
Kernel-Based Frame Interpolation for Spatio-Temporally
Adaptive Rendering

Karlis Martins Briedis
DisneyResearch|Studios
Zürich, Switzerland

ETH Zürich
Zürich, Switzerland

karlis.briedis@inf.ethz.ch

Abdelaziz Djelouah
DisneyResearch|Studios
Zürich, Switzerland

aziz.djelouah@disneyresearch.com

Raphaël Ortiz
DisneyResearch|Studios
Zürich, Switzerland

raphael.ortiz@disneyresearch.com

Mark Meyer
Pixar Animation Studios

Emeryville, California, USA
mmeyer@pixar.com

Markus Gross
DisneyResearch|Studios
Zürich, Switzerland

ETH Zürich
Zürich, Switzerland
grossm@inf.ethz.ch

Christopher Schroers
DisneyResearch|Studios
Zürich, Switzerland

christopher.schroers@disneyresearch.com

Interpolation with Kernels - All layers can be interpolated Adaptive Interpolation - 2/3 of the pixels are interpolated

Masked regions (in red) are selected for interpolation

No adaptation (NFIRC) Rendered Pixels Final Output

Sky

Ambient

Sun

Interpolated frame with

edited compositing

Interpolated frame with

original compositing
Overlayed Inputs

Interpolated

Layers

Figure 1: We propose a frame interpolation method for rendered content with two key features. First, a kernel based frame

synthesis model which predicts the interpolated frame as a linear mapping of the input images. As a result, all the layers can

be interpolated and a different composition can be created without any additional interpolation step. The second feature is an

adaptive interpolation scheme where, for a given sequence of frames, decision on which image regions to render or interpolate

is optimized: frame interpolation should be favored in image regions where it leads to good results, and rendering should be

used in more challenging image patches. Images © 2023 Disney / Pixar

ABSTRACT

Recently, there has been exciting progress in frame interpolation
for rendered content. In this offline rendering setting, additional
inputs, such as albedo and depth, can be extracted from a scene
at a very low cost and, when integrated in a suitable fashion, can
significantly improve the quality of the interpolated frames. Al-
though existing approaches have been able to show good results,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH ’23 Conference Proceedings, August 6ś10, 2023, Los Angeles, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0159-7/23/08. . . $15.00
https://doi.org/10.1145/3588432.3591497

most high-quality interpolation methods use a synthesis network
for direct color prediction. In complex scenarios, this can result in
unpredictable behavior and lead to color artifacts. To mitigate this
and to increase robustness, we propose to estimate the interpolated
frame by predicting spatially varying kernels that operate on im-
age splats. Kernel prediction ensures a linear mapping from the
input images to the output and enables new opportunities, such
as consistent and efficient interpolation of alpha values or many
other additional channels and render passes that might exist. Addi-
tionally, we present an adaptive strategy that allows predicting full
or partial keyframes that should be rendered with color samples
solely based on the auxiliary features of a shot. This content-based
spatio-temporal adaptivity allows rendering significantly fewer
color pixels as compared to a fixed-step scheme when wanting
to maintain a certain quality. Overall, these contributions lead to
a more robust method and significant further reductions of the
rendering costs.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Briedis et al.

CCS CONCEPTS

• Computing methodologies→ Rendering; Reconstruction.

KEYWORDS

Video Frame Interpolation, Rendered Content, Deep Learning

ACM Reference Format:

Karlis Martins Briedis, Abdelaziz Djelouah, Raphaël Ortiz, Mark Meyer,
Markus Gross, and Christopher Schroers. 2023. Kernel-Based Frame In-
terpolation for Spatio-Temporally Adaptive Rendering. In Special Interest

Group on Computer Graphics and Interactive Techniques Conference Con-

ference Proceedings (SIGGRAPH ’23 Conference Proceedings), August 6ś10,

2023, Los Angeles, CA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3588432.3591497

1 INTRODUCTION

With the ever increasing demand for high quality rendered content,
there has been a constant effort to reduce the very high costs as-
sociated with Monte Carlo renderings. To achieve that, commonly
used methods include image denoising [Bako et al. 2017] or adap-
tive sampling [Kuznetsov et al. 2018] but these approaches do not
leverage the redundancies across multiple frames. A more recent
approach for re-using information across multiple frames is based
on video frame interpolation [Briedis et al. 2021; Zimmer et al. 2015]
or extrapolation [Guo et al. 2021], where the renderer produces a
temporally downsampled sequence from which the missing frames
are reconstructed. In this rendered setting, additional auxiliary fea-
ture buffers contain information about the scene and its motion,
and they can be obtained at a low cost. It has been shown that
methods utilizing them can achieve much better reconstruction
than the purely image-based methods.

Despite recent progress, a few key challenges remain and the
objective of this work is to address them. The first open challenge
concerns the interpolation method itself. In a production context,
frame interpolation cannot be limited to the final color. Other fea-
ture channels (such as alpha channel, decomposed per light con-
tributions, etc.) also need to be interpolated, and the result must
remain consistent between all of them in order to be used in subse-
quent processing such as compositing. Most of the existing video
frame interpolation approaches employ a direct or residual predic-
tion neural network for the final frame synthesis (including [Briedis
et al. 2021]) which must be retrained for every channel combination
while still not providing any guarantee for aligned outputs. Addi-
tionally, direct prediction networks with their unconstrained output
range can produce color artifacts. The second important challenge,
concerns adaptive interpolation. It is clear that on average the in-
terpolation quality degrades with the number of skipped frames.
However depending on the motion and occlusion in the scene, dif-
ferent interpolation intervals can be considered for each image
region: larger for almost static background regions and smaller for
fast moving objects in the scene. As a consequence simply interpo-
lating entire frames is not optimal and better strategies are needed:
frame interpolation should be favored in image regions where it
leads to good results, and rendering should be favored on the rest.

The first part of our solution consists of a kernel-based frame
interpolation model. In other words, the synthesis network relies
on kernels, sharing coefficients across all the channels, to obtain

the final output from the forward-warped keyframes. It ensures
that the interpolation result is a linear combination of the inputs.
Since the same kernels can be applied to an arbitrary number of
layers, the interpolated frame has the same decomposition as the
keyframes. As illustrated in Figure 1, it can therefore be edited and
recomposed to create a different look. The second part is an implicit
error prediction model, to estimate how good the interpolation
network would perform for each pixel (or tile) given auxiliary
features and a keyframe interval. This model is then leveraged in a
spatiotemporally adaptive strategy to choose which pixels or tiles
to render in a video as keyframe data. It significantly improves the
interpolation quality compared to using a fixed sequence of full
keyframes while rendering the same number of pixels (Figure 1).

