such as
LATS [Or-El et al. 2020] and DLFS [He et al. 2021] may be preferable.
Another limitation is the fact that the graying of scalp hair is not
captured in our current training data, and is therefore not reflected
in the outputs of FRAN. This is an additional aging effect that could
be included into our training dataset; we leave it for future work
as current production pipelines already have a suitable alternative
for controlling the re-aged hairstyle in a traditional way. Similarly,
re-aging can also introduce variation in body mass index (BMI)
whose effects on the face we currently cannot control. In addition,
FRAN does not yet provide artists with a means for specifying
what structures are actually added to or removed from the face
during re-aging (e.g., moles, specific wrinkling patterns, or other
particular skin signs). Finally, FRAN currently only improves upon
the predominant 2D re-aging workflow, whereas in particular cases
a 3D re-aging solution may be preferable for more elaborate levels
of control including, for instance, relighting and other physically
basedmanipulations.We believe that these limitations also represent
exciting opportunities for additional improvements in future work.
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