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Figure 1. Stereo Conversion. Given a monocular image and a disparity estimate (left), our method performs disparity-aware warping,
compositing and inpainting (center) to produce stereo (right, visualized anaglyph). Copyright © 2024 MARVEL. All rights reserved. Permission to use Marvel

image only for this publication.

Abstract
Despite of exciting advances in image-based render-

ing and novel view synthesis, it is still challenging to
achieve high-resolution results that can reach production-
level quality when applying such methods to the task of
stereo conversion. At the same time, only very few dedicated
stereo conversion approaches exist, which also fall short
in terms of the required quality. Hence, in this paper, we
present a novel method for high-resolution 2D-to-3D con-
version. It is fully differentiable in all of its stages and per-
forms disparity-informed warping, consistent foreground-
background compositing, and background-aware inpaint-
ing. To enable temporal consistency in the resulting video,
we propose a strategy to integrate information from addi-
tional video frames. Extensive ablation studies validate our
design choices, leading to a fully automatic model that out-
performs existing approaches by a large margin (49-70%
LPIPS error reduction). Finally, inspired from current prac-
tices in manual stereo conversion, we introduce optional in-
teractive tools into our model, which allow to steer the con-
version process and make it significantly more applicable
for 3D film production.

1. Introduction
Live-action feature films are typically not filmed in

stereo apart from a few notable exceptions. Still, a sig-
nificant amount of high profile productions are available in
stereo. This is possible through a post production process
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referred to as stereo conversion. Although there is some
automation in parts of the conversion process, it still heav-
ily relies on manual work, which makes converting even a
single feature film extremely expensive. A fully automatic
conversion pipeline could hence significantly reduce costs
while enabling studios to make large amounts of legacy con-
tent available to new audiences in stereo.

In this work, we focus on stereoscopic movies, i.e. two-
stream videos that are presented to each eye separately.
From the way the objects in both streams are displaced to
each other, i.e. via the pixelwise disparity, the human vi-
sual system perceives depth. In contrast to common stereo-
scopic datasets, 3D movie disparities can have positive and
negative values describing objects behind and in front of the
screen plane, respectively. While shooting 3D movies oc-
casionally employs a converging camera setup, resulting in
non-horizontal displacements, stereo conversion post pro-
duction resorts to an orthoparallel setup with horizontal dis-
parities. To avoid negative-only disparities, the latter intro-
duces an additional horizontal shift to one of the views.

Although several stereo conversion approaches exist,
they either do not work on high resolutions [3,36], only con-
sider negative disparities [7,16,34,39], or produce blurry re-
sults [36,40]. Further, several methods [3,16,40] work with
disparities of the target instead of the input frame, thus not
taking advantage of the latest progress in single image depth
prediction, making them fall behind in the perceived depth
of their predictions. Last but not least, recent dynamic neu-
ral radiance fields [17–19] provide interesting results. How-
ever so far they have only been used at lower resolutions and
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Figure 2. Overview of our approach.

exhibit long reconstruction times. Hence neither method so
far reaches the bar for production-quality stereo conversion.

Contributions In this paper, we propose a method for
stereo conversion from monocular videos, which produces
high-resolution results with high visual quality —even al-
lowing to reach production-level quality for shots with lim-
ited complexity. In this context, we make the following
contributions: (i) We present a fully automatic stereo con-
version approach that is trained end-to-end on movie data.
(ii) To enable temporal consistency, we further introduce a
strategy to integrate information from multiple frames. (iii)
Experiments not only show that our model outperforms ex-
isting approaches visually and quantitatively by a large mar-
gin, but also ablate the employed depth model and design
choice of the architecture, loss function and multi-frame
strategy. (iv) Further, we demonstrate that our approach is
applicable to 3D movie production by introducing optional
extensions to our model to interactively control depth per-
ception and inpainting area.

2. Related work
Let us now discuss research on generating novel views

from monocular video. Directly related is stereo conversion
literature, but we also cover works from the broader novel
view synthesis field that could be applied to our use case.