To summarize, our contributions are:

• A new kernel-based frame interpolation model, that can
be applied to an arbitrary number of channels (e.g. alpha)
without adapting the method, while increasing robustness
to color artifacts;
• An attention inspired mechanism, adapted to frame interpo-
lation, with the ability to dynamically adjust kernel size for
filling larger holes in warped keyframes.
• An adaptive interpolation strategy that includes an implicit
interpolation error predictionmodel, to achieve better results
for a given render budget (number of pixels or tiles);
• State-of-the-art results in frame interpolation for rendered
content.

2 RELATED WORK

Different paradigms have been proposed for solving the problem
of video frame interpolation. Phase-based methods [Meyer et al.
2018, 2015] model motion as a phase shift in the frequency domain,
others use a feedforward neural network to predict the output frame
directly, handling the motion implicitly [Choi et al. 2020; Kalluri
et al. 2021; Long et al. 2016]. Our method is more closely related to
methods with kernel estimation or motion-based image warping.

Similar to the direct prediction methods, prior kernel-based
methods rely on implicit motion estimation by predicting spatially
varying kernels that are applied to the source image. Niklaus et
al. [2017a] propose estimating a dense local kernel for each of the
output pixels, making it prohibitively expensive to use large ker-
nels, thus greatly limiting the maximum motion they can handle.
The size limitations still remain despite the estimation of separa-
ble convolution kernels [Niklaus et al. 2017b] and other improve-
ments in the model and training [Niklaus et al. 2021]. AdaCoF [Lee
et al. 2020] estimates spatially adaptive offsets and weights for de-
formable convolutions, allowing to reduce the kernel size, but large
displacements are not well handled. Shi et al. [2022] extend this
idea by using multi-frame processing at multiple scales. Ding et

al. [2021] compress the weights of AdaCoF and extend it with a syn-
thesis network, thus losing the desired properties of a kernel-based
approach.

Building on the recent improvements in optical flow estima-
tion [Hur and Roth 2019; Sun et al. 2018; Teed and Deng 2020],
flow-based frame interpolation methods have typically performed
best, thanks for example to the joint training of the optical flow

Kernel-Based Frame Interpolation for Spatio-Temporally Adaptive Rendering SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

S
ta

b
le

 E
x
p
 S

p
la

tt
in

g

GridNet

Kernel Weight Computation

(Eq. 1)

Frame 0

Frame N-1. .= =

with

Optical Flow

Estimation

Interval

Computation

(Eq. 7)

Implicit

error maps

Interpolation intervals

Rendering mask

Partial render

Kernel application (Eq. 2)

Interpolated

output

Kernel

Weights

Final output

Key

Estimation

Query

Estimation

Independent for each Key-Frame

a) Feature Extraction and Warping b) Kernel-Based Frame Synthesis (Sec. 4)

c) Adaptive Interpolation (Sec. 5)

...

...
...

Region

Selection
(Algorithm 1)

Figure 2: Method overview. Frame interpolation in CG context benefits from auxiliary buffers that are cheap to obtain for

the frame to interpolate. a) We detail the process for one keyframe (I0): we compute optical flow f0 for splatting the context

features Φ𝑖 , Φ̃𝑖 extracted by neural networks. b) Splatted features are used to estimate kernels for the final frame synthesis. See

text (Section 4) for details c) Features extracted from auxiliary buffers are used to estimate implicit error maps, interpolation

intervals, and regions to render. See text (Section 5) for details. Finally, the partial render is blended with the interpolated

output for the final image. Images © 2023 Disney / Pixar

and frame interpolation [Jiang et al. 2018; Xue et al. 2019]. Multi-
ple methods use backward warping with flows at the target time,
obtained by warping keyframe flows [Bao et al. 2019, 2021; Lee
et al. 2022], or estimating them directly [Danier et al. 2022; Lu et al.
2022; Park et al. 2020, 2021; Shangguan et al. 2022]. Others have
explored forward warping with synthesis from forward-warped
feature representations [Niklaus and Liu 2018], followed by differ-
entiable splatting [Hu et al. 2022; Niklaus and Liu 2020]. To improve
the motion estimation, [Chi et al. 2020; Liu et al. 2020; Xu et al. 2019]
use higher order motion models estimated from an increased input
context, while other methods focus on large motion [Reda et al.
2022; Sim et al. 2021] or efficient frame interpolation [Huang et al.
2022; Kong et al. 2022; Niklaus et al. 2023; Nottebaum et al. 2022].

Briedis et al. [2021] propose a method designed for rendered
content, using auxiliary feature buffers to improve the results over
prior methods. It follows an established set of image processing
tasks for computer generated images: temporal processing [Zimmer
et al. 2015], denoising [Bako et al. 2017; Vogels et al. 2018], and
super-resolution [Xiao et al. 2020]. Guo et al. [2021] introduce
a frame extrapolation solution that is tailored for real-time time
applications, but does not benefit from the multiple keyframes
available in the offline setting.

Our method aims to achieve the benefits of kernel-predicting ap-
proaches, while being able to support large motion that is typically
only possible with flow-based methods. It is achieved by jointly
combining and filtering out the artifacts in image splats. As such it
is akin to guided image filtering tasks [Chen et al. 2016; Eisemann
and Durand 2004; He et al. 2013; Kalantari et al. 2015; Li et al. 2012;
Petschnigg et al. 2004; Tomasi and Manduchi 1998]. More recently,

Işık et al. [2021] propose to use the cross-bilateral filter for Monte
Carlo (MC) denoising with a predicted guidance map and a special
care of the center pixel to allow suppression of bright outliers. Our
dynamic weight prediction follows a similar idea, but estimates
asymmetric guidance maps to performs frame merging and filtering
of severe splatting artefacts in a joint step.

The most related works to our adaptive interpolation method are
the estimation of error maps for error-aware frame interpolation
ensembles [Chi et al. 2022], and the MC denoising for sampling
distribution [Vogels et al. 2018]. Unlike the previous approaches, we
estimate the error from just auxiliary feature buffers in an implicit
formulation, and propose an algorithm for processing such maps
to select regions to render for the beauty passes.

3 METHOD OVERVIEW

Given two consecutive frames I0 and I1, the objective of a frame
interpolation method is to synthesize any intermediate frame I𝑡
(with 𝑡 ∈ [0, 1]). Contrary to live action videos, where only color
information from the keyframes is available, frame interpolation
in the rendered context can benefit from additional data A𝑖 that is
computationally cheap and easy to obtain (i.e. less compute than
rendering the actual intermediate frame). As illustrated in Figure 2,
we overall follow the same strategy used by existing frame in-
terpolation works and in particular [Briedis et al. 2021]: for each
keyframe I𝑖 we compute optical flow f𝑖 from I𝑖 to I𝑡 and a weight
map for splatting the context features Φ𝑖 , Φ̂𝑖 extracted by neural
networks, before applying a compositing model.

