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Abstract

RELU networks have remained the default choice for models in the area of image
prediction despite their well-established spectral bias towards learning low fre-
quencies faster, and consequently their difficulty of reproducing high frequency
visual details. As an alternative, sin networks showed promising results in learning
implicit representations of visual data. However training these networks in practi-
cally relevant settings proved to be difficult, requiring careful initialization, dealing
with issues due to inconsistent gradients, and a degeneracy in local minima. In
this work, we instead propose replacing a baseline network’s existing activations
with a novel ensemble function with trainable parameters. The proposed METASIN
activation can be trained reliably without requiring intricate initialization schemes,
and results in consistently lower test loss compared to alternatives. We demonstrate
our method in the areas of Monte-Carlo denoising and image resampling where we
set new state-of-the-art through a knowledge distillation based training procedure.
We present ablations on hyper-parameter settings, comparisons with alternative ac-
tivation function formulations, and discuss the use of our method in other domains,
such as image classification.

1 Introduction

Deep convolutional neural networks are highly proficient in a wide array of tasks including image
prediction applications. While there is no scarcity of inventive methods when it comes to designing
convolutional blocks (e.g. [25]), another crucial design element, namely the activation function,
has seen little change over the years. The RELU activation, despite (and arguably because of) its
simplicity has remained the default choice for majority of the models in the area of image prediction.

It is often desirable for models that produce visual results to produce sharp imagery with abundant
high frequency details. The widespread use of RELU networks for image prediction applications
is somewhat surprising given their spectral bias towards learning low frequencies first [33], and
consequently their difficulty in reproducing high frequency visual details. While sin activations have
been shown to be superior in simple overfitting experiments on image reconstruction [39], empirical
evidence showed that training sin networks in practically relevant settings is challenging even when
employing meticulous initialization schemes. While some exploration on using sin activations with
convolutional networks exists [8], their use has been mostly limited to fully connected architectures.

In this work we make the following contributions:
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• We shed light on challenges associated with training networks with sin-based activations
through an extensive set of experiments, and address those by formulating the METASIN
activation coupled with a stable training procedure.

• We show that METASIN networks consistently enable improvements over alternatives when
tested on comparable architectures in a variety of image prediction applications, including
Monte-Carlo denoising and image resampling where we set new state-of-the-art.

• We present a wide range of ablations on hyperparamter settings, comparisons with various
alternative activations, and discuss the use of METASIN networks in other domains such as
classification and neural signal representations.

2 Related Work

Activation Functions In addition to standard non-polynomial functions such as Sigmoid, tanh,
sin, RELU, and exp, numerous alternative activation functions have been explored in the literature.
Previous work explored RELU variants such as Leaky RELU [26], Parametric rectified linear unit
(PReLU) [14], and Gaussian error linear unit (GELU) [17]. Other authors presented activations with
exponential components, such as the Exponential linear unit (ELU) [11], Scaled exponential linear
unit (SELU) [22], as well as Sigmoid variants such as Softplus [12], and SWISH [34]. A comparative
study of these activations re-affirmed RELU as a strong baseline, while suggesting SWISH might be
a better alternative for image classification [34]. Another study [25] reported no accuracy change
when switching from RELU to GELU in image classification. The aforementioned body of work has
mostly focused on classification experiments, whereas their use in image prediction models was left
mostly unexplored.

Previous investigations [34] pointed out periodic activations as a promising direction, which was later
explored in the form of sin activations for implicit neural representations of continuous signals [39].
More recent work proposed modulating the amplitudes of sin functions using a secondary fully
connected network [27]. Another sin variant is Snake [49], which takes the form x+ sin2(x) and
focuses on improving extrapolation of periodic functions. Finally, several papers explored combining
multiple primitive functions, such as Mish (x tanh (softplus(x)) [30], SinLU (sin and Sigmoid) [32],
and activation ensembles [13]. Preliminary experiments [39] suggest that activations alternative to
RELU, with the exception of sin, tend to perform sub-par on image reconstruction. The popularity of
RELU networks in image prediction tasks contradicts the theoretical analysis presented in previous
work [33] that established the spectral bias of RELU networks towards learning low frequencies faster.
Later work [7] re-affirmed this finding through a neural tangent kernel [20] analysis.

Image Resampling Tasks such as correcting lens distortion, retargeting, and upsampling are some
image resampling examples that are considered as key operations in real-world computer vision
and image processing pipelines. Recent neural methods [5, 40, 9] have been shown to outperform
traditional techniques, such as upsampling with a fixed kernel. These neural networks often comprise
convolutional blocks [16, 19] with RELU activations. Typically utilizing deep networks, current
resampling methods can learn complex representations of input images and produce high-quality
resampled outputs. In this work, we employ METASIN to improve upon a recent state-of-the-art
resampler [5].

Monte-Carlo Denoising Generating high quality rendered images may require prohibitive amount
of compute resources. This can be alleviated by stopping the rendering process prematurely and
employing a specialized denoiser to remove the residual noise. Neural denoisers have demonstrated
superior performance compared to classical denoising techniques [4, 44, 48]. These denoisers
often leverage U-Net with RELU activation [37], which allows them to process noisy images across
multiple scales. We likewise demonstrate the use of METASIN in such U-Nets and achieve significant
improvements in denoising quality.

3 METASIN Activation

Let us define a generic neural network g(x) of depth L that predicts a target image y ∈ Rd given
input x ∈ Rd′

as:

y ≈ g(x) =
(
ϕ[L] ◦ T [L] ◦ ϕ[L−1] ◦ T [L−1] ◦ . . . ◦ ϕ[1] ◦ T [1]

)
(x), (1)
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where T [l] denotes a linear transformation that results from either a convolutional or fully connected
layer. We would like to find a set of activations ϕ[1] . . . ϕ[L] such that they minimize the average
reconstruction error

∑n
i L

(
g
(
x(i)

)
− y(i)

)
over a dataset {x(i),y(i) ∈ [1, n]}.

