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This supplemental document contains more details on our imple-
mentation, additional results and comparisons with other methods.

1 MAPPING FUNCTION
Given the the canonical spaceD𝐶 , the material spaceD𝑀 of a target
identity, and a bijective mapping function 𝜙 between these two
spaces: 𝜙 : x ∈ D𝑀 → X ∈ D𝐶 , and 𝜙−1 : X ∈ D𝐶 → x ∈ D𝑀 . We
define the actuation tensor field on D𝐶 as A, which will be warped
to D𝑀 as Ã to deform the target face.
The energy function defined on D𝐶 is

𝐸 =

∫
D𝐶

1
2
F(X) − R∗ (X)A(X)

2
𝐹
𝑑𝑉 (1)

What if we directly push forward it to D𝑀 .

𝐸 =

∫
D𝑀

1
2

F(x) 𝜕𝜙−1 (X)𝜕X
− R∗ (x)A(𝜙 (x))

2
𝐹

���� 𝜕𝜙 (x)𝜕x

����𝑑𝑣, (2)

where F(x) is the deformation gradient measured in D𝑀 , This is
the typical way to view the simulation in different spaces (material
space and Eulerian space). However, in current setting, the canoni-
cal space D𝐶 and the target space D𝑀 are two independent spaces,
this pushing forward is not meaningful, e.g., the deformation gradi-
ent should not be accumulated as F(x) 𝜕𝜙

−1 (X)
𝜕X . To see this, we can

assume the actuation tensors are all identity matrices (no induced

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0315-7/23/12. . . $15.00
https://doi.org/10.1145/3610548.3618156

deformation). Then, ideally, the target identity should remain unde-
formed. But if we use the energy function (2) to run the simulator
for the target identity, it will be dragged into the canonical space,
which is not what we want.

What should change is the actuation tensor, which could be de-
composed into contractile directions and the magnitudes. Instead
of directly warping the actuation tensor using A(𝜙 (x)), which is
not semantically consistent as shown in Fig. 1, we couple it with
the Jacobian of 𝜙−1, i.e., 𝜕𝜙

−1 (X)
𝜕X . Specifically, two things are taken

into consideration. First, the magnitudes should not change along
with 𝜕𝜙−1 (X)

𝜕X , otherwise there will be extra deformation induced
for the rest shape of the target mesh. Second, the contractile di-
rections should correlate with 𝜕𝜙−1 (X)

𝜕X , e.g., to rotate consistently,
thus preserving semantic meaning. To achieve this goal, we could
factorize out the rotational component R𝜙−1 of 𝜕𝜙−1 (X)

𝜕X , then the
warped actuation tensor is Ã(x) = R𝜙−1A(𝜙 (x))R⊤

𝜙−1 . The energy
function for simulation is then

𝐸 =

∫
D𝑀

1
2

F(x) − R∗ (x)Ã(x)
2
𝐹
𝑑𝑣 (3)

Fig. 1 and Fig. 2 show the basic idea. In practice, we don’t need
to train two separate networks for 𝜙 and 𝜙−1, since we have the
following implicit relation

𝜕𝜙−1 (X)
𝜕X

=
𝜕𝜙 (x)
𝜕x

−1
, (4)

therefore R𝜙−1 = R−1
𝜙

= R⊤
𝜙
. Putting this together, we have Ã(x) =

R⊤
𝜙
A(𝜙 (x))R𝜙 . As shown in Fig. 4, the network architecture for 𝜙

is composed of 4 SIREN layers with the hyperparameter 𝜔0 = 5, and
one linear layer. For simplicity, we train such a network for each
identity. The training takes 100000 iterations, with a learning rate
of 1𝑒 − 4 that starts to linearly decay to 0 after 50000 iterations. The
elastic regularization weight _𝑒 in Eq. 2 in the main paper is set to 10.
To evaluate this term, we sample 𝑁𝑒 vertices in total: the simulation
vertices plus randomly sampled points (one point per element of
the simulation mesh). Training takes about 1 hour. After training,
the necessary information for the warp operation is evaluated once
and reused in the training of the multi-identity framework. The
statistics of our 6 mapping networks 𝜙 are shown in Fig. 3. Note
that in addition to the vertex error of the explicit surface constraint,

1
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Template Naive Warp Proposed Warp

Fig. 1. Comparison of the warp methods. The first column is the template
mesh with the actuation patterns (cross mark) in the canonical space. The
other columns are target meshes with the actuation patterns warped with
different methods. Better to zoom in to see the orientation of the cross
marks.