Stereo conversion There are several approaches that di-
rectly consider stereo conversion. While some are specifi-
cally designed for the 3D film setting with positive-negative
disparities [3, 36, 40], others only work on negative dispari-
ties [7,16,34,39] in the context of automotive data [7,16,39]
or training data creation [34]. Many of these approaches
use backward warping [3, 7, 16, 40], which creates the ill-
posed problem of estimating right-view registered disparity
from left views in [3, 16, 40]. Only one method generates
the second view through forward warping [34] but makes

use of a simple non-differentiable warping while also not
reasoning about correct inpainting. Other approaches cir-
cumvent warping by averaging integer-shifted copies of the
input image [36,39]. Further, [3,16,34,36,39,40] only con-
sider left-to-right prediction, only [7] jointly perform both
left-to-right and right-to-left prediction.

In contrast to previous work, we propose a stereo con-
version model for high-resolution image data based on a
disparity estimate of the input frame. We support negative
and positive disparities and all generation strategies (left-
to-right, right-to-left or both from center). Also, unlike
previous approaches, we perform differentiable disparity-
aware forward warping of feature pyramids and design an
image synthesis step that performs disparity-aware inpaint-
ing, leveraging information from multiple frames.

Novel view synthesis When considering the broader novel
view synthesis literature, several methods could be applied
that were not originally designed for stereo conversion.

A recent topic with rapid developments are neural radi-
ance fields [22] (NeRFs). While originally considered only
for static scenes, recent dynamic NeRFs also consider dy-
namic environments [5, 17–19], i.e. scenes with indepen-
dent object motion. Since NeRFs are developed for general
view generation, they can be adapted to stereo conversion
by rendering from a horizontally displaced camera with ad-
ditional shift. While dynamic NeRFs yield good results in
scene reconstruction including complex reflection scenar-
ios, they are still subject to several shortcomings. First, so
far they have not been evaluated on high resolutions, as re-
quired for 3D movie production. Further, even for scenes
of a few seconds, reconstruction times are in the order of
multiple days [17–19]. Lastly, their performance is still un-
clear for complex motion scenes, e.g. with several moving
objects or with dynamic objects covering large image parts,
and for (near-)static scenes without motion parallax.

In a similar direction, multiplane images [11, 30, 31, 33]
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Figure 3. Disparity-aware warping and compositing. Compared to naive warping, ours handles occlusions (red) and disocclusions (blue).
We also perform hole filling of the warped disparity and extract splatting and disocclusion masks. Copyright © 2024 MARVEL. All rights reserved.
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can also be used for rendering novel views. However, such
strategies only allow very small camera displacements and
are rarely evaluated for temporal consistency [37].

3. Stereo Video Conversion
Our method takes a frame sequence and converts it to

a leftwards or rightwards displaced novel view for stereo
vision. We assume given depth estimates for every frame.
These can e.g. be obtained by a method for single image
depth estimation or consistent video depth estimation. We
show an overview of our method in Fig. 2. In the follow-
ing, we first introduce the single-frame version of our model
(shown in the upper part of Fig. 2) with the four steps of
disparity mapping, feature extraction, warping & composit-
ing and image synthesis. In this single-frame variant, we
omit the multi-frame features (see Fig. 2, bottom right).
Then, we describe our multi-frame approach, which is a
two-stage process. It consists of first executing the single-
frame model, and then, with a single-frame prediction as
input, executing the model again with multi-frame features.
To this end, we describe the additional frame selection and
multi-frame features (see Fig. 2, bottom left).

3.1. Disparity Mapping

Our method uses a disparity estimate to perform the
warping, compose foreground over background, and guide
the inpainting process. To obtain this disparity, we rely on
a preceding depth estimation, e.g. with a single-image or
video depth estimation method. Given a depth estimate Z,
it can be mapped to disparity d as

d = a · 1
Z

− b , (1)

with a steering the perceived deepness of the scene, and b
controlling the positioning of the scene relative to the screen
plane, i.e. selecting zero disparity. If Z is given in metric
depth, the technical choice for a would be the stereo cam-
era baseline distance times its focal length. However this
might be infeasible, for non-metric depth [27], unknown fo-
cal length, or if the disparity range is adjusted for creative
or perceptual reasons [13,15]. At the same time, selecting b
is always a creative choice in 3D movie production [20].