In hypothetical limit cases where the network g has infinite width or depth, few constraints on
activation functions are necessary for the resulting architecture to have the universal approximation
capability [18]. However, in practice the selection of the activation functions can play a significant
role in the training of neural networks, specifically in the resulting model’s prediction accuracy and, in
case of image prediction models, the visual characteristics of the predictions. While it is unclear how a
principled method can be developed for rank ordering all possible selections of activations, empirical
evidence suggests that multi-layer perceptron (MLP) networks with sin activations exhibit desirable
characteristics both in expressiveness and their ability to reproduce rich high frequency details [39],
especially in comparison to RELU networks that suffer from spectral bias towards reproducing low
frequencies [33].
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Figure 1: Peak Signal-to-Noise Ratio (PSNR) comparison of different activations employed on CNNs
to overfit an image from its downsampled version (with downsampling factor 16×). Notably, while
the shallow sin network performs better than its RELU counterpart, the deep sin network fails to
converge, demonstrating the fragility of training deep convolutional networks with sin activations.
See Appendix B for details.

However, practical experience also revealed the difficulty of training deep convolutional sin networks
in real-world scenarios. Figure 1 shows an illustrative example that on one hand demonstrates the
clear advantage of sin activations over RELU when training shallow networks, but on the other hand
illustrates the fragility of training deeper sin networks that are closer representatives of real-world
models. To examine further we express an intermediate segment from a sin activated network as:

a[l] = sin
(
T [l]

(
a[l−1]

))
, (2)

where a[l] is the output of layer l after applying the corresponding linear transformation and acti-
vation function. We can also express the usual parameterization of sine waves as f(z; c, f, p) =
c sin (fz+ p), where c, f , and p are the amplitude, frequency, and phase of the sine wave that we
collectively refer as the shape parameters.

In overparameterized networks the initial parameter values tend to change very slowly [10] (also
known as lazy training). Therefore ensuring the selection of plausible initial values for the shape
parameters in sin networks is crucial for training. Some exploration has been done in this direction:
For instance, SIREN [39] introduces a scaling constant w0 that is applied to the weight matrix W of
the first layer of the underlying fully connected network, i.e. sin (w0Wx+ b), whereas recent work
explored introducing an explicit amplitude parameter whose value is predicted through a secondary
neural network [27]. Yet initialization remains a challenge as in practice only a very narrow range of
values leads to plausible average loss (Refer to Figure 10 in Appendix C).
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In this work, we instead introduce explicit shape parameters for directly controlling amplitude,
frequency, and phase. These parameters are completely disentangled from other network parameters,
and can be initialized intuitively by reasoning about the shape of resulting sine wave. Moreover, in
order to provide better initial coverage of plausible ranges of the shape parameters, we construct a
composite periodic function by linearly combining K sine waves with individual shape parameters:

K∑
j=1

c
[l]
j sin

(
z[l]f [l] + p[l]

)
, where z[l] = T [l]

(
a[l]

)
. (3)

The shape parameters are shared among individual channels of layers in convolutional neural networks,
and are optimized through backpropagation along with other network parameters2. In our experiments
we observed that initializing the frequency parameters f [l]

j of the K constituent sine waves of the
composite function to cover a large range of frequencies consistently yields improved results, without
necessitating lengthy trial and error procedures that are often not feasible when training large models
in practice (Refer to Appendix C for an illustrative example).

Beyond the initialization of shape parameters, the remaining known causes of the difficulty when
training sin networks are inconsistent gradients due to the complex shapes that activations can take,
and the large degeneracy in local minima caused by symmetries [49]. We empirically found that
including an additional RELU component to the composite sine wave function discussed before
stabilizes training. With this modification our proposed activation, which we call METASIN, can be
expressed as follows:

ϕ(z[l]) = c
[l]
0 RELU

(
z[l]

)
+

K∑
j=1

c
[l]
j sin

(
f
[l]
j z[l] + p

[l]
j

)
. (4)

Equation 4 can efficiently be implemented as a module in common deep learning frameworks, which
then can be used to replace activation functions of an existing state-of-the-art network architecture.
The trainable parameters θ = {c[l]0 , c

[l]
j , f

[l]
j , p

[l]
j ; j ∈ [1,K], l ∈ [1, L]} are optimized through

backpropagation without requiring an additional network for predicting these particular parameters,
or any other changes to the underlying architecture. This non-intrusive property enables a simple
three-step procedure, where (i) we identify a state-of-the-art image prediction model, (ii) replace its
existing activation functions with METASIN, and (iii) re-train the resulting METASIN network using
a knowledge distillation scheme we discuss in the following section.

3.1 Training

In order to train convolutional METASIN networks, we initialize the shape parameters as c0 = 1,
c
[l]
j = 0, f [l]

j = j, and p
[l]
j = U(0, π), for j ∈ [1,K], and l ∈ [1, L] by default. This initialization

on one hand forces METASIN to initially assume the shape of RELU, and gradually introduce sin
components during the course of the training, while on the other hand covering a broad range of
initial frequency and phase values (See Appendix G). Using the default initialization we were able to
reliably avoid typical issues encountered while training sin networks.

It is often easier to train a shallower network compared to a deeper one as supported by previous
studies [16]. This observation also applies to sin activations, as demonstrated in Figure 1, where a
shallow SIREN network can be effectively trained while a deep SIREN network encounters difficulties.
To address this, we employ feature knowledge distillation (KD) from a teacher network [35] to
provide auxiliary signals during the training of the student METASIN network. We first train a RELU
model as the teacher (or, as it often happens in practice, use an already existing baseline RELU
model) and use its intermediate feature maps as supervisory signals. This approach allows us to
train the shallower blocks of the student METASIN network individually, instead of propagating
gradients throughout the entire network. We refer to this phase of training as KD-Bootstrapping,
which comprises approximately 5− 10% of the total training iterations for the METASIN network.
Following the initial KD-Bootstrapping phase, the student METASIN network is trained using the
same configuration as the baseline network. This approach enhances the learning process and helps
improve the performance of the student network.