Reference Naive Warp Proposed Warp

Fig. 2. The first column is the reference mesh after deformation induced by
the actuation. The other columns are the target meshes after deformation
induced by the actuations warped with different methods.

Determinant Anisotropy Error

Fig. 3. The statistics of ourmapping functions. The 𝑦-axis is identity number,
and the 𝑥-axis is the value of the corresponding measurement. The color of
the heatmap indicates the percentage of the sampled points that fall into
the corresponding bin. The first column shows the heatmaps of determinant
of the Jacobian matrix of the mapping functions, the second column shows
the heatmaps of the ratio of the largest to the smallest singular values of
the Jacobian matrix, and the third column shows the heatmaps of the vertex
error.

we also report the volumetric statistics of the Jacobian of 𝜙 . The
volumetric statistics are generated by randomly sampled the same
amount of points as in evaluating the elastic regularization term.

2 MULTI-IDENTITY ARCHITECTURE AND TRAINING
Our network architecture is shown in Fig. 4. First, the input 19-
dimensional expression code and 4-dimensional identity code are
mapped into a higher dimensional space via two tiny MLPs (akin to
learned positional encoding), and subsequently get concatenated to
result in the activation code z. z is the direct input to the generative
transformation networkN𝐵 , and also serves as the modulation input

for the generative actuation network N𝐴 . We design the activation
functions shown in the figure for the following considerations. Yang
et al. [2022] propose to use SIREN as the backbone ofN𝐴 , which we
find to be unstable, extremely sensitive to initialization, and prone
to produce noisy results. Thus, we replace all the SIREN layers with
GeLU layers except the first layer which serves as the learnable
positional encoding. Other positional encoding methods could also
be applied here. Since GeLU activation function is unbounded from
above, we use the tanh activation function to bound the modulation
input. In order to add Lipschitz constraint, we augment each GeLU
layer 𝑖 with a Lipschitz weight normalization layer [Liu et al. 2022]
that has a trainable Lipschitz bound 𝑐𝑖 . For more details of the
Lipschitz weight normalization layer, please refer to Liu et al. [2022].

Following the two-stage training strategy inspired by [Srinivasan
et al. 2021; Yang et al. 2022], we commence with a plausible approxi-
mation of the actuation tensor field and jaw transformation for each
target pose. This is based on passive muscle simulation [Srinivasan
et al. 2021] and the tracking method delineated in [Zoss et al. 2019].
This phase aids in warming up the training without the necessity for
a differentiable simulator. In the second stage, we train the network
with the integration of a collision-agnostic differentiable simula-
tor. For Eq. 7 in the main paper, we assign values of 1𝑒 − 3 to _𝑎𝑐𝑡
and 1𝑒 − 6 to _𝑙𝑖𝑝 . We use the sampled actuation tensors used for
simulation in L𝑎𝑐𝑡 . The initial stage runs for 400 epochs (roughly
16 hours), using a learning rate of 1𝑒 − 4 which linearly decays
to zero after the 200th epoch. The second stage, lasting 20 epochs
(approximately 30 hours), starts with a learning rate of 5𝑒 − 5 which
begins a linear decay to zero right from the start. The batch size
for all stages is set to 6. Notably, in the second stage, the varying
simulation meshes across identities render the computational graph
identity-dependent, which precludes naive identity batching. To
address this, we apply a distributed data parallel strategy and train
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Fig. 4. The architectures of our networks. The first row shows the architec-
ture of our mapping network 𝜙 . The bottom row shows the architecture of
our multi-identity framework. The channel number for each layer is shown
on the arrows.
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our network on multiple GPUs. For the second stage, our frame-
work takes around 6 seconds per iteration on average, covering both
forward and backward passes.