For these reasons, we propose two strategies to select
these parameters: First, we describe a simple automatic
method, which we use throughout our experiments to com-
pare against other methods with automatic disparity map-
ping [36]. Second, we introduce interactive strategies in
Sec. 6. For automatic selection, we first normalize 1

Z in
Eq. (1) to the range [0; 1], making a the distance between
minimum and maximum disparity, the depth bracket [20].
Then, we propose to leverage the shot scale of the given
video to select reasonable values for a and b for each se-
quence. To this end, we use a method to perform shot scale
classification [29] based on the input image, select fixed val-
ues a and b per class and compute the disparity with Eq. (1).

3.2. Feature Extraction

While many previous conversion approaches directly
warp images [3,7,16,34,36], it has been shown that working
in feature space, i.e. warping feature representations and de-
coding them afterwards, is advantageous [1,25,35]. Hence,
we make use of a feature pyramid encoder [25] to extract
features at full, 1/2 and 1/4 resolution, with 32, 64 and 96
channels respectively. We also append the original image to
the highest pyramid level.

3.3. Warping & Compositing

With disparity and extracted features, we perform
disparity-aware warping and compositing to transition fea-
tures towards the novel view. In contrast to methods resort-
ing to backward warping [3, 7, 16, 40], our approach uses
differentiable forward warping with disparity as horizon-
tal displacement vectors, enabling us to handle compositing
and inpainting in occlusions and disocclusions, respectively.

For disocclusions, forward warping leaves unfilled ar-
eas, which are inpainted in the subsequent image synthesis
step. For occlusions, i.e. multiple pixels mapped to the same
location, we use disparity-aware compositing to position
foreground over background pixels. For the latter, we em-
ploy differentiable exponential warping [25] that uses per-
pixel weights of the warping input controlling the composit-
ing weighting in occlusions. As weights, we again use the
disparity, scaled with a single learned parameter α. Since
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Figure 4. Image synthesis. After the input (a) is warped (b), standard inpainting (c) wrongly extends the foreground, while ours uses local
background for inpainting (d). Wrongly extended disoccluded objects (mountains) can be resolved by an additional frame (e). Warped
with inverted weights (f) with only disocclusion areas kept (g) it guides multi-frame prediction (h). Copyright © 2024 MARVEL. All rights reserved.
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the original exponential warping [25] is subject to numeri-
cal instabilities [23], we use a stable implementation [1].

An overview of this step is given in Fig. 2. After fea-
ture extraction, we warp each pyramid level separately, with
warping and compositing steered by disparity, accordingly
adapted with bilinear interpolation. We visualize results in
the first row of Fig. 3. When warping the input (a) using its
disparity (b) with simple nearest-neighbor forward warping
(c), occlusions and disocclusions are not handled appropri-
ately. In contrast, our warping strategy (d) deals with occlu-
sions correctly, leaving disocclusions unfilled.

In an additional step, we warp the disparity with itself
(see Fig. 2), to obtain disparity aligned to the target frame.
Again, occlusions are handled by the warp and disocclusion
holes remain. Since we want to use the warped disparity as
guidance for the inpainting step, we propose a simple ap-
proach to fill these holes with neighboring background dis-
parity pixels. To this end, we first note that these pixels lie
on the right-hand1 side of the disocclusions. Thus, we fill
the holes through differentiable single-sided dilation with a
structuring element that has height 1 and its origin located
at its left-most1 pixel, leading to dilation that only fills left-
wards1. We empirically choose the width of the structuring
element as 7 and apply dilation multiple times until all holes
are closed. In Fig. 3, we show the warped disparity with dis-
occlusion holes (e) and the result of the hole filling (f). With
this, we obtain a dense estimate of the target frame dispar-
ity, which can be used as guidance in the image synthesis.
Finally, we extract two additional masks from warping: The
splatting mask (g) determining for every pixel the number
of pixels that are splatted onto it and the binary disocclusion
mask D (h) obtained by thresholding the splatting mask.