2With a certain selection of parameters the resulting composite function can be shown to be equivalent to a
Fourier Series, and hence the hyperparameter K can be thought as controlling the expressiveness (Appendix D).
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3.2 Efficient Implementation

While equation 4 is straightforward to implement in both PyTorch and Tensorflow using the corre-
sponding Python APIs, such native implementations end up being inefficient compared to executing a
RELU function. For performance critical applications, efficiency issues can be alleviated through
writing a customized operation in CUDA (Appendix F). In Table 1 we compare the latency induced
by the native PyTorch implementation against our customized METASIN operator with fused CUDA
kernel functions. Our optimized implementation significantly reduces the overhead of the native
implementation. During forward pass, executing a METASIN with K = 10 components requires less
than three times the time it takes to execute a RELU function, whereas the backward computation is
only slightly more expensive than a RELU activation. Our efficient implementation also uses roughly
the same amount of memory during execution as a RELU activation, making METASIN networks
feasible to use in practice on the same hardware that a comparable RELU network is designed for.

Module Impl. Forward (rel) Backward (rel)

METASIN
PyTorch Native 26.1x 1.58x
PyTorch CUDA 2.9x 1.12x

Table 1: Latency of executing a METASIN activation with K = 10 using native vs. efficient
implementations, relative to the latency of executing a single RELU activation on Nvidia RTX 3090.

4 Experiments

We present experiments where we apply the three step procedure discussed at the end of Section 3.
Specifically, we switch an existing architecture’s activations to METASIN, and re-train the resulting
new model from scratch using KD-Bootstrapping.

Activation

Factor RELU RELUE SNAKE MISH SIREN
SIREN
KD-B MRELU

MRELU
KD-B METASIN

METASIN
KD-B

P×2 33.03 33.04 32.95 32.96 31.75 32.76 32.78 33.02 33.02 33.26
P×3 29.36 29.36 29.16 29.06 28.18 28.98 29.16 29.36 29.35 29.58
P×4 27.09 27.10 26.97 26.89 26.20 26.83 26.97 27.10 27.11 27.29

Table 2: Comparison of PSNRs obtained from various image resampling models. See text for details.

4.1 Image Resampling

In image resampling our approach builds upon the state-of-the-art network proposed by Bernasconi
et al. [5], which incorporates ProSR [45] feature extractor with 3 residual blocks, a resampling layer,
and a prediction layer. The network takes an input image and a warp grid and performs image
resampling. We trained baseline networks following the exact same training procedures and dataset
as described in [5]. The METASIN network is obtained by replacing RELU activations of the feature
extractor with METASIN with K = 10 and f

[l]
j = j at initialization. All other parameters are

initialized as described in Section 3.1. The transition to METASIN activations increases the amount
of compute by 3% (and similarly the wall-clock inference time by 3%) compared to the baseline
RELU network. To rule out any improvement due to this increase in computation, we accordingly
increase the number of channels of baseline RELU network, which we label as RELUE .

We evaluate the models on three predetermined sets of projective transforms with average local
scaling factors of 2 (P×2), 3 (P×3) and 4 (P×4). We report the PSNR scores of the resampled images
in Table 2, as well as visual examples in Figure 2 We use KD-Bootsrapping during the first 10%
of the training procedure. On average the METASIN network with KD-Bootstrapping improves
over the RELUE baseline by 0.2dB, setting a new state-of-the-art in image resampling. We also
conducted KD-Bootstrapping on RELU, MISH and SNAKE networks, but observed no improvement.
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Reference RELU METASIN

Reference RELU METASIN Reference RELU METASIN

Figure 2: Example upsampling results comparing the state-of-the-art model with RELU activations [5]
and the corresponding METASIN network.

This outcome suggests that the training process for these networks is inherently stable, making
KD-Bootstrapping unnecessary for these activations. Refer to Appendix K for additional results.

4.2 Denoising Monte-Carlo Rendered Images

Next, we present our experiments in denoising Monte-Carlo rendered images. Our base denoiser
network is a U-Net architecture used in [38] and we use the same procedure to generate noisy
and reference renderings. Since we focus on direct image prediction models rather than kernel
denoising as in [38], our U-Net denoiser (DPCN) directly predicts pixel values of the clean image
(For completeness, the results of kernel denoising (KPCN) are presented in Appendix M). During
evaluation, we denoise images rendered with [2, 4, 8, 16] samples per pixel and use SMAPE, FLIP [2],
1−MS_SSIM, and 1−SSIM as our metrics. Our best METASIN network is configured with K = 5

and the frequencies are initialized as f [l]
j = j/2. We use KD-bootsrapping during the first 5% of the

training procedure. We present a summary of various METASIN network configurations in Table 3,
and selected visual examples in Figure 3.

Metric DPCN METASIN-5
(fj = j)

METASIN-10
KD-B (Glorot)

METASIN-5
KD-B (fj = j)

METASIN-5
KD-B (fj = j/2)

SMAPE 3.351 3.16 (-5.7%) 3.118 (-6.95%) 3.088 (-7.85%) 3.081 (-8.06%)
FLIP 1.084 0.991 (-8.58%) 0.972 (-10.33%) 0.976 (-9.96%) 0.965 (-10.98%)
1-MS_SSIM 3.106 2.838 (-8.63%) 2.784 (-10.37%) 2.757 (-11.24%) 2.733 (-12.01%)
1-SSIM 6.895 6.385 (-7.4%) 6.227 (-9.69%) 6.146 (-10.86%) 6.112 (-11.36%)

Table 3: Results of various METASIN configurations. All relative values are in relation to the DPCN
baseline. The set of test samples contains all samples with spp ≤ 16. The frequency initializations are
given in parenthesis, which shows that a slight improvement can be made by initializing as fj = j/2
rather than the default fj = j. Switching to Glorot initialization results in reduced accuracy despite
the doubled K. Introducing KD-Bootstrapping during training significantly improves accuracy.