For optical flow we use the approach proposed by [Briedis et al.
2021] that achieves non-linear motion estimation thanks to the

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Briedis et al.

middle frame auxiliary buffers, and we refer to that work for more
details. With the estimated motion, we obtain image splats S(Ii)
from input image Ii and flow field fi by using a numerically stable
variant of softmax splatting with bilinear kernels similar to [Niklaus
et al. 2023]. Details of the splatting are provided in the supplemen-
tary document.

Our first proposal is to use a kernel-predicting synthesis network
to obtain the final output from the forward-warped inputs. This
stems from the observation that splatting is a linear combination
of the inputs, however existing direct synthesis models break this
property. Our proposed solution ensures that the interpolation
result is a linear combination of the inputs, through kernels sharing
coefficients across all the channels.

This has several practical benefits over the existing approaches:

• a set of kernels can be estimated once and applied to an
unlimited number of additional feature channels, e.g. alpha
channel, with consistent results, and without a need to re-
train the method for each of these channels;
• interpolation can be applied before or after image composi-
tion while maintaining the same outputs;
• as the output is limited to the convex hull of the input colors,
the resulting images are well constrained and avoid color
artifacts.

In the second part, we propose an adaptive interpolation strategy
based on implicit error map estimation. We use a neural network
to estimate how good the interpolation network would perform
from just the auxiliary feature buffers at a given interval, compute
the minimum interval to a rendered frame, and process the whole
sequence to produce rendering masks.

As the region selection does not rely on the final images I𝑖 , the
region selection and interpolation can be applied with just two
rendering steps, where in the first pass only auxiliary buffers are
rendered and in the second pass partial images are rendered based
on the predicted rendering masks.

In the final processing step, interpolation outputs are blended
with the partial renders.

4 KERNEL-BASED FRAME SYNTHESIS

We employ a GridNet [Fourure et al. 2017] that takes as input the
motion compensated feature pyramids as in [Briedis et al. 2021], but
instead of predicting the final 3-dimensional RGB colors, it outputs
a 18-dimensional representation (see Figure 2b). In our design, it
serves as query data in an attention-inspired mechanism [Vaswani
et al. 2017]. As a result this predicted representation is expected to
act as a reference to the missing frame and help with the kernel
estimation.

Kernel Weight Prediction. We use an attention-inspired mech-
anism to predict per-pixel keys, queries, and scaling coefficients.
These are used for a size-independent kernel estimation. The out-
put of GridNet is decomposed into queries q ∈ R𝐻×𝑊 ×𝐷 , where
𝐷 = 16 is the per-pixel vector size, and 𝑎𝑖 ∈ R𝐻×𝑊 ×1 the scaling
for each key-frame 𝑖 ∈ {0, 1}. Keys k𝑖 ∈ R𝐻×𝑊 ×𝐷 and biases 𝑏𝑖 are
estimated from the splatted feature pyramids Φ𝑖 and Φ̃

𝑖 for each
keyframe separately with two 1 × 1 convolution layers.

With the estimated coefficients and feature maps, we compute
the weighting score 𝑤 . For each output pixel 𝒚, we estimate the
relevance weight to any other pixel 𝒙 in warp 𝑖 with

𝑤𝑖𝒚𝒙 = −(𝑎𝑖𝒚)
2 | |q𝒚 − k

𝑖
𝒙 | |

2
2 + 𝑏

𝑖
𝒙 , (1)

where we square the predicted scaling factor to constrain the
weighting to be inversely proportional to the feature distance. The
bias term 𝑏𝑖 is motivated to allow down-weighting contributions
from pixels in splats that can be viewed as outliers.

Kernel Application. Having the weighting metric, we can build
a local kernel by limiting the distance between 𝒚 and 𝒙 to the
neighborhood N around the center 𝒚 (e.g. maximum of 5 pixel
displacement for kernels of size 11×11). The output Î𝑡 is synthesized
as

Î𝑡 [𝒚] =

∑𝑁
𝑖

∑
𝒙∈N(𝒚) M

𝑖
𝒙 exp(𝑤𝑖𝒚𝒙)S(Ii) [𝒙]

∑𝑁
𝑖

∑
𝒙∈N(𝒚) M

𝑖
𝒙𝑒𝑥𝑝 (𝑤

𝑖
𝒚𝒙) + 𝜀

, (2)

where 𝑁 = 2 is the number of input frames and M𝑖 ∈ {0, 1}𝐻×𝑊 a
binary map that indicates holes in the warped frames. One major
advantage of our approach is that N can be dynamically adjusted
during inference to increase the perceptual window with bigger
or dilated kernels, which is important to inpaint larger holes that
would be challenging for directly predicted kernels with static size.

Dynamic-Offset Kernel Application. In practice, we only want
to estimate kernels with large offsets in regions with holes in the
splats. To this end, we propose using a dynamic per-pixel kernel size
estimation and application. The offset 𝛾 is defined as the minimum
offset such that at least Γ contributing pixels are present:

𝛾 = argmin
𝛾 ′

Γ ≤
∑︁

𝒙∈𝜂 (𝒚,𝛾 ′)

M𝑖
𝒙 (3)

which can be used to define the pixel neighborhood

N𝑖 (𝒚) = {𝒙 ∈ 𝜂 (𝒚, 𝛾) | M𝑖
𝒙 = 1} (4a)

𝜂 (𝒚′, 𝛾 ′) = {𝒙 | ∥𝒚′ − 𝒙 ∥∞ ≤ 𝛾
′} (4b)

During training we use a constant offset 𝛾 = 5, but during inference
the offset is dynamically adapted to ensure Γ = 112 contributing
pixels.

Kernel Implementation. A naive implementation would compute
Equation 2 and its partial derivatives w.r.t. inputs in a single kernel
call. Instead, we propose to balance performance and operator
flexibility/implementation complexity by disentangling per-frame
weighted sum computations and relying on auto-differentiation. To
achieve that, we re-write Equation 2, taking the factor ri (𝒚) outside
of the inner sums as:

I𝑡 [𝒚] =

∑𝑁
𝑖 (

∑
𝒙∈N𝑖 (𝒚) 𝑤̂

𝑖
𝒚𝒙S(Ii) [𝒙])ri (𝒚)

∑𝑁
𝑖 (

∑
𝑢,𝑣∈N(𝑚,𝑛) 𝑤̂

𝑖
𝒚𝒙)ri (𝒚)

(5a)

𝑤̂𝑖𝒚𝒙 = exp(𝑤𝑖𝒚𝒙 −mi (𝒚)) (5b)

ri (𝒚) = 𝑒𝑥𝑝 (mi (𝒚) − max
𝑖∈1..𝑁

mi (𝒚)) (5c)

mi (𝒚) = max
𝒙∈N𝑖 (𝒚)

𝑤𝑖𝒚𝒙 (5d)

Kernel-Based Frame Interpolation for Spatio-Temporally Adaptive Rendering SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

This allows us to compute and output three simpler quantities for
each of the frames:

•
∑
𝒙∈N𝑖 (𝒚) 𝑤̂

𝑖
𝒚𝒙S(Ii) [𝒙]

•
∑
𝒙∈N(𝒚) 𝑤̂

𝑖
𝒚𝒙

• mi (𝒚)

which are all numerically stable due to the subtraction of the largest
weight exponentiation, and can be recombined by applying Eq. 5
on dense tensors to obtain the original values.