3.4. Image Synthesis

The final and essential step of our method is the image
synthesis module compiling the final image. Its core goal
is to perform inpainting in disocclusions. To this end, it is
crucial that the inpainting uses only the local background
instead of generating arbitrary realistic content as done by

1For rightwards stereo conversion, leftwards is vice-versa.

standard inpainting methods, see Fig. 4 (top row). Given
the input (a), we perform warping (b), leaving disocclu-
sion areas unfilled. When using general-purpose inpaint-
ing [32] (c), these areas are plausibly filled. However, the
foreground is extended, resulting in misaligned object edges
in the synthesized output, leading ultimately to a wrongly
perceived depth. In contrast, the desired inpainting should
only rely on information from the local background area (d).

Based on this motivation, we design our image synthesis
module. To realize inpainting guided by local foreground-
background information, we utilize the warped dispar-
ity [12] after performing the previously introduced hole fill-
ing. We thus concatenate it to all feature pyramid levels (cf .
Sec. 3.2), resized accordingly. Additionally, we concatenate
splatting and disocclusion masks, as well as multi-frame
features, which we will introduce in the following sections;
for the single-frame setting we leave them zero-initialized.
Then, our image synthesis module consists of two steps. In
a first step, we employ local multi-scale self-attention, to
let the multi-resolution features interact locally with each
other in a pair-wise manner. To this end, self-attention is
performed on every feature pyramid level, including also
the highest resolution. To handle the large memory require-
ments of full self-attention, we restrict the attention to a lo-
cal neighborhood, since through our multi-scale approach
the receptive field is still reasonably large. This way, self-
attention can be applied to large input resolutions without
any tokenization or downsampling. We make use of a re-
cent efficient implementation [8] and apply single-headed
attention with neighborhood size 13. In the second step,
we generate the final image by feeding the attention-filtered
multi-scale features into a 3×6 GridNet [4], replacing trans-
posed convolutions with bilinear upsampling [24].

3.5. Additional Frame Selection

So far, we presented stereo conversion based on a single
input frame. However, when considering disocclusion ar-
eas, revealing content that is visible in a different time step
of the input video, inpainting only from a single input frame
is not sufficient. To this end, we select additional frames I∗.
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Figure 5. Further results and comparison to state of the art. Our approach shows significantly sharper results of higher visual quality.
Copyright © 2024 MARVEL. All rights reserved. Permission to use Marvel image only for this publication.

In order to manage computational effort, we refrain from
using a large set of additional frames, but choose a compro-
mise of long-term and short-term information propagation.
For long-term information, we select the first and last frame
of the input frame sequence, to cover cases where these de-
pict a significantly large amount of the background regions
needed for inpainting. For short-term information, we ad-
ditionally choose the frames at a half-second distance (12
frames) to the input frame, if existent. For each of these
up to four candidate frames, we perform a similarity check
to confirm that the LPIPS distance between input and can-
didate frame is < 0.7, removing the candidate frame oth-
erwise. Intuitively, this check rejects frames that are very
dissimilar to the current one, e.g. in sequences with strong
changes. With the resulting set of additional frames at hand,
we continue with the extraction of multi-frame features.

