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2ETH Zürich, Switzerland

jens.eirik@saethre.ch {roberto.azevedo,christopher.schroers}@disneyresearch.com

Abstract

Implicit neural representations (INRs) were recently pro-
posed as a new video compression paradigm, with exist-
ing approaches performing on par with HEVC. However,
such methods only perform well in limited settings, e.g.,
specific model sizes, fixed aspect ratios, and low-motion
videos. We address this issue by proposing T-NeRV, a hy-
brid video INR that combines frame-specific embeddings
with GOP-specific features, providing a lever for content-
specific fine-tuning. We employ entropy-constrained train-
ing to jointly optimize our model for rate and distortion and
demonstrate that T-NeRV can thereby automatically adjust
this lever during training, effectively fine-tuning itself to the
target content. We evaluate T-NeRV on the UVG dataset,
where it achieves state-of-the-art results on the video repre-
sentation task, outperforming previous works by up to 3dB
PSNR on challenging high-motion sequences. Further, our
method improves on the compression performance of previ-
ous methods and is the first video INR to outperform HEVC
on all UVG sequences.

1. Introduction
Implicit neural representations (INRs) have emerged as ver-
satile and robust tools to represent diverse signals. By over-
fitting neural networks, they capture objects described im-
plicitly by functions f : Rk → Rl that map coordinates
to properties (e.g., RGB colors) and have been successfully
applied to tasks such as view synthesis [6, 42] and shape re-
construction [41, 44]. Recently, few works [46, 51, 53] have
explored INRs for representing multi-media signals and
subsequently compressing these representations [12, 15, 16]
via model compression techniques [23, 60, 63], giving rise
to a new lossy data compression paradigm.

With video streaming accounting for more than 65% of
total Internet traffic in 2023 [49] and immersive technolo-
gies on the rise [52, 58], this development is of particular
interest to video compression. While traditionally domi-
nated by codecs rooted in heuristics such as H.264 [47],
HEVC [54], and the more recent VVC [9] and AV1 [13], ad-
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Figure 1. At the same model size, our method can fit videos with
much higher accuracy than previous state-of-the-art INR-based
methods. This figure is best viewed digitally.

vances in deep learning [14, 26, 56] have rendered learning-
based approaches increasingly attractive. Numerous works
have been proposed, with recent years favoring end-to-
end methods not bound by a standardized bitstream syn-
tax [1, 22, 35, 39, 48]. State-of-the-art methods [29] can
outperform the latest generation of codecs in terms of BD-
rate [8]; however, their decoding speeds are too slow to sup-
port real-time decoding.

Meanwhile, video INRs employ much simpler architec-
tures, resulting in faster forward passes and higher decoding
speeds. Chen et al. [10] achieve this with a frame-wise rep-
resentation called NeRV that maps frame indices to frames
via a sequence of linear and convolutional layers. After
training, the model is compressed with pruning, quantiza-
tion, and entropy-encoding, resulting in competitive com-
pression performance against H.264 and HEVC. Several
improvements have been proposed, such as adding spatial
context to the input (E-NeRV [31]), incorporating optical
flow and feature grids (FFNeRV [28]), as well as exploiting
more elaborate compression pipelines [18]. Also, hybrid
approaches [11, 62] have emerged that represent videos by
the decoder’s parameters and a set of per-frame embeddings
generated by an encoder that is discarded after training.

Although such methods surpass NeRV, their success is



often confined to specific settings, such as excelling at
static sequences while faltering on high-motion content.
Conversely, FFNeRV is targeted at dynamic sequences but
struggles on low-motion videos. Hybrid approaches show
great promise in the low bitrate regime but fail to scale to
higher bitrates and are currently limited to content with an
unusual 2:1 aspect ratio.