5 ADAPTIVE INTERPOLATION

A naive application of frame interpolation, where entire frames
are skipped in favor of interpolation, already leads to a reduction
in rendering time. On average the interpolation quality degrades
with the number of skipped frames. However the error is often
concentrated on relatively small and fast-moving objects, and a
nearly static or slowly drifting background is correctly interpolated.
Based on that observation, we propose a spatio-temporally adaptive
interpolation: the gap between the keyframes is chosen dynamically
per pixel or tile. In other words, a choice to render or not render is
made per pixel or tile in the sequence, instead of full frames. This
significantly improves the interpolation quality while rendering
the same number of pixels.

We propose an approach with just two renderer invocations. In
the first pass only the auxiliary feature buffers for each frame of
the sequence are generated, as these are required at every frame
and pixel. From the data of this first pass, we estimate a maximum
keyframe gap for each of the tiles, i.e. interpolation interval, and
generate rendering masks. In the second rendering pass we use the
masks to render the necessary regions, then use frame interpolation
for the remainder.

An overview of the method during inference is shown in Fig-
ure 2c.

5.1 Implicit Error Prediction

To choose an optimal interpolation interval, we first predict how
good the interpolation network would perform from just the auxil-
iary feature buffers A𝑖 as inputs (albedo, normals, depth, and veloc-

ity). For this task, we regress an implicit error map 𝛿𝑚𝑡 ∈ (0, 1) at
1
16 of the original resolution. Training is done by minimizing the
following loss:

LError = L𝑖𝑚𝑎𝑔𝑒 (Î𝑡 · (1 − 𝛿
𝑚
𝑡) + I𝑡 · 𝛿

𝑚
𝑡 , I𝑡) + 𝜆 · | |𝛿

𝑚
𝑡 | |

2
2 (6a)

𝛿𝑚𝑡 = 𝛿𝑡 (A0,A𝑡 ,A1) (6b)

where Î𝑡 is the interpolation result, I𝑡 the ground truth frame at
time 𝑡 , and L𝑖𝑚𝑎𝑔𝑒 is the chosen image loss. It is important to note
again that the error prediction model 𝛿𝑡 only takes the auxiliary
features as input.

The model 𝛿𝑡 shares many elements with the main method.
Context features are extracted with and splatted, using the same
optical flow model and warping technique. When computing the
optical flow for the error network, we pass zeros for the color
channels as they are not available. We show in section 6.4 that
this produces a good approximation of the final motion. From the
warped context features and the magnitude of velocity vectors

Figure 3: Illustration of the mask generation generation pro-

cess. Given any sequence of frames, we consider the extreme

ones (𝐴 and 𝐵) to be available. We need to decide which re-

gions can be interpolated in the middle frame. The inter-

polation interval (see text for details) indicates the largest

possible distance to a keyframe for every pixel. According

to the keyframe distance 𝑛, different regions will be selected

for rendering. The middle frame is then considered available,

and becomes itself a keyframe for other intervals. Once all

masks are computed, the beauty pass is done on all frames in

parallel, followed by interpolation to fill the masked regions.

Images © 2023 Disney / Pixar

| |v𝑡 | |2, a VGG-style [Simonyan and Zisserman 2015] network with
a sigmoid activation as a last layer is used to predict the error map.

The prediction is an implicit error map, because contrary to
some other works [Vogels et al. 2018], we do not perform direct
error regression (Equation. 6). A key advantage here is that error
metrics typically depend on the values of the color, which are not
available for the error-prediction network thus are hard to match.
Additionally, it can be trained with the same image losses as the
interpolation network, even when they do not provide per-pixel
errors.

5.2 Interval Estimation and Mask Generation

We define the interpolation interval for each frame as the largest
keyframe interval that allows interpolating the frame, while the
error remains below a given threshold 𝑝 ∈ (0, 1). More formally,
the interval at a pixel/region 𝒙 is defined as:

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑡 [𝒙] = argmax
𝑘∈Z∧0≤𝑘≤𝐾

𝛿𝑘𝑡 [𝒙] < 𝑝 (7a)

with 𝛿𝑘𝑡 = 𝛿𝑡 (𝐴𝑡−𝑘 , 𝐴𝑡 , 𝐴𝑡+𝑘) for 𝑘 > 0 (7b)

with 𝑘 = 0 indicating no interpolation (i.e. always rendering) and
hence 𝛿0𝑡 = 0. 𝐾 = 25 is a chosen maximum one-sided interval. If
one of the input frames does not exist (e.g. sequence beginning and
end), we set 𝛿𝑘𝑡 = 1.

In terms of control, the threshold 𝑝 can be used as a knob by the
artist to balance between interpolation quality and speed.

Region Selection. To generate masks, we start by marking the first
and the last frame to be rendered and use them as the keyframes.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Briedis et al.

We then select the middle frame. For this middle frame, any pixel
𝒙 that has an interpolation interval 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑡 [𝒙] smaller than the
distance to the keyframe is selected for rendering (see Figure 3 for
an illustration).

We then convert pixel-wise masks to tiles by expanding their
boundaries with a Gaussian blur, and select every 64 × 64 tile with
at least one marked pixel. After this, the middle frame is consid-
ered ready, and we process the resulting two sub-sequences in the
same manner. A more formal description of the region selection is
provided in Algorithm 1.

ALGORITHM 1: Rendering region selection

to_render← {first_frame : 𝑓 𝑢𝑙𝑙 (), last_frame : 𝑓 𝑢𝑙𝑙 () }

q← 𝑄𝑢𝑒𝑢𝑒 {(first_frame, last_frame) })

while q not empty do

lb, ub← q.𝑝𝑜𝑝 ()

mid← 𝑟𝑜𝑢𝑛𝑑 ((lb + ub)/2)

if 𝑙𝑏 + 1 <𝑚𝑖𝑑 then q.𝑝𝑢𝑠ℎ ((lb, mid))

if 𝑢𝑏 − 1 >𝑚𝑖𝑑 then q.𝑝𝑢𝑠ℎ ((mid, ub))

keyframe_distance←𝑚𝑎𝑥 (mid − lb, ub − mid)

render_mask = intervalmid < keyframe_distance

render_mask = 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝑏𝑙𝑢𝑟 (render_mask, 𝜎 = 1.0) ≥ 0.05

render_mask = 𝑡𝑖𝑙𝑒𝑠_𝑤𝑖𝑡ℎ_𝑎𝑛𝑦_𝑝𝑖𝑥𝑒𝑙 (render_mask)

if𝑚𝑒𝑎𝑛 (render_mask) ≥ 95% then
render_mask = 𝑓 𝑢𝑙𝑙 ()

end

to_render[mid] = render_mask

end

return to_render

After having rendered the requested regions, we repeat the same
order, interpolating non-rendered regions from 𝐼lb, 𝐼ub.