2.1 Simulation
Recall that our simulation framework consists of three energy terms:
shape targeting, bone attachment, and contact energies. The first
two terms are based on Projective Dynamics [Bouaziz et al. 2014],
where the local constraint can be generally represented as follows:

𝐸𝑖 (u) = min
y𝑖

𝜔𝑖

2 | |G𝑖S𝑖u − B𝑖y𝑖 | |2𝐹 s.t. 𝐶𝑖 (y𝑖 ) = 0, (5)

where u denotes the simulation vertices, 𝜔𝑖 is a weight coefficient,
and y𝑖 an auxiliary variable, embodying the target position. S𝑖 is
a selection matrix choosing DOFs involved in 𝐸𝑖 . G𝑖 and B𝑖 are
designed to facilitate the distance measure. For the shape targeting
energy, G𝑖 maps u to the deformation gradient F𝑖 . B𝑖 comes from
the input actuation tensor A𝑖 and y𝑖 denotes the rotation matrix,
projected from F𝑖A𝑖 . For the bone attachment energy, G𝑖 extracts
the embedded bone vertex from u, while B𝑖 becomes an identity
matrix and y𝑖 is directly the given target position. The total energy
𝐸 (u) is the sum of all these local constraints. After converging to
a local minimum, we can calculate the sensitivity matrices for the
input variables of interest with implicit differentiation. For example,
the sensitivity matrix of u with respect to A𝑖 is given by:

𝜕u
𝜕A𝑖

= −
(
∇2𝐸

)−1 𝜕∇𝐸
𝜕A𝑖

. (6)

For collision modeling, we employ the IPC model [Li et al. 2020],
which utilizes the incremental barrier energy 𝐵(u). We set the dis-
tance threshold 𝑑 to 0.001𝑙 , where 𝑙 denotes the diameter of the
chosen identity. With respect to differentiable simulation, the cal-
culation of the sensitivity matrices needs adjustment. For instance,
the sensitivity matrix of u in relation to A𝑖 is given by:

𝜕u
𝜕A𝑖

= −
(
∇2𝐸 + ∇2𝐵

)−1 𝜕∇u𝐸

𝜕A𝑖
. (7)

Note that incorporating the collision model into the simulation will
increase the computational cost. For each frame, simulating from
the rest shape takes around 30 seconds on average. However, we
find that during animation, using the previous frame as the initial
state can significantly reduce the simulation time to around 6-10
seconds per frame on average.

3 OTHER EXPERIMENTAL RESULTS
Comparison with the displacement network. We demonstrate the

superiority of our physics-based model by contrasting it with a
displacement variant that disregards physics and directly regresses
the displacement field. In order to maintain parity, the displacement
field is also learned in the canonical space, employing the same
Lipschitz regularization and geometric loss function as our actuation
network. We utilize a similar network architecture, simply adjusting
the dimension of the final layer to three.

As shown in Fig. 5, despite the displacement network’s inability
to manage collision, it also suffers from problems like sudden shape
distortion in the lip region, further emphasizing the benefits of our
physics-based approach.

We also compare the displacement network with our physics-
based model in terms of style transfer task. As shown in Fig. 6, our
physics-based model can better preserve the identity and expression
of the source face, while the displacement network suffers from
severe volume change and lip penetration in the lip region.

Shape Mouth Cut-away Shape Mouth Cut-away

Source Displacement Ours

Fig. 5. Comparison between our displacement network and our actuation
network in terms of retargeting.

Original Style Displacement Ours

Fig. 6. Style transfer comparison between our model and the model without
canonical space (Model-N). Note how the actuation field is inconsistent
across the identities in Model-N for the same style.
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