We remedy these issues by proposing T-NeRV, a new
tunable hybrid INR for video based on the insight that tra-
ditional codecs require both local and non-local informa-
tion to code frames efficiently. Our method employs a hy-
brid encoder that combines frame-specific embeddings with
GOP-specific features and upsamples them with a decoder
based on optical flow. This combination provides a lever for
content-specific fine-tuning: Larger frame embeddings can
extract more high-frequency information, improving perfor-
mance on low-motion sequences. Conversely, more promi-
nent GOP-specific features allow the model to extract more
temporal context that the decoder can leverage to recon-
struct frames in dynamic sequences.

For compression, we extend Gomes et al. [18]’s frame-
work, which jointly minimizes rate and distortion via
quantization-aware and entropy-constrained [43] training,
to capture embeddings. By employing a single entropy
model for all embeddings, T-NeRV can exploit their re-
dundancies to a higher degree than previous approaches.
End-to-end training also encourages the network to fine-
tune itself to the target video content by spending more bits
on the frame-specific embeddings or the GOP-specific fea-
tures, automatically adjusting the lever.

Our experiments on the UVG [40] dataset show that T-
NeRV outperforms all previous video INRs on the task of
video representation in two different settings, with increases
by up to 3 dB of PSNR over the second-best method on
high-motion sequences (cf. Fig. 1). Applying compression,
our method is the first video INR that outperforms HEVC
(veryslow preset, no b-frames) on all UVG sequences.
In summary, our main contributions are the following:
• We propose a tunable hybrid video INR that combines

frame-specific embeddings with GOP-specific features,
providing a lever for content-specific fine-tuning.

• We extend the information-theoretic INR compression
framework by Gomes et al. [18] to include embeddings,
exploiting the significant redundancies within them.

• We evaluate our method on the UVG dataset, outperform-
ing all previous video INRs on the video representation
and compression tasks.

2. Related Work
Neural Video Compression. Traditional video codecs [9,
13, 47, 54] consist of an encoder-decoder pair related by
a standardized bitstream syntax. Works on learning-based
video compression initially adhered to this bitstream syntax

while replacing specific modules with neural blocks [2, 30,
36, 61]. Fully end-to-end trained methods have also been
explored in recent years. Early works [19, 45] employed
auto-encoders and formulated video compression as a la-
tent space search problem but fell short of competing with
traditional codecs. Lu et al. [35] follow the traditional video
coding pipeline more closely with separate networks for the
individual pipeline stages. Hu et al. [22] perform these oper-
ations in feature space, while Agustsson et al. [1] generalize
optical flow to a 3D scale-space volume to better handle oc-
clusions. Mentzer et al. [39] independently map frames to
latent representations and use a transformer to model their
dependencies. DCVC-DC [29], which proposes an efficient
way to increase context diversity for neural video codecs,
is currently the state-of-the-art method. While such works
can match the performance of the newest traditional codecs,
they often cannot decode 1080p videos at more than two
frames per second [39], significantly limiting their practical
usage. In contrast, INR-based methods, such as our pro-
posal, come much closer to achieving real-time decoding
on the same hardware [10, 18, 28].

Video INRs. Early video INRs [46, 51] employed pixel-
wise representations that map pixel indices to RGB colors
but suffered from limited performance and poor decoding
speeds. Chen et al. [10] instead proposed a frame-wise rep-
resentation with NeRV. From a positionally-encoded frame
index, an MLP generates a temporal feature that is reshaped
and upsampled via five NeRV blocks, each comprising a
subpixel convolution [50] and an activation. This results
in real-time decoding speed and significantly better recon-
structions. Inspired by works on GANs [57], E-NeRV [31]
decomposes NeRV’s featurizer into temporal and spatial
contexts that are fused by a transformer network. Further,
they inject temporal information into the decoder blocks
via an adaptive instance normalization (AdaIN) layer [25].
Gomes et al. [18] drastically simplify this architecture with
only minimal loss of quality. Lee et al. [28] improve perfor-
mance on dynamic sequences with FFNeRV by enforcing
temporal consistency with a decoder that predicts both in-
dependent frames and a set of optical flow maps that are
used to warp adjacent independent frames and aggregate
them into a final output frame. They complement this with
a learnable feature grid of multiple temporal resolutions to
speed up convergence. A new paradigm emerged when
Chen et al. [11] proposed a hybrid representation with HN-
eRV. Unlike previous methods, HNeRV resembles an auto-
encoder during training, employing an encoder based on
the ConvNeXt architecture [32] to extract content-specific
embeddings. After training concludes, the video is repre-
sented by the decoder’s parameters and the per-frame em-
beddings. DNeRV [62] additionally produces an embed-
ding from the difference between successive frames and
uses a gated mechanism to incorporate that information into