6 EXPERIMENTAL RESULTS

Implementation details. Our implementation follows [Briedis
et al. 2021] where we replace the original splatting with our sta-
ble implementation, replace the shifted 𝐸𝐿𝑈 [Clevert et al. 2016]
weighting with softmax splatting [Niklaus and Liu 2020], and use
our kernel-based frame synthesis approach. More details are pro-
vided in the supplementary document.

Handling linear RGB inputs. Preprocessing is necessary to handle
linear RGB inputs that do not have a limited range. To support ex-
isting optical flow training procedures, usually in sRGB colorspace,
we extend the linear→sRGB transform by applying a log transform
for values > 1 (more details are in the supplementary). We use this
transform for all inputs of the estimation networks, but, to maintain
linearity, perform warping and apply the kernels in linear RGB. We
observe that, by using this transform, flow networks handle HDR
data well even if trained only with data in the range of [0, 1].

Training. For the training schedule and data we follow [Briedis
et al. 2021] and first train the networks with an L1 loss and then add
the perceptual loss [Niklaus and Liu 2018] for the second stage with
flow tuning. We compute the losses after applying the extended
sRGB color transform to be able to use a pretrained VGG16 [Si-
monyan and Zisserman 2015] network.

Evaluation. We evaluate our method on 75 sequential frame
triplets from movies that are not part of the training dataset. 25
of them are manually selected as challenging sequences, and the
remaining 50 are randomly sampled.We reject trivial samples where
the PSNR of overlaid inputs is larger than 40dB, or both [Bao et al.
2019] and [Briedis et al. 2021] achieve PSNR above 42dB, which we
consider an almost perfect reconstruction. We report the average
PSNR, SSIM, LPIPS1 [Zhang et al. 2018], SMAPE [Vogels et al. 2018],
and the median VMAF2 value over the full dataset.

Runtime. It takes 0.76± 0.01𝑠 to interpolate a single 1920× 804px
frame on an NVIDIA RTX A6000 GPU. To interpolate 10 additional
3-channel layers along the main color, it takes 1.15 ± 0.01𝑠 . In the
same setting, the baseline direct prediction scales linearly and takes
0.52 ± 0.01𝑠 and 5.39 ± 0.03𝑠 respectively.

6.1 Ablation Study

In our ablation study (Table 1) we first evaluate the importance of
the different terms present in our kernel weight estimation model,
namely: the scale 𝑎𝑖𝒚 , the bias 𝑏

𝑖
𝒙 and the dot product compared to

the L2 distance. Additionally, we compare against other synthesis
approaches: direct color prediction (Direct Prediction), kernel pre-
diction based on neural affinities (Affinity-based) as our adaptation
of [Işık et al. 2021], direct Kernel prediction (KP), and a direct multi-
scale KP network. Our proposed kernel based synthesis performs
better than all the alternatives on all error measures. An outlier
in the results is the Affinity-based approach, which suggests that
asymmetric feature maps are necessary for the task of frame inter-
polation. We provide implementation details of these methods in
the supplementary material.

Table 1: Ablative experiments of the proposed components.

The first part evaluates choices made in our weight compu-

tation approach. The second part compares our method with

alternative kernel-prediction (KP) variants and direct output

synthesis (our baseline).

PSNR SSIM LPIPS SMAPE VMAF

↑ ↑ ↓ ↓ ↑

D
yn

am
ic
K
P w/o 𝑎𝑖𝒚 (diverged) n/a n/a n/a n/a n/a

w/o 𝑏𝑖𝒙 35.48 0.952 0.0548 3.193 89.36

w/ dot product 34.97 0.950 0.0583 3.389 89.18

Ours full 35.73 0.953 0.0537 3.171 89.56

Sy
n
th
es
is
M
et
h
od Direct Prediction 35.65 0.952 0.0560 3.317 88.51

Affinity-Based KP 32.73 0.936 0.0902 4.045 79.05

Direct KP 34.96 0.949 0.0594 3.287 86.83

Direct Multi-Scale KP 35.44 0.950 0.0572 3.213 86.72

Ours full 35.73 0.953 0.0537 3.171 89.56

6.2 Comparison with Prior Methods

Comparisons against prior works are presented in Table 2. In this
case adaptive interpolation is not used, andwe just compare the core
interpolation method on full frames. As our model takes advantage

1v0.1.2, ‘alex‘ network
2https://github.com/Netflix/vmaf, v2.2.0

Kernel-Based Frame Interpolation for Spatio-Temporally Adaptive Rendering SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Table 2: Quantitative comparisons with prior methods. In

the first block we report metrics for color-only methods.

The second block contains methods designed for rendered

content.

PSNR SSIM LPIPS SMAPE VMAF
↑ ↑ ↓ ↓ ↑

DAIN [Bao et al. 2019] 27.81 0.882 0.1143 6.695 54.75

AdaCoF [Lee et al. 2020] 27.14 0.867 0.1427 7.604 41.44

BMBC [Park et al. 2020] 26.66 0.867 0.1454 7.736 45.88

CAIN [Choi et al. 2020] 27.24 0.868 0.1762 7.738 44.37

XVFI [Sim et al. 2021] 27.67 0.871 0.1349 7.061 48.94

XVFI (Vimeo) 26.88 0.868 0.1510 7.694 44.42

ABME [Park et al. 2021] 28.12 0.889 0.1426 6.912 48.82

VFIFormer [Lu et al. 2022] 27.99 0.886 0.1405 7.019 50.40

RIFE [Huang et al. 2022] 27.54 0.877 0.1137 6.994 51.65

FILM [Reda et al. 2022] 28.66 0.883 0.1006 6.557 60.16

NFIRC [Briedis et al. 2021] 35.62 0.952 0.0547 3.492 88.94

Ours 35.73 0.953 0.0537 3.171 89.56

of the additional information available for rendered content, it
largely outperforms even most recent image-based video frame
interpolation works [Lu et al. 2022; Reda et al. 2022].

Although our main objective was to increase the possibilities for
frame interpolation through a kernel-based synthesis, our model
also slightly outperforms the previous state-of-the-art interpolation
method for rendered content from Briedis et al. [2021] (NFIRC). By
relying on kernel application for image synthesis, our method is
more robust and by construction cannot produce color artifacts
that can sometimes be observed in the direct prediction outputs,
as shown in Figure 6. Additional visual comparisons including
color-only methods are shown in Figures 7-8.