5 Discussion

In this section we present ablation experiments and an exploratory study on using METASIN activa-
tions for image classification and implicit image representation using MLPs. We present preliminary
investigations of further applications of METASIN activation in Appendix A
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Reference (Full) Baseline METASIN Reference (Crop)

Figure 3: Monte-Carlo denoising results. The first row shows results produced with an input noisy
images rendered at 4 samples-per-pixel, whereas the input in the remaining two rows are rendered at
16 samples-per-pixel.

5.1 Comparison with Alternative Activations

Metric DPCN MRELU-10 MRELU-10 MISH METASIN-10 METASIN-10
KD-B KD-B

SMAPE 3.351 3.472 (+3.61%) 3.254 (-2.89%) 3.293 (-1.73%) 3.346 (-0.15%) 3.118 (-6.95%)
FLIP 1.084 1.096 (+1.11%) 1.031 (-4.89%) 1.054 (-2.77%) 1.06 (-2.21%) 0.972 (-10.33%)
1-MS_SSIM 3.106 3.397 (+9.37%) 2.963 (-4.6%) 3.011 (-3.06%) 3.066 (-1.29%) 2.784 (-10.37%)
1-SSIM 6.895 7.044 (+2.16%) 6.589 (-4.44%) 6.896 (+0.01%) 6.736 (-2.31%) 6.227 (-9.69%)

Table 4: Comparison of various alternative activations on the DPCN model discussed in Section 4.2.
All parameters are initialized using Glorot initialization. See text for discussion.

We ran several experiments to assess the comparative improvements that can be achieved by using
alternative activations instead of METASIN. In addition to RELU, we also tested SNAKE (x+sin2(x))
in [49]), MISH (x tanh(ln(1+ex)) in [30]), and MRELU in which we linearly combine several RELU

activations in the form
∑K

j=1 cjRELU(x+ bj) (Similar to Adaptive Piecewise Linear Units [3]). The
SNAKE activation [49] performs slightly worse than the RELU baseline in the image resampling
application, which in turn falls below the corresponding METASIN activated network (Table 2 - 3nd
col). In case of Monte-Carlo denoising it was not possible to train the U-Net model with SNAKE
activations as the training diverged. MISH similarly performs slightly worse than both RELU and
SNAKE in image resampling (Table 2 - 4th col).

In Monte Carlo denoising the MISH activated network performs better than the RELU baseline by
3% in terms of MS_SSIM, however still falls significantly behind the METASIN activated network
that achieves 10% improvement in the same experiment (Table 4).

The MRELU activation with K = 10 performs significantly worse than the RELU baseline both in
denoising and resampling task (Table 4 - 3rd col and Table 2 - 7th col). We also tested applying
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KD-Bootstrapping to MRELU which made a big improvement in all metrics, still, however, scoring
far behind the corresponding METASIN network.

Overall, METASIN activations ended up consistently yielding notably better results than the activations
we tested in all our experiments. In Appendix H we present further comparisons with ensemble
activations.

5.2 The Effect of Hyperparameters

The METASIN activation as formulated in Equation 4 has a single hyperparameter K that determines
the number of constituent sine waves. While in our experiments we often set K = 10, we also run
ablation experiments to measure the effect of different K values. In these experiments we used the
exact same settings as in Section 4.2, except varying the K parameter. In Table 5 we show the effect
of changing K to 1, 5, and 12, compared to the baseline where K = 10. Not surprisingly, lowering
K results in consistently worse results according to all four metrics we tested. These findings also
show that the results that we presented in Section 4.2 can be further improved simply by setting
K = 12 (See Appendix I for further discussion). Aside from K, another decision to be made when
using METASIN activations is whether to train with KD-Bootstrapping or not. While in toy examples
we haven’t noticed any difference between the two alternatives, the last two columns in Table 4
show a comparison with and without KD-Bootsrapping, which clearly demonstrates the benefit of
employing KD-Bootsrapping in a real-world scenario.

Metric METASIN-10
KD-B

METASIN-1
KD-B

METASIN-5
KD-B

METASIN-12
KD-B

FLIP 0.972 0.997 (+2.57%) 0.979 (+0.72%) 0.967 (-0.51%)
1-MS_SSIM 2.784 2.825 (+1.47%) 2.805 (+0.75%) 2.767 (-0.61%)

Table 5: Comparison of DPCN networks (discussed in Section 4.2) with various K parameters trained
with KD-Bootstrapping and Glorot frequency initialization.

5.3 Image Classification using Convolutional METASIN Networks

We ran several preliminary experiments for exploring the use of METASIN networks outside our target
domain of image prediction tasks. Here we report the results of various experiments in a classification
setting, where we trained various student Wide-ResNets using supervision from comparably larger
Wide-ResNets that we used as teacher networks. As the teacher network in this case is a larger
network with higher accuracy, replicating its predictions becomes a reasonable objective. Therefore,
we employ feature knowledge distillation throughout the entire training procedure. The Wide-ResNet
architecture [47] follows the same architectural design as ResNet [15], except that the number of
channels in each residual block is expanded.

The METASIN activated students are identical to their RELU activated counterparts, except the
activations are replaced by METASIN with K = 8. We ran our experiments on the CIFAR100 [23]
dataset, which consists of 50K training and 10K validation images with resolution 32×32. The student
networks were trained for 300 epochs using standard cross-entropy loss following the knowledge
distillation methodology discussed in [36]. While not setting a new state-of-the-art, Table 6 shows that
the METASIN student networks consistently outperform their RELU counterparts, and in some cases
also the corresponding SWISH student networks, motivating further investigation of using METASIN
activations in classification tasks. However, we note that the accuracy of METASIN models are
less competitive compared to alternatives when models are trained from scratch without knowledge
distillation (Appendix J).

