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A Simulation – Ablation and Parameter Exploration
Ablation of Wrinkle Drawing Alternatives As described in Section 3.2.1 of the
main paper, we render pores and wrinkles by instantiating geometry patches. Based
on this drawing algorithm, we can derive three desired properties of the wrinkle shape
function S(x). First, at the center of the wrinkle it should be deepest, S(0) =−1. Second,
it should have a finite support, after which it returns to zero, i.e., ∃x̂ : S(x′) = 0 ∀x′ > x̂.
Third, the shape should approach zero smoothly, i.e. S′(x̂) = 0. The second property
allows us to set a finite width of the wrinkle geometry for rendering. For shape functions
that violate that property, we need to artifically cut off the geometry, resulting in a kink
and also violating the third property.

In the literature, three shape functions were previously proposed by Bando et al.
[BKN02] (also used by Li et al. [LXZ07], Bickel et al. [BBA∗07], and Vanderfeesten
and Bikker [VB18]), by Li et al. [LLLC11] and by Zhang and Sim [ZS05]. We refer
to Fig. 1 for the definition of these three functions and a visualization. All these three
functions fail to satisfy constraint two, they exhibit infinite support.

Therefore, we proposed two new wrinkle shape functions satisfying all three con-
straints in Section 3.2.1, see Fig. 1 blue for a visualization. The five different wrinkle
shape functions applied to an actual simulation result is visualized in Fig. 2. In the
insets, one can see the artifacts introduced by cutting off the infinite support of the shape
functions by Bando, Li, or Zhang, small jumps are visible.

Since multiple wrinkle geometry instances might cover the same texel in the dis-
placement map, we have to define blending functions. To make full use of the graphics
pipeline, we have to formulate the blending step using commutative operations to avoid
costly fragment linked list. Let si ∈ R be the displacement (negative for the wrinkle
valley, positive for the bulge) of the i-th wrinkle that is drawn over a given texel. The
simplest blending option is to accumulate the maximal and minimal values over all
wrinkles using a two-channel framebuffer with maximum-blending:

svalley = max
i

max(0,−si) , sbulge = max
i

max(0,si). (1)
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Figure 1: Visualization of the proposed wrinkle shape functions in literature (red) and
the two new proposed variants (blue). The basic shape profile s(x) is then scaled by the
depth and width of the wrinkle before applying it.

The final displacement that is written to the displacement map is then given as sbulge−
svalley. This blending mode, however, leads to sharp transitions and corners when
wrinkles meet, see Fig. 3a. Therefore, we opt to use the MellowMax-function [AL17]
instead, that provides a smooth approximation of the maximum originally defined as

N
max
i=1

(si)≈
1
β

log

(
1
N

N

∑
i=1

exp(βsi)

)
, (2)

with β = 20. If, however, the number N of blended wrinkles change, the displacement
map still exhibits a small jump. We therefore propose to virtually “fill up” the maximum
function with fragments of zero depth giving rise to the modified MellowMax-function
as presented in Equation 10 of the main paper. This, in total, leads to a much smoother
blending of the wrinkles as can be seen in Fig. 3b.

Parameter Exploration The presented simulation and rendering algorithm is quite
versatile in the effects it can produce. In Fig. 4 we show 30 uncurated random samples
of a simulation with two levels and the parameter ranges detailed in Table 1 of the main
paper. The only change employed for this demonstration, is that the base orientation αs
is set to zero to focus more on wrinkles with a strong primary orientation. Despite this,
examples with a more isotropic wrinkle distribution are still obtained due to the αcont
parameter.

As an example of concrete values used in practice, Table 1 lists the parameter values
used to generate the results from the main paper. Furthermore, this table lists the time
needed to sample the graph (on the CPU), perform one simulation step (CUDA) and to
draw the wrinkle geometry into the 16k displacement map (OpenGL). Renderings of
the two face models with albedo can be found in Fig. 5.
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Bando Li Zhang Ours w/ bulge Ours w/o bulge

Figure 2: Comparison of the wrinkle shape functions when applied on multiple wrinkles.
The first row shows the normal map generated from the displacements, the second row
a Phong-shaded rendering.

a) b)

Figure 3: Using a hard maximum function (a) to combine the displacements of adjacent
wrinkles leads to sharp transitions and corners. Using the MellowMax-function [AL17]
(b) leads to smoother transitions.
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Figure 4: Uncurated random samples of the simulation and rendering parameters with
two levels in the simulation, shaded with a single directional light.
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Figure 5: Renderings of the face models from the main paper using the captured albedo
map instead of a solid dark blue color.
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Figure 6: Three synthetic scenes (A, B, C) used to determine the best loss function and
shading parameters.