3.6. Multi-Frame Features

By considering additional frames from the input se-
quence for stereo conversion, we aim at more stable results
and to integrate valuable information in disoccluded areas.
To this end, the main idea is to register information from ad-
ditional frames to the target frame to exploit it during image
synthesis. This motivates our two-stage multi-frame model:
Based on a single input frame, we first generate an initial
target frame prediction, which is used in the second step
to align additional frames to it. For every additional frame
I∗ with associated depth Z∗ we proceed as shown in Fig. 2
(bottom left): First, we compute the optical flow F (I∗→Ĩ)
using [9]. Afterwards, we apply the same feature extrac-
tor (cf . Sec. 3.2) to I∗ and then employ the warping and
compositing as before, however with two differences: First,
we use optical flow to determine target positions, to align
features to the target frame. Second, we invert the dispar-
ity weights for compositing to intentionally composite local
background over foreground. While unintuitive at first, this
ensures that foreground objects do not disturb background
content that is required for disocclusion inpainting. During
optical flow warping, a second disocclusion mask DOF is
obtained, marking invalid locations after warping. Then, we

use D from the preceding stage (see e.g. Fig. 3 (h)) to zero-
out all non-disocclusion areas. By keeping only contents
warped into the disocclusion areas, we prevent disturbances
in the image synthesis from other parts of the image, which
might be significantly different from the input image.

This is visualized in Fig. 4, where after single-frame pre-
diction (d) from the input image (a), background regions are
stretched into the foreground character (see e.g. mountains)
and an additional frame (e) is needed, which shows key
background areas unoccluded. After warping I∗, composit-
ing background over foreground (f), background areas are
aligned to the target frame (red/blue square in (d) vs. (f)),
while the essential regions remain unoccluded. Only fea-
tures in disocclusion areas are kept (g) leading to the multi-
frame prediction (h) resolving the single-frame issues.

Before piping the additional features into the image syn-
thesis, we perform two additional checks to determine if the
features are actually valuable. First, the photometric check
ensures that lighting and content changes between I∗ and
the target frame are not too large. To this end, we com-
pute the L1 distance between the optical-flow-warped ad-
ditional image and the single-frame target prediction Ĩ , not
counting optical flow disocclusion areas DOF and omit I∗, if
L1 > 4. Secondly, we perform a filling check to verify that
I∗ can significantly fill the disocclusion areas. We remove
the additional frame, if the fill amount |¬DOF ∩ D|/|D| is
below 30%. Finally, we generate the final multi-frame fea-
ture pyramid. Initializing it as zero, we accumulate the fea-
tures from all additional frames, which are masked by their
optical-flow and disparity disocclusion masks ¬DOF ∩ D.

4. Training and Implementation Details

Data Generation We create a large dataset from 21 recent
3D movies with horizontal disparities. Since movie data
is highly correlated, especially within shots, we subsample
to select meaningful frames as follows: We separate every
movie into shots using an edit decision list, excluding stu-
dio intros and credits. Then, for every shot, we select the
time-central frame, and from there, all non-black frames in



Table 1. Comparison to state-of-the-art.

Method LPIPS ↓ PSNR ↑ dMAE ↓

Deep3D 0.2351 28.078 12.31
3DPhoto 0.1391 28.006 8.25
ours (single-frame) 0.0715 28.227 8.22
ours (multi-frame) 0.0714 28.231 8.22

ours (w/ Deep3D’s depth) 0.1261 25.933 12.31
ours (w/ 3DPhoto’s depth) 0.0706 28.147 8.25

1 second steps. From the 21 movies, we select 17 for train-
ing (250992 frames in total) and 4 for testing, from which
we randomly select 250 frames each (1000 test frames in
total). Afterwards, we compute reference disparity, i.e. the
disparity from the left to the right frame and vice-versa. To
compute these, we follow [27] and employ a recent optical
flow method [9,10], keeping only horizontal displacements.

Loss function As loss, we use the L1 distance between pre-
diction Ĩ and ground truth second frame I . Here, we make
use of the disocclusion mask D to separately weight areas
with known information and disocclusions, i.e. areas where
information has to be extrapolated. We choose a larger
weight for known areas, since we want a precise reconstruc-
tion of the other image in those areas. The L1 loss reads

LL1 =
∑
x∈D

∣∣∣Ĩ(x)−I(x)
∣∣∣+ β

∑
x/∈D

∣∣∣Ĩ(x)−I(x)
∣∣∣ . (2)

Additionally, we employ a perceptual LPIPS loss [38]
LLPIPS to ensure visually pleasing results. Our total loss
then reads L = LL1 + γ · LLPIPS, where we empirically
choose β = 10 and γ = 10.