5.4 METASIN with Multi-Layer Perceptrons

While in this work we focused on applications of METASIN with convolutional neural networks, we
also ran several exploratory experiments where we used METASIN activations with MLPs to perform
implicit neural representation tasks as in [39]. We refer the reader to Appendix A.1 for a discussion on
video overfitting, where the METASIN network achieves 1-4 dB PSNR improvement over the SIREN
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Teacher WRN-40-2 WRN-40-4 WRN-28-2 WRN-40-2
Student WRN-40-1 WRN-40-1 WRN-16-2 WRN-16-2
Teacher Acc. 76.08 78.58 74.82 76.08

Activ. RELU METASIN SWISH RELU METASIN SWISH RELU METASIN SWISH RELU METASIN SWISH

Val. Acc. 73.39 73.74 73.28 70.53 72.55 72.54 71.76 72.33 72.98 73.65 74.10 72.60

Table 6: Comparing RELU student networks with METASIN activated networks with otherwise
identical architecture, both trained through knowledge distillation from the same RELU activated
teacher.

baseline with noticeably less visual artifacts. In Appendix A.3 we discuss a voxel grid overfitting
experiment where the METASIN network exhibits significantly improved detail reconstruction over
the RELU baseline. We also present a preliminary novel view synthesis experiment where we compare
a baseline Neural Radiance Field (NeRF) method [29] with a corresponding METASIN model with
K = 10.

We present an example result from this experiment in Figure 4, and refer the reader to Appendix A.2
for more details. Despite not utilizing positional encoding, the METASIN network surpasses vanilla
NeRF in performance. It has been observed that Fourier features[42], which bear similarities to
positional encoding, aid in learning high-frequency functions. This experiment implies that such
feature engineering may not be crucial, as our METASIN network achieves comparable or even
superior performance. While this result is intriguing, we acknowledge recent techniques that leverage
latent codes in the form of memory, combined with specialized data structures [31, 41], which can
significantly enhance vanilla NeRF in terms of performance and training time. While not conclusive,
we hope the initial results we share in this section motivate further investigation of METASIN
activations in the context of other architectures and application areas.

Ground Truth NeRF-PyTorch (20.78 dB) METASIN-10 (21.46 dB)

Figure 4: Zoomed qualitative results on scene flower [28]. Comparison between ground-truth,
NeRF [29] and METASIN-10 model, with corresponding PSNR scores in parenthesis.

6 Conclusion and Limitations

We presented a novel activation function with trainable parameters that improves upon state-of-the-art
convolutional image prediction models. Our work has several limitations. While METASIN networks
can reliably be trained without it, training with KD-Bootstrapping helps the network to eventually
converge to better minima. While it is not uncommon when training a METASIN network to have
access to a comparable trained RELU network, nevertheless this requirement might lead to some
extra effort when a pre-trained base model is not available. Additionally, in our current formulation
(Equation 4) the number of sin components K is a hyperparameter that we set manually at design
time. We performed preliminary experiments with determining K automatically in an adaptive
fashion, which would be an interesting direction to study more in the future.

The METASIN function is only C0 in contrast to the infinitely differentiable SIREN. The C∞)
property allows SIREN networks to be trained using loss functions on the gradient or Hessian of
the network. This distinct characteristic of the SIREN network is used later in [24] to automatically
integrate the function that appears in neural volume rendering. The lack of a gradient loss in METASIN
networks seems to limit the performance of METASIN activations for applications such as implicit
3D shape representations (Appendix N). It would be interesting to tackle this inherent limitation of
METASIN networks in future work.
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Broader Impact

Fundamentally, neural network blocks comprise a linear transformation and a non-linear activation.
Our work introduces a new activation function that enables significant prediction accuracy improve-
ments over previous alternatives. Being at such a fundamental level, our proposed contribution thus
can be applied to a wide array of neural network types that perform a variety of tasks and facilitate
improvements upon existing state-of-the-art results. The resulting improved models may be leveraged
for both positive and negative ends.
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Appendix

A Use of METASIN Beyond Image Prediction

In addition to our main results presented in Section 4 of the paper, we also performed various
exploratory experiments to investigate further application cases of the METASIN activations. The
experiments cover image classification where we show favorable results of using convolutional
METASIN networks over baseline RELU networks, as well as various overfitting experiments to
explore the use of METASIN activations with MLPs. We present our preliminary findings here with
the hope of motivating further investigation in these directions.

In all MLP experiments, we use METASIN with K = 10 sine components, and distribute the
frequencies evenly across the range [1, 35]. The initialization of the remaining parameters follows the
description provided in Section 3.
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Figure 5: Visualization of selected reconstructed frames of the video. To fully appreciate the details
and visual cues presented in the figure, we recommend visualizing the figures in color and zooming
in for a more comprehensive analysis.

Video Dataset Activation Model Channels Depth MSE ↓ PSNR (dB) ↑

Cat SIREN MLP 1024 3 2.60 · 10−3 32.26
METASIN MLP 1024 3 1.96 · 10−3 33.32

Bikes SIREN MLP 1024 3 1.69 · 10−3 34.50
METASIN MLP 1024 3 5.58 · 10−4 39.32

Table 7: Results on implicit video representation.

A.1 Video Overfitting using METASIN MLP

In this section, we present the overfitting experiments on videos using an MLP network with 3 hidden
layers and 1024 neurons to overfit a video. The input is a 3 dimensional vector consisting of a frame
ID and pixel coordinate, and the output is the RGB value of the corresponding pixel. The METASIN
network improves the PNSR by 1-4 dB compared to the SIREN baseline as shown in Table 7.

Overall the Cat dataset has more fine details, making it more challenging to accurately represent these
intricate details. Consequently, the PSNR for the Cat dataset is comparatively lower in comparison to
the Bikes dataset. The results are depicted in Figure 5. While RELU networks struggle to represent
the signal, both SIREN network and METASIN can reconstruct the frames. Notably, the METASIN
network reconstructs more details, see Figure 5 (Bicycle) and has less noise, as we see in Figure 5
(Wall and Car). It is worth mentioning that various techniques, such as positional encoding or Fourier
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Ground Truth NeRF METASIN-10

Figure 6: Zoomed qualitative results on static forward scenes [28]. Comparison between ground-truth,
NeRF and METASIN-10 model.

features [43, 42], as well as utilizing latent codes [31], have shown significant improvements in RELU
networks. However, exploring the impact of these techniques when applied in conjunction with
METASIN activation is a direction we defer to future work.