B Particle Swarm Optimization – Extended Results
Ablation of the loss function on synthetic data In this section we present additional
results and evaluations on the choice of loss function for the particle swarm optimization.
Since for real-world scans we have no quantitative way of measuring how good or bad
a particular reconstruction is, we conduct the experiments on three synthetic patches
generated with the simulation using two layers, shown in Fig. 6.

Next, to evaluate different loss functions, we have to establish a ground truth score.
In the case of synthetic patches, we can use the distance to the target in parameter space.
However, not all simulation and rendering parameters contribute equally to the visual
appearance. Therefore, we take a synthetic scene (we use scene B), vary each parameter
individually over the full parameter range and record the loss score, see Fig. 7. Then,
per parameter we record the maximal loss value relative to the maximal loss value of
all parameters and use this as an indication of the importance of that parameter. For
example, the pore distance αd has the highest importance (see Fig. 8bc), followed by
the orientation parameters αθ,αs, etc. With this, we define the loss function Lparam as
the absolute difference in parameter space with each parameter scaled by the above
importance.

We now evaluate eight different loss functions applied on the displacement map
for the particle swarm optimization. We refer to Section 4.2.1 for the remaining
hyperparameters. The eight loss functions are: First, a Gram-matrix style loss [GEB16]
applied after the 1st, 3rd, 5th or 7th layer in VGG-19 [SZ14], or all four layers combined.
Second, AdaIn style loss [HB17] using the mean and variance of the VGG layers after
the 3rd, 7th layer, or all VGG layers as described by Huang and Belongie [HB17].
For each synthetic example, we launch three optimization runs, leading to a total of 9
samples per loss function.

As one can see in Fig. 9a, choosing a loss function that operates on the early layer of
the VGG network is suboptimal. For the remaining loss functions, the resulting score is
effectively identical within their uncertainty. We chose the AdaIn-style loss on all layers
as it provides the least amount of variance. We empirically observed in optimizations
on real-world patches by Graham et al. [GTB∗13] that the AdaIn-style loss on all layers
also performs best in terms of a visual match.
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Figure 7: Plot of the loss function scores if a single parameter is varied at a time for the
second synthetic scene. The red plot shows the scores for the Gram-matrix style loss
as presented by Gatys et al. [GEB16], the blue plot the scores for the mean-variance
style loss (AdaIn) as presented by Huang and Belongie [HB17]. The percentages next
to the parameter name describes the relative maximal loss value for that parameter. The
variance plots for the other two synthetic scenes are omitted for brevity but look similar.
Examples for the explored ranges are shown in Fig. 8.

Note that we are aware of the cyclic dependency: to quantitatively evaluate style loss
functions, we have to use style loss functions to find the per-parameter scales. However,
we found that the found that the estimated Lparam and the found style loss coincide well
with a qualitative impression of the reconstructed displacements. This further lessens
the bias if the same loss function used for evaluation is used in the PSO (see Fig. 9b).

Further results on the Graham dataset Graham et al. [GTB∗13] present a dataset
of 15 displacement maps captured from three subjects. These are measurements from
real skin, covering features at different scales from coarse variation to fine noise. The
result of running the particle swarm optimization on all displacement maps are shown
in Fig. 10.
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a)

b) c)

d) e)

Figure 8: Examples of the range of variations explored in Fig. 7. For the variance plots,
only the first layer of the synthetic example is used (a). (b,c) shows the simulation with
the minimal and maximal value for the pore distance and (d,e) for the edge width.
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Figure 9: Comparison on different loss functions in the particle swarm optimization,
averaged over the three synthetic examples and three runs each in the box plots. Each
small orange circle represents a single run. We use a calibrated distance in parameter
space (a) to avoid the bias if the same loss function used for evaluation is used in the
PSO (b).
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Figure 10: Particle swarm optimization on the Graham dataset [GTB∗13]. The five
different patches on the skin are shown along the rows, the three subjects along the
columns. For each block of 2x2 images, the reference displacement map (ref. displ.),
shaded reference (ref. shaded), optimized displacement map (pred. displ.) and shaded
optimized displacement map (pred. shaded) is shown.
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