6.3 Additional Channel Interpolation

The key motivation for our kernel-based interpolation is to allow
the interpolation of any number of layers in a video sequence.
This is already illustrated in Figure 1 for the decomposed per light
contribution. In Figure 9 we show another possible application by
interpolating the alpha channel. To obtain our results we apply the
set of kernels estimated from the color RGB. For NFIRC [Briedis et al.
2021], as it does not support multi-channel interpolation, we run
the network for a second time on the alpha channel (repeated across
channel dimension, using the average of the outputs). To evaluate
the consistency of both outputs, we perform alpha unpremultipli-
cation, i.e. compute 𝑐𝑜𝑙𝑜𝑟 ′ = 𝑐𝑜𝑙𝑜𝑟/(𝑎𝑙𝑝ℎ𝑎 + 10−4), often done for
color grading purposes. NFIRC shows significant artifacts due to
inconsistent interpolation, while our method behaves similarly to
the reference. In addition to the improved results, the possibility
to apply the same estimated kernels also induces run-time savings,
contrary to NFIRC [Briedis et al. 2021] that needs to be run for
every selected layer.

6.4 Adaptive Interpolation

Training Details. To better handle velocity vectors instead of
motion correspondences as produced by Pixar RenderMan, we
double the training dataset size by adding shots from two additional

Table 3: Frame interpolation evaluation with modified flow

network (FN) inputs.

FN Color inputs PSNR SSIM LPIPS

RGB color 35.73 0.953 0.0537

Zeros 35.69 0.953 0.0541

Random Noise 35.65 0.953 0.0541

15 20 25 30 35 40 45 50
rendered pixels, %

34

36

38

40

42

44

PS
NR

, d
B

Strategy:
Adaptive
Fixed interval

Figure 4: Frame interpolation with spatio-temporally adap-

tive vs. fixed intervals. Averaged over 7 shots from animation

movies

movies. Training is done on sequential 3-frame sequences. During
inference we increase the frame gap to the maximum of 25 frames.
We use SMAPE as the image loss for training.

Re-using the Same Flow Network. Table 3 shows our method’s
evaluation with colors in the flow estimation network replaced by
zeros or random noise. As only a small decrease in quality is ob-
served, we conclude that the same network can be used to estimate
motion just from the feature buffers without the color inputs.

Comparisons. We compare our adaptive interpolation with the
baseline of equally-spaced full keyframes by skipping 2 to 6 frames.
The adaptive method is run with the threshold value 𝑝 that requires
rendering fewer pixels. In our experiments, we use a 7-step binary
search to find this threshold value. We evaluate the method on 7

shots with the total of 965 frames and report the average PSNR
results in Figure 4. To avoid undefined PSNR values for rendered full
keyframes, we perform full-shot measurements, e.g. for obtaining
PSNR we first compute the mean squared error over the whole
sequence. For the same (or lower) number of rendered pixels, the
adaptive strategy significantly improves the quality of the results.

In Figure 11 we show the worse-case frame of both strategies
for one of the sequences.

Runtime Breakdown. To evaluate the latency added by an addi-
tional auxiliary buffer rendering pass, we extend Blender’s Cycles
physically-based renderer to record per-tile rendering time and
an option to render only feature buffers. We then use this to ap-
proximate the total latency of rendering on a 32-core CPU and
NVIDIA RTX A6000 GPU. It takes, on average, 0.30 ± 0.01𝑠 to es-
timate the implicit error map, per single frame and interval, with
1920 × 804px frames, while the final mask selection is negligible,

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Briedis et al.

40 50 60 70 80
32-core CPU wall clock time, minutes

37

38

39

40

41

42

43

44

PS
NR

, d
B

Strategy:
Adaptive
Fixed interval

Figure 5: Frame interpolation with spatio-temporally adap-

tive vs. fixed intervals. Averaged over 3 Blender’s shots

taking only 0.62𝑠 to process a whole 96-frame sequence. Figure 5
shows that, similarly to the proportion of rendered pixel, adopting
an adaptive strategy is also well justified in terms of runtime. The
overhead of rendering tiles from different frames is negligible. More
details on the experimental setup and results are available in the
supplementary material.

7 CONCLUSION

Our method is able to achieve production quality frame interpola-
tion results by increasing robustness through an attention-inspired
kernel prediction approach. It also significantly improves efficiency
through introducing spatio-temporal adaptivity. As such we are
able to take a step further into the wider adoption of frame interpo-
lation as a standard tool for enabling cost savings in high quality
rendering. There are still remaining challenges, in particular with
interpolations that would require detail hallucination (see Figure
11), and promising avenues for future work. For example there is in-
teresting potential for scenes with complex elements such as fluids,
reflections and shadows by interpolating the different components
separately. Regarding adaptive interpolation, focusing on capturing
lighting changes and using all partial inputs could further increase
efficiency. Another interesting area for further explorations is on
how to optimally combine adaptive interpolation with the state-of-
the-art temporal MC denoising methods.

ACKNOWLEDGMENTS

We thank Shilin Zhu and David Adler for their feedback and for
providing the evaluation and training datasets. We also thank the
anonymous reviewers for their helpful comments. The method was
trained and tested on production imagery but the results were not
part of the released productions.

REFERENCES
Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,

Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. Kernel-Predicting Convo-
lutional Networks for Denoising Monte Carlo Renderings. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2017) 36, 4, Article 97 (2017), 97:1ś97:14 pages.
https://doi.org/10.1145/3072959.3073708

Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan
Yang. 2019. Depth-Aware Video Frame Interpolation. In IEEE Conference on Com-
puter Vision and Pattern Recognition.

Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang.
2021. MEMC-Net: Motion Estimation and Motion Compensation Driven Neural
Network for Video Interpolation and Enhancement. IEEE Transactions on Pattern
Analysis and Machine Intelligence 43, 3 (2021), 933ś948. https://doi.org/10.1109/
TPAMI.2019.2941941

Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal, Markus Gross,
and Christopher Schroers. 2021. Neural Frame Interpolation for Rendered Content.
ACM Trans. Graph. 40, 6, Article 239 (dec 2021), 13 pages. https://doi.org/10.1145/
3478513.3480553

Jiawen Chen, Andrew Adams, Neal Wadhwa, and Samuel W. Hasinoff. 2016. Bilateral
Guided Upsampling. ACM Trans. Graph. 35, 6, Article 203 (dec 2016), 8 pages.
https://doi.org/10.1145/2980179.2982423

Zhixiang Chi, Rasoul Mohammadi Nasiri, Zheng Liu, Juwei Lu, Jin Tang, and Konstanti-
nos N. Plataniotis. 2020. All at Once: Temporally AdaptiveMulti-frame Interpolation
with Advanced Motion Modeling. In Computer Vision ś ECCV 2020, Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International
Publishing, Cham, 107ś123.

