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Abstract

Creating artistic 3D scenes can be time-consuming and
requires specialized knowledge. To address this, recent
works such as ARF [57], use a radiance field-based ap-
proach with style constraints to generate 3D scenes that re-
semble a style image provided by the user. However, these
methods lack fine-grained control over the resulting scenes.
In this paper, we introduce Controllable Artistic Radiance
Fields (CoARF), a novel algorithm for controllable 3D
scene stylization. CoARF enables style transfer for speci-
fied objects, compositional 3D style transfer and semantic-
aware style transfer. We achieve controllability using seg-
mentation masks with different label-dependent loss func-
tions. We also propose a semantic-aware nearest neigh-
bor matching algorithm to improve the style transfer qual-
ity. Our extensive experiments demonstrate that CoARF
provides user-specified controllability of style transfer and
superior style transfer quality with more precise feature
matching.

1. Introduction
As the film and game industry continue to evolve, there is
an increasing demand for more accessible methods to cre-
ate and manipulate 3D scenes. Radiance field-based meth-
ods, such as Neural Radiance Fields (NeRF) [35], gained
widespread attention due to their ability to produce high-
quality novel-view images without the requirement of 3D
assets like meshes or point clouds. Instead, they use im-
plicit representation to encode the 3D scene information.
However, despite the impressive photorealism achieved by
these methods, the style richness of the resulting 3D scenes
is still limited. To address this, researchers have turned
their attention to style transfer for 3D content, which has
gained significant interest as a means of providing inspi-
ration and tools to 3D artists. There are many different
style transfer approaches based on NeRF. For instance, [5]
use a separate HyperNetwork to control the input features
based on arbitrary style images, while [14, 28, 31] integrate
AdaIN [13] module to the NeRF pipeline to achieve style

transfer. These methods cannot be easily integrated with
NeRF variants such as [8, 38] since the structure is tailored
for style transfer. As a comparison, the Artistic Radiance
Fields (ARF) [57] applies a nearest neighbor feature match-
ing (NNFM) style constraint to fine-tune the radiance in-
formation, thus can be generalized to NeRF variants and
achieves superior stylization quality compared with the pre-
vious methods. However, artists need to control the style
transfer target in practical applications, and ARF lacks fine-
grained controllability in the stylization process. Other re-
cent works [31, 52] provide controllability for composi-
tional style transfer and text-based style transfer, but the re-
sulting quality is inferior and the semantic correspondence
is not well captured during style transfer for these methods.

In this paper, we propose Controllable Artistic Radiance
Fields (CoARF), which endows a baseline model [57] with
three controllability modules for 3D style transfer as shown
in Figure 1. Namely, CoARF enables object selection, com-
positional style transfer and semantic-aware style transfer
using multi-view 2D mask-based optimization and masks
defined by a user. Similar to the 2D case [46], a naı̈ve so-
lution to achieve controllability is to define different opti-
mization loss functions for different 3D regions. However,
it is non-trivial to obtain the precise 3D object in practice.
Therefore, we use multi-view 2D mask-based optimization
with different loss definitions to achieve different control-
lable style transfer tasks and prove that multi-view opti-
mization can automatically correct the error gradient.

In more detail, the object selection module allows the
user to select which parts of the 3D scene should be styl-
ized while keeping the rest photorealistic. To do so, we
optimize the user’s selected area using NNFM loss, and use
Mean Squared Error (MSE) to preserve the rest photoreal-
istic. The compositional style transfer module allows trans-
ferring of different styles to different parts of the 3D scene
by using specific NNFM loss for corresponding mask la-
bels. Last, our semantic-aware style transfer module uses
2D mask labels to match semantic regions between the 3D
scene and the provided style image. We also show that
while VGG features successfully encode texture, structure
and color, they fail to encode semantic information. There-



Figure 1. CoARF Overview. Given a set of multi-view ground truth images and style images, our controllable style transfer model allows
the user to perform object selection (a), compositional style transfer (b), and semantic-aware style transfer (c) by using 2D mask-based
optimization with different spatial-dependent loss definitions to achieve stylization.

fore, we proposed a novel Semantic-aware Nearest Neigh-
bor Feature Matching (SANNFM) algorithm which lever-
ages a weighted sum of VGG feature distance and LSeg fea-
ture distance for stylization to improve general style transfer
quality.