Training We train our model end-to-end using the left-right
pairs with associated reference disparity. We use the ref-
erence disparity as a direct input to our network, circum-
venting depth estimation and disparity mapping, since this
gives a precise alignment of predicted frame and ground
truth frame. We train for 200K steps using a batch size of
16 and the Adamax optimizer [14] with learning rate 1e-
3, decayed by 0.8 every 10K steps. We train our model in
CIELAB space as it better models human color perception.
During training, we remove the two-stage execution of our
model, as it comprises time-consuming optical flow com-
putations, but still train jointly for single-frame and multi-
frame prediction: Randomly in half of the training steps,
we use zero-initialized multi-frame features to train single-
frame prediction, otherwise we supply multi-frame features.
For the latter case, we apply the pipeline as described above,
but omit optical flow warping. Since this would result in un-
aligned features not too useful to the model, with a random
probability of 50%, we use the ground truth frame as I∗.
Intuitively, this lets the model learn that there might be reli-
able information in the multi-frame features, helpful to fill
disocclusions. We provide further details in the supplement.

Figure 6. Single-frame (top) vs. multi-frame (bottom).
Copyright © 2024 MARVEL. All rights reserved. Permission to use Marvel
image only for this publication.

5. Experiments
In the following, we compare our model to the state of

the art, ablate design choices and assess dynamic NeRFs for
stereo conversion. If not stated otherwise, throughout our
experiments, we use MiDaS [26, 27] for depth estimation.

Comparison to state of the art There are not many ap-
proaches available that can be compared directly to ours.
We thus select two methods: First, we compare to the
only stereo conversion method with public source code,
Deep3D [36]. As it only predicts left-to-right, we remove
all right-to-left samples from our test split before evaluat-
ing. Second, we select the recent 3DPhoto [30] that also
focuses on background-aware inpainting. While their ap-
proach renders arbitrary close-by camera poses, there is no
direct way to use it for stereo conversion with positive and
negative disparities. We thus use their method by rendering
from a specific camera pose that is displaced in an orthopar-
allel way and using an additional shift of the image plane.
With these additions, their approach can be used to generate
results for precise disparity ranges, similar to our method.
To select these ranges we use our automatic selection (cf .
Sec. 3.1) generating results spatially aligned to ours.

We show results in Tab. 1. It can be clearly seen that
our method outperforms all other approaches by a large
margin, especially in the human-perception like LPIPS er-
ror. These improvements hold for the single-frame method,
which is directly comparable to the other approaches, but
also for multi-frame, which will be discussed in the follow-
ing sections. We also show image results in Fig. 5. Visually,
our method generates significantly sharper results than the
other approaches, which both exhibit visual artifacts. For
Deep3D, a strong horizontal blur can be observed, which
is probably caused by their weighted sum of displaced im-
ages. For 3DPhoto, too sharp object edges stemming from
the mesh representation can be seen, as well as in some
cases the limitations of their background inpainting. Both
comparison methods, of which only Deep3D was targeted
for videos, also show significant temporal stability issues
for video data.

Influence of depth While our final model outperforms both
other approaches significantly in the image metrics LPIPS
and PSNR, we also see improvements in the disparity er-
ror dMAE, comparing disparity prediction to reference dis-
parity. Thus, to investigate the reason for improvement,



Table 2. Single-frame vs. multi-frame prediction.

Frame checks LPIPS ↓ PSNR ↑

Selection sim.pho. fill #fr. all disocc. not disoc.

single 1 0.0715 26.14 28.36

FL ✓ ✓ ✓ 2.13 0.0715 26.11 28.36
±12 ✓ ✓ ✓ 2.04 0.0715 26.13 28.36
FL,±12 ✓ ✓ ✓ 3.17 0.0714 26.15 28.36

FL,±12 ✗ ✓ ✓ 3.17 0.0714 26.15 28.36
FL,±12 ✓ ✗ ✓ 3.61 0.0715 26.14 28.36
FL,±12 ✓ ✓ ✗ 4.01 0.0715 26.09 28.36
FL,±12 ✗ ✗ ✗ 4.65 0.0715 26.08 28.36

Table 3. Ablation of our architecture and loss function.