Zhixiang Chi, Rasoul Mohammadi Nasiri, Zheng Liu, Yuanhao Yu, Juwei Lu, Jin Tang,
and Konstantinos N Plataniotis. 2022. Error-Aware Spatial Ensembles for Video
Frame Interpolation. arXiv preprint arXiv:2207.12305 (2022).

Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, and Kyoung Mu Lee. 2020.
Channel Attention Is All You Need for Video Frame Interpolation. In AAAI.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1511.07289

DuolikunDanier, Fan Zhang, andDavid Bull. 2022. ST-MFNet: A Spatio-TemporalMulti-
Flow Network for Frame Interpolation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 3521ś3531.

Tianyu Ding, Luming Liang, Zhihui Zhu, and Ilya Zharkov. 2021. CDFI: Compression-
Driven Network Design for Frame Interpolation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 8001ś8011.

Elmar Eisemann and FrédoDurand. 2004. Flash Photography Enhancement via Intrinsic
Relighting. ACM Trans. Graph. 23, 3 (aug 2004), 673ś678. https://doi.org/10.1145/
1015706.1015778

D. Fourure, R. Emonet, E. Fromont, D. Muselet, A. Tremeau, and C. Wolf. 2017.
Residual conv-deconv grid network for semantic segmentation. arXiv preprint
arXiv:1707.07958 (2017).

Jie Guo, Xihao Fu, Liqiang Lin, Hengjun Ma, Yanwen Guo, Shiqiu Liu, and Ling-Qi
Yan. 2021. ExtraNet: Real-Time Extrapolated Rendering for Low-Latency Temporal
Supersampling. ACM Trans. Graph. 40, 6, Article 278 (dec 2021), 16 pages. https:
//doi.org/10.1145/3478513.3480531

KaimingHe, Jian Sun, and Xiaoou Tang. 2013. Guided Image Filtering. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35, 6 (2013), 1397ś1409. https://doi.
org/10.1109/TPAMI.2012.213

Ping Hu, Simon Niklaus, Stan Sclaroff, and Kate Saenko. 2022. Many-to-many Splatting
for Efficient Video Frame Interpolation. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2022), 3543ś3552.

Zhewei Huang, Tianyuan Zhang,WenHeng, Boxin Shi, and Shuchang Zhou. 2022. Real-
Time Intermediate Flow Estimation for Video Frame Interpolation. In Proceedings
of the European Conference on Computer Vision (ECCV).

Junhwa Hur and Stefan Roth. 2019. Iterative Residual Refinement for Joint Optical
Flow and Occlusion Estimation. In CVPR.

Mustafa Işık, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaël
Gharbi. 2021. Interactive Monte Carlo Denoising Using Affinity of Neural Features.
ACM Trans. Graph. 40, 4, Article 37 (jul 2021), 13 pages. https://doi.org/10.1145/
3450626.3459793

Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller,
and Jan Kautz. 2018. Super slomo: High quality estimation of multiple intermediate
frames for video interpolation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 9000ś9008.

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning
Approach for Filtering Monte Carlo Noise. ACM Trans. Graph. 34, 4, Article 122
(jul 2015), 12 pages. https://doi.org/10.1145/2766977

Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, and Du Tran. 2021. FLAVR:
Flow-Agnostic Video Representations for Fast Frame Interpolation. (2021).

Lingtong Kong, Boyuan Jiang, Donghao Luo, Wenqing Chu, Xiaoming Huang, Ying Tai,
Chengjie Wang, and Jie Yang. 2022. IFRNet: Intermediate Feature Refine Network
for Efficient Frame Interpolation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 1969ś1978.

Alexandr Kuznetsov, Nima Khademi Kalantari, and Ravi Ramamoorthi. 2018. Deep
adaptive sampling for low sample count rendering. In Computer Graphics Forum,
Vol. 37. Wiley Online Library, 35ś44.

Hyeongmin Lee, Taeoh Kim, Tae young Chung, Daehyun Pak, Yuseok Ban, and Sangy-
oun Lee. 2020. AdaCoF: Adaptive Collaboration of Flows for Video Frame Interpo-
lation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Kernel-Based Frame Interpolation for Spatio-Temporally Adaptive Rendering SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Sungho Lee, Narae Choi, and Woong Il Choi. 2022. Enhanced Correlation Matching
based Video Frame Interpolation. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. 2839ś2847.

Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-Based Optimization for
Adaptive Sampling and Reconstruction. ACM Trans. Graph. 31, 6, Article 194 (nov
2012), 9 pages. https://doi.org/10.1145/2366145.2366213

Yihao Liu, Liangbin Xie, Li Siyao, Wenxiu Sun, Yu Qiao, and Chao Dong. 2020. En-
hanced quadratic video interpolation. In European Conference on Computer Vision
Workshops.

Gucan Long, Laurent Kneip, Jose M Alvarez, Hongdong Li, Xiaohu Zhang, and Qifeng
Yu. 2016. Learning image matching by simply watching video. In European Confer-
ence on Computer Vision. Springer, 434ś450.

Liying Lu, Ruizheng Wu, Huaijia Lin, Jiangbo Lu, and Jiaya Jia. 2022. Video Frame
Interpolation With Transformer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 3532ś3542.

Simone Meyer, Abdelaziz Djelouah, Brian McWilliams, Alexander Sorkine-Hornung,
Markus Gross, and Christopher Schroers. 2018. PhaseNet for Video Frame Inter-
polation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Simone Meyer, Oliver Wang, Henning Zimmer, Max Grosse, and Alexander Sorkine-
Hornung. 2015. Phase-Based Frame Interpolation for Video. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1410ś1418.
https://doi.org/10.1109/CVPR.2015.7298747

Simon Niklaus, Ping Hu, and Jiawen Chen. 2023. Splatting-Based Synthesis for Video
Frame Interpolation. In Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV). 713ś723.

Simon Niklaus and Feng Liu. 2018. Context-Aware Synthesis for Video Frame In-
terpolation. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Simon Niklaus and Feng Liu. 2020. Softmax Splatting for Video Frame Interpolation.
In IEEE Conference on Computer Vision and Pattern Recognition.

Simon Niklaus, Long Mai, and Feng Liu. 2017a. Video Frame Interpolation via Adaptive
Convolution. In IEEE Conference on Computer Vision and Pattern Recognition.

Simon Niklaus, Long Mai, and Feng Liu. 2017b. Video Frame Interpolation via Adaptive
Separable Convolution. In IEEE International Conference on Computer Vision.

Simon Niklaus, Long Mai, and Oliver Wang. 2021. Revisiting Adaptive Convolutions
for Video Frame Interpolation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV). 1099ś1109.