We summarize our contributions as follows: 1) We pro-
pose a multi-view 2D mask-based optimization framework
to solve the general 3D controllable style transfer problem.
2) By leveraging the core framework, we can achieve object
selection, compositional style transfer, and semantic-aware
style transfer. 3) Our semantic-aware 3D style transfer al-
gorithm utilizes a semantic-based nearest neighbor match-
ing technique, which achieves better style transfer quality.
Through extensive experimentation, we show that CoARF
provides fine-grained control over the style transfer process
and yields superior results compared to state-of-the-art al-
gorithms [31, 57].

2. Related Work

2D Style Transfer. 2D style transfer can be achieved
through various methods such as non-parametric algorithms
[24] or texture synthesis [43]. However, since [11] intro-
duced the use of a convolutional neural network, there has
been significant improvement in performance. This ap-
proach utilizes features extracted from the VGG-19 [47]
network to calculate a Gram matrix-based style constraint,
and optimizes the output from a noise image. Follow-up
methods [22, 27, 29, 30, 46] use different content and style

constraints to iteratively optimize the noise image. Re-
cently, nearest neighbor-based algorithms [23, 27, 30] have
been proposed to match content and style features and min-
imize the cosine distance between them. ARF [57] applies
a similar nearest neighbor-based loss as [23], despite the
loss function being only applied to the final scale instead
of augmenting the style images. In our work, we improve
upon ARF by modifying the nearest neighbor-finding al-
gorithm using semantic information, which results in bet-
ter style transfer outcomes. There are also several efforts
[17, 19] to explore the controllability of 2D style transfer
from the level of stylization and stroke perspectives. Pre-
vious works [12, 15, 46, 58] introduced user-defined masks
or automatically generated soft masks for semantic-aware
style transfer. Our work is similar to [46], but we propose a
novel semantic-aware method to improve feature matching.

Radiance Fields. NeRF [35] proposed a radiance field-
based representation of the 3D scene. The method is trained
using multi-view 2D images for which the camera pose
is provided and uses MLPs to predict the density and ra-
diance of a given sample on the ray. Then the volumet-
ric rendering equation is applied to render the image for
different views. To further enhance the quality and di-
versity of rendered scenes, several tasks have been ex-
plored, including NeRF rendering performance improve-
ments [2, 48, 54], NeRF speedup [3, 8, 38], dynamic scene
rendering with radiance fields [39–41, 44], 3D scene editing
and control [18, 21, 25, 51], view consistent segmentation



[7, 33, 50, 59], and novel view synthesis for real-world sce-
narios [32, 36, 53]. In this work, we use Plenoxels [8] as
our backbone model for radiance prediction, which propose
a sparse voxel model that matches NeRF's rendering per-
formance while being much faster. Our algorithm can also
be generalized to other differentiable radiance-�eld-based
algorithms as demonstrated in ARF [57].

NeRF-based Style Transfer. There are various ways
to enable stylized radiance prediction, including adding a
tailored MLP [4, 5, 14] for stylization or applying AdaIN
transformation to the input features of the radiance MLP
[28]. However, these methods suffer from unstable results
during training due to the use of a tailored stylization mod-
ule. Moreover, they cannot be easily generalized to NeRF
variants [8, 38], since the original scene encoded in NeRF
is not edited. In contrast, ARF [57] applies an NNFM loss
to the rendered image of the pre-trained radiance �elds and
�ne-tunes the radiance information, resulting in exceptional
stylization results compared to other methods. However,
ARF lacks �ne-grained controllability in the stylization pro-
cess. An alternative approach, StyleRF [31], uses volumet-
ric rendering to integrate features in the scene and deferred
style transformation to enable controllability for composi-
tional style transfer. Nevertheless, the stylization quality is
worse than ARF, because volumetric rendering for neural
features is not physically-based. Our algorithm introduces
�ne-grained controllability to ARF using a 2D mask-based
optimization and achieves better style transfer quality com-
pared with existing methods.