Method LPIPS ↓ PSNR ↑

ours 0.0126 41.041

forward warping NN-interpolation 0.0441 34.835
disparity-aware warping & compositing 0.0308 36.803

ours w/o attention 0.0127 40.963

ours w/o disparity filling 0.0130 40.958
ours w/o disparity 0.0140 40.321
ours w/o disparity, warping masks 0.0141 40.310

LL1 0.0202 40.852
LL1 + Lstyle 0.0159 40.714
LL1 + LLPIPS + Lstyle 0.0126 41.032

Figure 7. Comparison to recent dynamic NeRFs. Left: input im-
ages, center: results for Dynibar [18], right: our result.

we separate disparity estimation from image generation by
also reporting results of our multi-frame model, when using
disparity results of other approaches. First, it can be seen
that when using the same disparity, our model still signif-
icantly outperforms Deep3D in the LPIPS metric. At the
same time, PSNR, which strongly depends on spatial align-
ment, drops worse than Deep3D, which can be explained
through their weighted average warping leading to blur to
which PSNR is not too susceptible [38]. When using the
3DPhoto depth with our disparity mapping for our method,
we get even better LPIPS values at a reduced PSNR. This
is not surprising since their implementation uses a slightly
different variant of the same depth model [21, 26, 27].

Multi-frame strategy We evaluate details of our multi-
frame strategy in Tab. 2, reporting PSNR separately for dis-
occlusions and the rest as well as the average number of

frames (#fr.) that was considered for the prediction. First,
we note that there are no large quantitative differences be-
tween single-frame and the tested multi-frame approaches.
This is not surprising, since we only expect improvements
in the disocclusion areas, and the PSNR metrics show that,
in fact, only these areas change, while the rest is unaffected.
We show a visual comparison between single- and multi-
frame results in Fig. 6. While there are visible improve-
ments in the images, they can be seen best in motion, since
there the issue of background stretching into foreground is
most obvious.

We also ablate aspects of our multi-frame strategy. First,
we evaluate the frame selection (cf . Sec. 3.5). When only
considering two additional frames, either selecting first and
last (FL) or distance-12 frames (±12), results are not able
to outperform the single-frame method, potentially due to
the low resulting frame count, which after checks is around
2 (i.e. only 1 additional). Only with the combination of
both these strategies, yielding 3.17 frames, a small improve-
ment is reached. In a second experiment, we investigate the
checks that remove frames due to low similarity (sim.), high
photometric distance (pho.) or low fill amount. Here, dis-
abling the similarity check yields the same results, likely
since the photometric check later removes the same prob-
lematic frames. However, we still keep the check, since
it saves computation time as it is used before optical flow
computation and warping, resulting in a 4.4% speedup. We
also investigate the influence of the other checks, which
when disabled, yield a larger number of frames, but at a de-
creased performance. The worst results with highest frame
count can be observed without any checks, which is clear
since in this case all frames, with strong content or illumi-
nation changes or from unhelpful camera angles are used.

Ablation We ablate design choices of our model in Tab. 3,
using the reference disparity as input. First, we com-
pare our model to base variants. When using the disparity
for nearest-neighbor interpolated forward warping, i.e. per-
forming compositing and inpainting without disparity guid-
ance, we obtain the worst results. Disparity-aware com-
positing improves results, but only when employing our full
disparity-aware image synthesis, largest gains are reached.
Second, we evaluate architecture and loss choices by re-
training our single-frame model for 100K steps. When
removing self-attention or disparity filling, performance
slightly decreases. Removing disparity completely as an
input to image synthesis leads to a significant quality drop,
proving the importance of disparity guidance. We also show
that also removing splatting and disocclusion warp masks
decreases performance even more. To evaluate the choice
of perceptual loss, we compare to removing perceptual loss,
using the recent style loss [6, 28] or using LPIPS and style
loss. Here, employing LPIPS brings the largest advantage,
additional style loss does not improve further.
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Figure 8. Optional interaction in our approach. Left: Sparse scribbles control the disparity mapping. Center left: Comparison of 2D (left)
and 3D (right) movie version with optical flow (bottom). Center right: Implemented mitigation strategies; 15px background stretch, 5%
foreground zoom. Right: Reduction of disocclusion areas by mitigation strategies. Copyright © 2024 MARVEL. All rights reserved. Permission to use Marvel image