Moritz Nottebaum, Stefan Roth, and Simone Schaub-Meyer. 2022. Efficient Feature
Extraction for High-resolution Video Frame Interpolation. In British Machine Vision
Conference BMVC.

Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim. 2020. BMBC: Bilateral
Motion Estimation with Bilateral Cost Volume for Video Interpolation. In Computer
Vision ś ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm (Eds.). Springer International Publishing, Cham, 109ś125.

Junheum Park, Chul Lee, and Chang-Su Kim. 2021. Asymmetric Bilateral Motion Esti-
mation for Video Frame Interpolation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). 14539ś14548.

Georg Petschnigg, Richard Szeliski, Maneesh Agrawala, Michael Cohen, Hugues Hoppe,
and Kentaro Toyama. 2004. Digital Photography with Flash and No-Flash Image
Pairs. ACM Trans. Graph. 23, 3 (aug 2004), 664ś672. https://doi.org/10.1145/1015706.
1015777

Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, and
Brian Curless. 2022. FILM: Frame Interpolation for Large Motion. In European
Conference on Computer Vision (ECCV).

Wentao Shangguan, Yu Sun, Weijie Gan, and Ulugbek S. Kamilov. 2022. Learning
Cross-Video Neural Representations for High-Quality Frame Interpolation. In Proc.
European Conference on Computer Vision (ECCV). Tel Aviv, Israel, 511ś528.

Zhihao Shi, Xiangyu Xu, Xiaohong Liu, Jun Chen, and Ming-Hsuan Yang. 2022. Video
Frame Interpolation Transformer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 17482ś17491.

Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. 2021. XVFI: eXtreme Video Frame
Interpolation. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV).

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In International Conference on Learning Repre-
sentations.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. 2018. Pwc-net: Cnns for
optical flow using pyramid, warping, and cost volume. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 8934ś8943.

Zachary Teed and Jia Deng. 2020. RAFT: Recurrent All-Pairs Field Transforms for
Optical Flow. In Computer Vision - ECCV 2020 - 16th European Conference (Lecture
Notes in Computer Science, Vol. 12347). Springer, 402ś419. https://doi.org/10.1007/
978-3-030-58536-5_24

C. Tomasi and R. Manduchi. 1998. Bilateral filtering for gray and color images. In Sixth
International Conference on Computer Vision (IEEE Cat. No.98CH36271). 839ś846.
https://doi.org/10.1109/ICCV.1998.710815

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill,
David Adler, Mark Meyer, and Jan Novák. 2018. Denoising with Kernel Prediction
and Asymmetric Loss Functions. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2018) 37, 4, Article 124 (2018), 124:1ś124:15 pages. https://doi.org/10.
1145/3197517.3201388

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton
Kaplanyan. 2020. Neural Supersampling for Real-Time Rendering. ACM Trans.
Graph. 39, 4, Article 142 (July 2020), 12 pages. https://doi.org/10.1145/3386569.
3392376

Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-Hsuan Yang. 2019. Quadratic
Video Interpolation. In Advances in Neural Information Processing Systems, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. dÀlché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
d045c59a90d7587d8d671b5f5aec4e7c-Paper.pdf

Tianfan Xue, Baian Chen, JiajunWu, Donglai Wei, andWilliam T Freeman. 2019. Video
enhancement with task-oriented flow. International Journal of Computer Vision 127,
8 (2019), 1106ś1125.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.

Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, OliverWang, David Adler, Wojciech
Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung. 2015. Path-space
Motion Estimation and Decomposition for Robust Animation Filtering. Computer
Graphics Forum (Proceedings of EGSR) 34, 4 (June 2015). https://doi.org/10/f7mb34

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Briedis et al.

Ours Inputs NFIRC Ours Reference

PSNR | SSIM | LPIPS 36.13 dB | 0.970 | 0.1427 43.97 dB | 0.988 | 0.0470Ours Inputs NFIRC Ours Reference

PSNR | SSIM | LPIPS 27.97 dB | 0.828 | 0.2560 28.07 dB | 0.841 | 0.1796Ours Inputs NFIRC Ours Reference

PSNR | SSIM | LPIPS 17.22 dB | 0.685 | 0.3937 17.62 dB | 0.694 | 0.3513Ours Inputs NFIRC Ours Reference

PSNR | SSIM | LPIPS 24.91 dB | 0.904 | 0.1715 24.70 dB | 0.915 | 0.1468

Figure 6: Qualitative comparison with the NFIRC [Briedis et al. 2021] method. It can be observed that our method is much

more robust to color artifacts than the prior direct prediction method. © 2023 Disney

Ours Reference

Inputs DAIN VFIformer FILM NFIRC Ours Reference
PSNR | SSIM | LPIPS 21.55 dB | 0.909 | 0.0845 21.95 dB | 0.920 | 0.0779 21.51 dB | 0.908 | 0.0720 36.07 dB | 0.984 | 0.0159 36.12 dB | 0.983 | 0.0177

Figure 7: Visual comparison with both color-only and renderings frame interpolation methods. © 2023 Disney

Kernel-Based Frame Interpolation for Spatio-Temporally Adaptive Rendering SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Ours Reference

Inputs DAIN VFIformer FILM NFIRC Ours Reference
PSNR | SSIM | LPIPS 32.95 dB | 0.960 | 0.0221 33.60 dB | 0.969 | 0.0181 33.78 dB | 0.969 | 0.0166 40.68 dB | 0.988 | 0.0090 40.88 dB | 0.987 | 0.0123

Figure 8: Visual comparison with both color-only and renderings frame interpolation methods. © 2023 Disney / Pixar

Interpolated Alpha Channel Unpremultiplied Alpha

NFIRC Ours Reference
PSNR | SSIM | LPIPS22.97 dB | 0.826 | 0.114316.86 dB | 0.519 | 0.4956

Figure 9: Results of the alpha channel interpolation,

visualized by performing alpha unpremultiplication

with the interpolated color and alpha. See the text

(Section 6.3) for more details. © 2023 Disney / Pixar

Ours Reference

Inputs NFIRC Ours Reference
PSNR | SSIM | LPIPS 48.14 dB | 0.996 | 0.0037 47.52 dB | 0.995 | 0.0050

Figure 10: A difficult interpolation example where the mouth opens

and closes between the keyframes, thus some of the regions are not

present in any of the inputs. Direct prediction attempts to generate

some details, but produces slight artifacts. Our kernel-based method

inpaints it from neighboring regions. © 2023 Disney

Fixed
Interval

Adaptive
Interpolation

Worst-CaseWorst-Case

Figure 11: Visual comparison of frames with the lowest PSNR of the sequence, generated by fixed (left) and adaptive (right)

interval interpolation, both using the rendering budget of 20%. The plot (middle) shows PSNR of every frame after applying a

3-element minimum filter. © 2023 Disney / Pixar