Controllable NeRF. The controllability of NeRF has been
explored in various directions. For instance, [25] allows
compositing objects from different scenes. [18] enables dy-
namic facial expression control using 2D annotations, while
[10, 16, 42, 55, 56] edit the query for NeRF trained in static
scenes, achieving user-de�ned deformation on the given
scene. CLIPNeRF and SINE [1, 51] enable text-driven
editing, whereas [21] distills the 2D semantic feature from
LSeg [26] to train 3D semantic feature using volumetric
rendering, enabling editing including colorization, transla-
tion, deletion, and text-driven editing. In our project, we use
LSeg [26] to provide a 2D mask for optimization and calcu-
late semantic features to assist semantic-aware style trans-
fer. However, we use 2D masks directly for controllability,
unlike [21], which calculates explicit 3D label distribution
for controllability.

Language-driven Recognition. The �eld of language-
driven recognition models has gained a lot of attention after
the release of CLIP [45]. CLIP utilizes text-image encoders
to encode image and text features into the same space via
contrastive pre-training, which enables zero-shot class pre-
diction. LSeg [26] builds on this work by using the pre-
trained text encoder from CLIP and an image encoder based
on ViT [6] to achieve pixel-wise semantic feature predic-

tion. Other works [9, 34, 37, 49] have shown that the loss
function de�ned by CLIP features has signi�cant control-
lability for semantic information. In our work, we utilize
a combination of semantic features from LSeg and fea-
tures from VGG to guide nearest-neighbor searching and
improve the robustness of style transfer.

3. Background

The general representation of the radiance �elds is a map-
ping f : R5 7! R3, which takes a 3D positionx and direc-
tion d as input and outputs density� and radiancec:

�; c = RADIANCEFIELD(x; d): (1)

The radiance for a given ray can be calculated as the follow-
ing weighted average by uniform sampling pointsxi along
the ray:

c(r ) =
NX

i =1

wi ci ; wi = Ti (1 � exp(� � i � i )) ; (2)

whereTi = exp(�
P i � 1

j =1 � j � j ). The radiance �elds func-
tion is optimized by theL 2 distance between the ground
truth and the rendered image. In particular, we use Plenox-
els [8] as the radiance �elds function, which represents the
radiance as spherical harmonics functions in a voxel grid.
Our CoARF is generalizable to the radiance �elds represen-
tations.

In ARF [57], the radiance �eld is �rstly pre-trained using
the multi-view ground truth (content) images. Then, the
density �eld is �xed, and ARF only optimizes the radiance
prediction part of the radiance �eld. ARF �ne-tunes the
photorealistic radiance �eld by de�ning an averaged pixel-
wise loss function on the rendered image:

L =
1
N

X

x;y

(lnnfm(Fr (x; y); Fs) + � � l2(Fr (x; y); Fc(x; y)))

+ � tv � l tv;
(3)

whereN is the number of pixels,Fc, Fs, andFr are features
extracted from the multi-view content (ground truth), style,
and rendered images using VGG [47] encoder.F(x; y) de-
notes the feature vector at pixel location(x; y). l2 represents
pixel-wise MSE andl tv represents total variation loss. The
pixel-wise NNFM style loss is de�ned as the nearest cosine
distance in the style image:

lnnfm(Fr (x; y); Fs) = min
x 0;y 0

D(Fr (x; y); Fs(x0; y0))

D (v1; v2) = 1 �
vT

1 v2p
vT

1 v1vT
2 v2

:
(4)

ARF also applies color transfer to the voxel grid when they
use Plenoxels as the backbone and the multi-view ground
truth image before and after the stylization, which aligns
the distribution of the RGB values to the style image.