only for this publication.

Comparison to dynamic NeRFs We also compare our
model to the recent DynIBaR [18], which we retrain on
one of their low-resolution scenes. With slight changes to
their rendering, we generate results with positive-negative
disparities, see Fig. 7. It can be seen that their approach
performs similar to ours, with only small artifacts visible.
However, there are still drawbacks when considering dy-
namic NeRFs for stereo conversion such as time-consuming
training and the requirement of camera poses. Also, so far
they are not used for high resolutions, DynIBaR uses maxi-
mum resolutions of 768×432.

6. Interaction Points
Finally, we extend our model with optional interactive

tools for disparity mapping and inpainting mitigation. We
describe the implementation details in the supplement.

Controlling Disparity Mapping While we propose an ap-
proach with automatic disparity mapping, in 3D movie pro-
duction this is creatively selected [13, 20]. We thus present
interactive solutions. First, we support directly choosing a
and b (cf . Sec. 3.1), in contrast to [36]. Secondly, we show
mapping with user-provided scribbles on a single reference
frame in Fig. 8 (left). Given the input video (top row), we
propagate reference frame scribbles (second row, left) to the
other frames to get disparity (third row) and results (last
row). Figure 8 shows the user mapping with the characters
on the screen plane (zero disparities, white), the foreground
in front of it (blue), and the background behind it (red).

Mitigation Strategies As a second interaction point, we
implement strategies that reduce the inpainting area. Fig. 8
(second column) documents two strategies occasionally
used in stereo conversion by comparing the 2D (top left)
with the 3D movie version (top right) using an optical flow
visualization [2] (bottom): The foreground is slightly en-
larged, and the left side of the background is stretched to-
wards the right and vice-versa. Both strategies strongly re-
duce disocclusions which have to be manually inpainted, at
nearly no visual difference. Based on this observation, we
implement these two strategies as optional additions into

Figure 9. Limitations of our model for thin structures such as hair.
Copyright © 2024 MARVEL. All rights reserved. Permission to use Marvel image only for this
publication.

our approach, reducing inpaint areas, where content has to
be extrapolated. Since scene content is changed, these can
only be applied when generating a novel left and right view.
We show results in Fig. 8 (third column) reaching strong
reductions of the disocclusion areas with barely noticeable
visual changes using a small horizontal displacement dx in
the background and foreground zooming. This is also con-
firmed by a quantitative study on 10 sequences from our test
split in Fig. 8 (fourth column).

7. Limitations
While giving consistent results in many cases, our model

sometimes fails for very thin structures such as hair that
might not be correctly displaced, leading to visible artifacts,
cf . Fig. 9, or if the underlying depth estimation is unstable.

8. Conclusions
We presented an automatic method for stereo conver-

sion that efficiently operates at high resolution and gener-
ates results of high visual quality. This is enabled through
our disparity-guided warping, compositing, and inpainting
as well as integrating information from additional frames.
Systematic experiments show the influence of our individ-
ual design choices regarding the architecture, losses, and
our multi-frame strategy. By additionally integrating in-
teractive extensions, our approach also seamlessly fits into
practical stereo conversion workflows. Summing up, our
approach advances the state of the art in stereo conversion
showing significant advantages over prior work from both
stereo conversion and novel view synthesis.
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[4] Damien Fourure, Rémi Emonet, Elisa Fromont, Damien
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