Method Leaves Orchids Flower T-Rex Horns

NeRF [29] 20.92 20.36 27.40 26.80 27.45
METASIN-10 21.46 20.52 28.20 26.81 27.98

Table 8: Per-scene PSNR↑ comparison. In this table, we report the results obtained by running NeRF
PyTorch implementation, based on [46] and previously used in [21, 6], and the results of our proposed
METASIN. Our method achieves higher PSNR in all tested scenes.

A.2 Novel View Synthesis using METASIN MLP

Neural Radiance Fields [29] (NeRF) enable synthesizing novel views with only a sparse set of
input views. NeRF methods exploit positional encoding to map the input into high-frequency space,
which is the key to high-quality scene rendering, which we drop in our experiments and replace the
standard RELU with a 10 components METASIN-10 activation. Frequencies and phases are initialized
uniformly over [1, 35] and [0, 2π]. The experiment setting is the same as [29], except that we extend
the training process to 250K iterations instead of 200K, in order to make sure that METASIN models
converge well. Our implementation is based on [46], The results are reported in Table 8. We also
provide a comparison of qualitative results in Figure 6.
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GT RELU (MSE=0.252) METASIN-10 (MSE=0.044)

Figure 7: False-color visualization of the reconstructed density grid where METASIN is configured
with K = 10

A.3 Density Overfitting using METASIN MLP

In this section we present an overfitting experiment on a 3D voxel grid. The smoke scene we used in
this experiment contains 175 × 232 × 175 density values within range [0, 1]. Following the MLP
architecture used in [39], we map the 3D coordinates to the corresponding density value using RELU
and METASIN activated networks. Comparisons between the METASIN activated network and the
baseline RELU model are presented in Figure 7.

B Details of Overfitting Experiment with Convolutional Network

Table 9 shows further architectural details of the overfitting experiment we discuss in Section 3 of
the main paper. We perform experiments with two base convolutional architectures, a shallow and a
deep network. M-SIREN refers to the amplitude modulated SIREN [27], which has significantly more
parameters due to the introduction of an additional amplitude modulation network.
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Input Target RELU SIREN M-SIREN METASIN

29.81 dB 32.55 dB 30.88 dB 35.04 dB
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30.36 dB 12.65 dB 35.70 dB 40.01 dB

Figure 8: Peak Signal-to-Noise Ratio (PSNR) comparison of different activations employed on CNNs
for image up-sampling (with 16x of upsampling factor).

Figure 8 shows a visual comparison of reconstructed images by the different versions of both base
networks. Both the shallow and deep versions of the METASIN network can be trained reliably (unlike
their sin activated counterparts that diverge in the case of the deep architecture). The METASIN
networks come with relatively little parameter overhead (the relative overhead becomes even smaller
with larger networks that have more channels, as discussed in Appendix E), and produce visually
sharper results that also are closer to the reference in terms of PSNR.
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CNN Size Activation # Param. Depth PSNR (dB) ↑

Shallow

RELU 75 K (1x) 4 29.81
SIREN [39] 76 K (1x) 4 32.55
M-SIREN [27] 281 K (3.7x) 4 30.88
METASIN (ours) 82 K (1.1x) 4 35.04

Deep

RELU 408 K (1x) 13 30.36
SIREN [39] 408 K (1x) 13 12.65
M-SIREN [27] 651 K (1.6x) 13 35.70
METASIN (ours) 432 K (1.1x) 13 40.01

Table 9: Comparison of different activations employed on CNNs trained for image up-sampling
(16x).
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Figure 9: Representing y(t) = sin(10t+ 5 sin(10t))× sin(10 sin(10t)) with 3 layer FC networks

C Sensitivity to Frequency Initialization

Although the sin activation function has promising properties as outlined in the main paper, it is
known that they can be extremely difficult to train [39, 49].

We illustrate this in a toy experiment where we try to reconstruct the signal y(t) = sin(10t +
5 sin(10t))× sin(10 sin(10t)) when the input is x(t) = t. Most of the energy of y(t) is distributed
between frequencies between 10 and 170. We sample t from the normal distribution and train fully
connected networks with 1 input neuron, 3 layers having 20 neurons each, and 1 output neuron. In
one of the networks, we use RELU activation in between fully connected layers except for the last
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one. In the remaining two networks, we use sin(fx). In one we initialize f = 1, in the other one
we initialize f = 5, and f = 10. We use L1 loss and Adam as the optimizer. The results are shown
in Figure 9. As it is seen, RELU-network can reconstruct part of the signal. The sin-network with
the initialization f = 1 does not learn at all, while the network initialized with f = 5 is able to
match y(t), and with f = 10 the model fits the original signal reasonably well. This suggests the
importance of initialization and the difficulty of training of the sin activation function.

On the other hand, a METASIN network with the frequency parameters from Equation 4 initialized
as f

[l]
j = j and K = 10 effectively covers a wide range of frequencies including the one that is

important to represent the signal. Consequently, using a METASIN we are able to lower the loss to
0.013 and eliminate the trial and error process for initializing frequencies.

In Figure 10 we additionally plot the results of an experiment where we sweep through a wide range
of w0 values for a fully-connected SIREN network that was trained to overfit to a single image. The
plot illustrates that only a narrow range among possible initial w0 values results in a plausible training
error, confirming the importance of initialization in SIREN networks.
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Figure 10: Sensitivity of SIREN w.r.t. base frequency w0. In this figure, we reported the PSNR and
MSE Loss values across a wide range of SIREN’s base frequency w0 values. For each w0, we trained
a SIREN network and showed that only a restricted set of frequencies (around 102) converges to
sufficiently good local minima. Specifically, in this experiment, we train the networks to up-sample
the image reported in Figure 8, with an up-scale of ×16 for 100, 000 iterations using the Adam
optimizer with a learning rate of 10−5.