4. Methodology

We propose a novel controllable and generalizable style
transfer model for radiance �elds, which not only enables
object selection and compositional style transfer but also
produces a better style transfer quality for semantic sensi-
tive style images. We �rst introduce the core 2D mask-
based algorithm to provide controllability for the radiance
�elds in Section 4.1. After that, we demonstrate how to
apply this algorithm with different optimization constraints
to achieve different controllable tasks in Section 4.2. Last,
we provide implementation details of the controllable style
transfer algorithms in Section 4.3.

4.1. 2D Mask­Based Optimization

Given a rendered image from one camera viewI r , we can
apply any 2D segmentation algorithm such as LSeg [26] to
produce a segmentation maskM r with M classes, such that
each pixelM r (x; y) 2 f 0; 1; :::; M g. We de�ne the con-
trollable loss function as:

L = (
1
N

X

x;y

X

m

1[M r (x; y) = m]L m (x; y)) + � tv � l tv;

(5)
whereL m is a pixel-wise loss function de�ned for corre-
sponding labelm, and1[condition] is an indicator function
with output one if the condition holds and zero if the con-
dition does not hold. In particular, we assign a speci�c loss
function for each mask label. As shown in Figure 3(a), this
loss function is problematic for one-view optimization be-
cause 2D mask-based loss optimizes a 3D column, instead
of accurately optimizing the 3D object. As a result, point
A would be optimized using the incorrect foreground loss
function. However, as shown in Figure 3(b), with multi-
view optimization, this error can be automatically corrected.
According to the volume rendering equation, the �nal gra-
dient for the radiance of point Ar cA L is averaged among
the multiple views:

r cA L =
X

v

wv
A r L m v ; (6)

wherewv
A represents the contribution of point A during vol-

ume rendering in Equation 2 for viewv, mv is the point
A masking label from viewv, and r L m v represents the
gradient of the corresponding loss w.r.t the rendered pixel
value. During optimization, A has the correct background
label when visible and the wrong foreground label when
occluded. According to the physical property of the volume
rendering equation, since point A is visible from views 1
and 2, the weight becomes larger dominating the �nal gradi-
ent and optimizing the radiance with the correct background
loss. The detailed proof can be found in the supplementary
materials. Based on this optimization framework, we pro-

pose to combine different loss functionsL m (x; y) based on
the type of control we want to achieve.

4.2. Controllable Optimization for Different Tasks

Object Selection. For object selection in 3D style transfer,
we provide a 0-1 mask for each camera view to label objects
that should be stylized (1) and objects that should be kept
photorealistic (0). The loss function is the same as ARF for
pixels with label 1, and we use MSE for pixels with label 0:

L m (x; y) =

(
l2 m = 0
lnnfm + � � l2 m = 1

: (7)

Note that the preservation lossL 0 is a crucial constraint to
correct the gradient as mentioned in Section 4.1. We show
the effectiveness ofL 0 in Figure 7.
Compositional Style Transfer. Compositional style trans-
fer assigns different style images for different mask regions.
The loss function for labelm in compositional style transfer
is de�ned as:

L m (x; y) = lnnfm(Fr (x; y); Fm
s ) + � � l2(Fr (x; y); Fc(x; y)) ;

(8)
where the featureF m

s represents the feature map extracted
from the style image with labelm.
Semantic-aware Style Transfer. The original ARF uses
VGG features to match the nearest neighbor in the style im-
age. However, VGG features encode more textural, struc-
tural, and color information compared with semantic in-
formation. Therefore, we use LSeg [26], which is trained
together with a text encoder to extract semantic informa-
tion for the nearest neighbor matching. OurSemantic
Aware NearestNeighbor FeatureMatching (SANNFM)
function performs nearest neighbor matching between con-
tent and style features in both VGG (FV GG

r ; FV GG
s ) and

LSeg (FLSeg
r ; FLSeg

s ) spaces for each speci�c pixelx; y
with labelm:

SANNFM(x; y; m) = argminx 0;y 02 SD sannfm; (9)

whereS = f x0; y0jM s(x0; y0) = mg, and the distance func-
tion D sannfm is de�ned as a weighted average of the VGG
cosine distance and LSeg cosine distance:

D sannfm= � � D (FV GG
r (x; y); FV GG

s (x0; y0))

+ (1 � � ) � D (FLSeg
r (x; y); FLSeg

s (x0; y0)) ;
(10)

where� 2 [0; 1] is a hyperparameter to control the weight
of VGG and LSeg features andD(:) is the cosine distance
de�ned in Equation 4. The SANNFM style loss for the pixel
x; y is de�ned as:

lsannfm(m; FV GG
r (x; y); FV GG

s ; FLSeg
r (x; y); FLSeg

s )

=
1
N

X

x;y

D(FV GG
r (x; y); FV GG

s (SANFFM(x; y; m))) :

(11)



Figure 2. Pipeline of Semantic-aware Style Transfer. The multi-view images and style image are used to extract VGG features
FV GG

r ; FV GG
s and LSeg featuresFLSeg

r ; FLSeg
s . Then the cosine distance is calculated and blended using the hyperparameter� . As

shown in the SANNFM module in the �gure, we use the ellipses to represent different semantic labels, use the different shapes (square,
triangle, circle) to represent semantic information of the pixels, use the color of the shape to represent the color and textural information of
the pixels. The mixed distance is used to match the nearest neighbor in the style image with the same label for each pixel in the rendered
image. Finally, the optimization uses VGG cosine distance only.

(a) (b)

Figure 3.Multi-view correction. (a) For one view optimization,
point A should be optimized using background loss, but optimized
using foreground object loss. (b) Multi-view ray passing through
point A. The �rst two views have the correct label for point A,
represented as green rays, last two views have an incorrect label for
point A, represented as red rays. The �nal gradient is dominated
by correct loss gradients in the �rst two views.

Intuitively, the pipeline is shown in Figure 2, we search the
nearest neighbor for a content image pixel only in the cor-
responding mask label of the style image. And the nearest
neighbor metric is de�ned as a combination of VGG cosine
distance and LSeg cosine distance. Finally, we only opti-
mize the VGG cosine distance between the two features,
which means LSeg feature is only used to match the fea-
tures. The loss function for labelm in semantic-aware style
transfer is de�ned as:

L m (i; j ) = lsannfm(m; FV GG
r (x; y); FV GG

s ; FLSeg
r (x; y); FLSeg

s )

+ � � l2(FV GG
r (x; y); FV GG

c (x; y)) :
(12)

4.3. Implementation Details

For the VGG features extraction, we follow the same ap-
proach as ARF, using the conv3 block of VGG-16. For the
LSeg features, we use the LSeg encoder similar to [21] to
extract the feature for each pixel, and we use bilinear in-
terpolation to match the resolution of VGG features. We
set content loss weight� = 0 :001 in forward-facing cap-
tures, and� = 0 :005in 360� captures, and the smoothness
weight � tv = 1 . During colorization, different from ARF,
we only apply color transfer to the ground truth images as
preprocessing and do not change the voxel grid, since we
observe that the color transfer on the whole feature grid has
an inaccurate rendering result since it is not semantically
aware. For object selection, we only apply color transfer to
the selected object in the ground truth image. And for com-
positional style transfer and semantic-aware style transfer,
we apply color transfer to different ground truth regions us-
ing the corresponding semantic parts. All experiments are
conducted with a single NVIDIA RTX 3090 Ti GPU.

5. Experiments

We conduct extensive experiments to evaluate object selec-
tion in Section 5.1, compositional style transfer in Section
5.2, and semantic-aware style transfer in Section 5.3. We
also validate our 2D mask-based optimization and SAN-
NFM module in the ablation studies in Section 5.4.
Dataset. We use a total of seven scenes including three
forward-facing captures:Flower, Fortress, Horns, from
[35], and four360� captures:Family, Horse, M60, Truck
from theTanks and Templesdataset [20]. We use style im-
ages from the ARF style dataset, cartoon movies and other
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