D Connection to Fourier Series

Well-behaved functions, such as continuous functions can be expressed as a Fourier series with
finitely many terms. Let us define a function ϕ as a Fourier series:

ϕ(x) = a0 +

K∑
j=1

(
aj cos

(
2πj

P
x

)
+ bj sin

(
2πj

P
x

))
, (5)

where K ∈ N+ is finite, and P denotes length of one period. Using the harmonic addition rule, i.e.

a cosα+ b sinα = c cos (α+ r), where

c = sgn(a)
√

a2 + b2

r = arctan

(
− b

a

)
,

(6)

we can rewrite Equation 5 as:

ϕ(x) = a0 +

K∑
j=1

cn cos

(
2πj

P
x+ r

)
. (7)
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Substituting in the identity cosα = sin
(
α+ π

2

)
we get:

ϕ(x) = a0 +

K∑
j=1

cn sin

(
2πj

P
x+

π + 2r

2

)
. (8)

Dropping the constant term we obtain the following:

ϕ(x) =

K∑
j=1

cj sin (fjx+ pj), where

fj =
2πj

P
, and

pj = arctan

(
− bj
aj

)
+

π

2
.

(9)

From Equation 9 we can see that any Fourier Series can be expressed as a METASIN activation

ϕ(x) = c0RELU(x) +

K∑
j=1

cj sin (fjx+ pj), (10)

by setting c0 = 0 and the rest of its parameters {cj , fj , pj ; j ∈ [1,K]} accordingly.

E METASIN Overhead

METASIN parameter overhead formula for a convolutional layer compared to RELU baseline is as
follows:

overhead =
3×K + 1

kernel-size2 × input-channels
. (11)

For example if we have a layer with kernel-size = 3 with 128 input-channels, then overhead for
K = 10 is 0.026. Which means we have approximately 2.6% more parameters. If input-channels is
32 the overhead becomes 10.08%. On the other hand for kernel-size = 5 and 512 input-channels the
overhead is 0.24%.

F Details on C++/CUDA Implementation

To account for the inefficiency of a native Python API implementation of METASIN we implemented
custom-optimized fused CUDA kernels for both forward and backward functions of the MetaSin
activation in C++. Our implementation can be integrated into the PyTorch and TensorFlow Python
APIs. Throughout the development process we also tested native automatic compilation functionalities
provided by both frameworks (specifically: jit, torch.compile for PyTorch, and jit and XLA in
TensorFlow). While notable improvements over the baseline Python API implementation can be
made through the use of these out-of-the-box facilities, we obtained the best performances in terms
of speed and memory consumption using our custom-designed CUDA functions.

Some of the techniques we utilized in our code are as follows: in order to optimize the memory
footprint and the inference speed of the METASIN, we remove the intermediate quantities that the
autograd engine computes and instead compute the output and gradient tensors directly from the
input and the METASIN parameters. Moreover, we further optimized the computation speed with
improved caching and reduction strategy on warp and block levels. Meanwhile, we have exploited
a 2-level reduction strategy based on pairwise summation in our backward kernel. In this way, we
could avoid numerical errors in gradient tensors and achieve comparable accuracy to autograd in
float32 precision.

The reduction in computational overhead using the aforementioned optimizations enabled running
the compute-intensive experiments we present throughout the paper in a feasible manner, and we
believe demonstrates the viability of METASIN activations for most practical tasks. That being said,
other optimizations that we were not able to explore due to time constraints could help reduce the
overhead even further, which is an interesting direction for future research.
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Figure 11: Effect of METASIN components to latency.

We also investigated the computational scaling behavior of our implementation with respect to the
number of sin components K. To this end, we ran a benchmark experiment, in which we compared
forward and backward latencies of RELU, METASIN Native, and METASIN CUDA functions on the
same input tensors using different K values. The results can be found in Figure 11.
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Figure 12: METASIN activation shape evolution over time and final distribution of frequency param-
eters. In this figure, we report the behavior of three activated neurons (of the same layer) over the
training process.

G Evolution of METASIN Activations during Training

Figure 12 shows illustrative examples of the evolution of METASIN activations during the course
of training in a toy example. In this experiment the weight of the RELU component is set to 1,
whereas the amplitudes of all sin components are set to 0. Thus a METASIN activation starts out
as RELU, but then evolves into various shapes depending on the training of the shape parameters
via backpropagation. It is worth noting that the shape of a METASIN activation tends to not change
after the initial phase of training, which agrees with the observation that weights change very slowly
in overparameterized networks. Moreover, the different rows in the figure show three different
METASIN neurons of the same layer that interestingly converge to a complementary frequency
response that can capture different frequency components of the input signal.

To shed some light on the shapes that METASIN activations take in a more practically relevant setting
with and without KD-Bootstrapping, we additionally produced a visualization of the METASIN shapes
from the resampling network described in Section 4.1. The METASIN shapes are obtained from the
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first and last blocks of models trained from scratch and with KD Bootstrapping. This visualization
in Figure 13 shows that, while there is significant local variation between individual METASIN
activations, globally the rough RELU shape is still discernible even without any involvement from the
RELU teacher.
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Fi
rs

t B
lo

ck
La

st
 B

lo
ck

Figure 13: Visualization of METASIN shapes with and without KD bootstrapping.

H Comparison with Ensemble Activations

We ran additional experiments using ensemble activations as described in a recent survey [3], namely
Adaptive Blending Units (abu), Variable AFs (vaf), Adaptive AFs (aaf) in the same experimental
setting that we used to generate the first row of Figure 1 in the main paper. We present the best results
we obtained from multiple runs with different initializations in Table 10, also including RELU and
METASIN as references:

abu vaf aaf RELU METASIN

PSNR[db] 29.79 28.98 29.06 29.81 35.04

Table 10: Comparison of various enseble activations in an image overfitting setting.

We also ran two experiments in image resampling setting using abu and aaf versions of the model
from Section 4.1, which we present in Table 11:
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Reference RELU METASIN

Figure 14: Additional upsampling results comparing the state-of-the-art model with RELU activa-
tions [5] and the corresponding METASIN network.

Activation

Factor abu aaf RELU METASIN w/ KD-B

P×2 33.02 32.97 33.03 33.26
P×3 29.31 29.28 29.36 29.58
P×4 27.09 27.10 27.09 27.29

Table 11: Comparison of various ensemble activations for image resampling

I Effect of Setting K to a high number

We note that further improvements in terms of model accuracy can be made by pushing K beyond
what we present in the paper. We did not go beyond 10-12 as throughout our experiments we observed
that doing so often resulted in diminishing returns. As a more concrete example we provide results
from a resampling experiment in Table 12 (Note that these results are from a preliminary run with
slightly inferior hyperparameters compared to the corresponding experiments we report in the main
paper, and the training was stopped prematurely after 900K iterations instead of the full 2M - hence
the lower PSNRs compared to Table 2). These results suggest that choosing K > 10 would indeed
make sense in cases where the absolute best quality is desired and additional latencies are tolerable,
but overall K ≈ 10 seems to be the happy medium.
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Activation/Upsample Factor P×2 P×3 P×4

METASIN-10 33.09 29.42 27.17
METASIN-20 33.14 29.45 27.20

Table 12: The effect of setting K to 10 and 20 on resampling quality

J Classification Experiment with METASIN Model Trained from Scratch

To investigate the effect of KD-Bootstrapping in the classification setting, we trained various Wide-
ResNets with original RELU activations and with METASIN activations entirely from scratch and
without using KD-Bootstrapping. Table 13 presents test accuracy on CIFAR-100.

Model/Activation WRN-16-2 WRN-28-2 WRN-40-2 WRN-40-4

RELU 72.85 74.82 75.95 78.99
METASIN w/o KD-B 71.82 73.88 75.44 78.44

Table 13: Comparison of METASIN and RELU models in image classification with training without
KD-Bootstrapping. In this case METASIN models only become advantageous when train using
KD-Bootstrapping, underlining the importance of the proposed training methodology.

In accordance with the above discussion these results underline the role of KD Bootstrapping for
achieving the best results with METASIN networks. To give a concrete example: as we show above,
when training from scratch WRN-16-2-METASIN at 71.82 accuracy is behind its RELU counterpart
(WRN-16-2-ReLU) with accuracy 72.85. On the other hand, the last column of Table 6 shows that
by distilling from a WRN-40-2 teacher, the accuracy of WRN-16-2-METASIN can be brought up to
74.10, whereas WRN-16-2-RELU achieves 73.65 accuracy using the same procedure.

K Resampler Architecture and Additional Results

Our network architecture is based on the design proposed in [5]. We utilize a ProSR feature
extractor [45], consisting of 3 residual blocks with 4 dense blocks within each residual block and a
growth rate of 40 and 160 channels. The subsequent prediction layer is implemented as an MLP with
4 hidden layers and 256 neurons. In our experiments, this prediction layer remains unchanged. We
apply METASIN activations only to the convolutional feature extractor. We present additional results
in Figure 14 for the resampler experiment presented in Section 4.1.

L DPCN Denoiser Architecture and Additional Results

The design of the U-Net architecture we use in Section 4.2 is detailed in Table 14. We also present

Scale Encoder
ResBlocks

Encoder
Channels

Decoder
ResBlocks

Decoder
Channels

0 2 64 2 64
1 2 128 2 128
2 2 256 2 256
3 2 256 2 256
4 2 256 2 256

Table 14: The Configuration of the Standard DPCN U-Net. Scale 0 is the full-resolution scale. From
one scale to the next one, the image resolution is halved in both dimensions.

additional results in Figure 15 to the results we presented in Section 4.2 in the main paper.

23



Reference (Full) DPCN METASIN-5 w/ KD-B Reference

Figure 15: Additional results to Section 4.2

M KPAL Denoiser Results

In order to factor out the potential effects of kernel prediction to our denoising experiments, we
utilized a direct prediction version of the state-of-the-art Monte-Carlo denoiser presented in [38].
In this section we present results of training a METASIN version of the original kernel prediction
network. The improvement over the baseline RELU network remains significant in this experiment
across all metrics. An interesting observation from this study was the significantly reduced effect of
KD-Bootstrapping, which we eventually decided not to employ to produce the results in Table 15.
We hypothesize that the lesser effect of KD-Bootstrapping in this case can be attributed to kernel
prediction, which however requires further investigation.

Metric KPAL METASIN-10 (Glorot)

SMAPE 3.098 2.966 (-4.26%)
flip_loss 0.934 0.893 (-4.39%)
1-MS_SSIM 2.893 2.622 (-9.37%)
1-SSIM 6.227 5.934 (-4.71%)

Table 15: Comparison of the state-of-the-art kernel predicting denoiser [38] and its significantly
improved METASIN version.

N Failure Cases

While our preliminary experiments on using METASIN activations with MLPs generally resulted
in improvements over corresponding baselines, we also observed some failure cases. A particular
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experiment where the tested METASIN network did not perform well was on signed distance field
(SDF) overfitting. In this case, the SIREN reproduction of the ground-truth SDF is better at fine
scale details than the corresponding METASIN reproduction. We hypothesize that this discrepancy in
performance is due to the gradient loss that SIREN employs and the METASIN network lacks due to
not being continuously differentiable. We defer further investigation of this limitation to future work.

(a) GT (b) SIREN (c) fj = U(1, 35)

Figure 16: SDF overfitting on Thai Statue [1]. Here the SIREN network produces a better representa-
tion of the underlying 3D shape than a comparable METASIN activated MLP.
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