the decoder. Other approaches to INR-based video repre-
sentation include patch-wise approaches [3, 38], methods
for scene editing [37], and fitting multiple videos [20, 24].
The architecture we propose in this work is hybrid and
frame-wise and combines frame-specific embeddings with
GOP-specific features from a feature grid.

Video Compression with INRs. Prior works have mostly
decoupled training and compression. Rho et al. [46] achieve
compression by using 16-bit weights, while NeRV, E-
NeRV, HNeRV, and DNeRV employ post-training pipelines
that comprise pruning, quantization, and entropy encoding
steps. FFNeRV [28] made a first step towards combin-
ing training and compression by employing quantization-
aware training (QAT) [23] based on the straight-through
estimator [7]. A more powerful approach was introduced
by Gomes et al. [18] that applies the model compression
method outlined by Oktay et al. [43] to video INRs. Build-
ing on entropy minimization techniques [4, 5], they use a
neural network to learn a probability function over a dis-
crete latent space of weights to which the INR’s weights are
mapped via scale reparametrization during training. This
allows the INR to model its entropy and minimize it jointly
with distortion, resulting in significantly higher compres-
sion efficiency when performing entropy encoding. We ex-
tend this compression scheme to include per-frame embed-
dings, allowing us to better exploit their redundancies.

3. Motivation

In this section, we motivate the overall architecture of T-
NeRV by contrasting it with existing approaches and high-
lighting their key weaknesses.

3.1. Combining Local and Global Information

Traditional codecs have used both intra-frame and inter-
frame information to obtain efficient encodings for decades.
Yet, most video INRs only exploit intra-frame information
by independently generating a latent and passing it through
the decoder without considering information from adjacent
frames. Conversely, INRs that consider inter-frame infor-
mation do not extract enough frame-specific content. While
DNeRV extracts a frame difference embedding, its gated fu-
sion mechanism necessitates large spatial dimensions. As a
result, fewer of the total number of parameters can be allo-
cated to the frame embeddings and the decoder to exploit
this information. Moreover, the spatial context is limited to
the previous and next frame. FFNeRV employs inter-frame
information in its multi-resolution grid and decoder. How-
ever, the network cannot extract frame-specific features due
to the interpolation of features, resulting in each feature be-
ing used in the forward pass of at least two frames. This
ultimately degrades performance on static sequences as the
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Figure 2. Comparison of the architectures of (a) FFNeRV and (b)
HNeRV with (c) our proposed T-NeRV architecture. Components
that form part of the video state are highlighted in blue.

flow-based decoder can not mask the absence of frame-
specific information, as our experiments in Sec. 5.1 reveal.

Based on this insight, we design T-NeRV such that its la-
tent feature is composed of two parts: We use per-frame
embeddings to capture frame-specific information, while
inter-frame or GOP-specific features are obtained from a
multi-resolution feature grid. These two components are
then fused and passed to an optical-flow-based decoder that
is injected with temporal information. Fig. 2 (c) sketches
T-NeRV’s design and compares it to FFNeRV and HNeRV,
both of which only capture one type of information.

3.2. Exploiting the Hybrid Representation

As indicated by Fig. 2 (b), hybrid approaches discard their
encoder after training and instead transmit the compressed
frame embeddings as part of the video state. Consequently,
the parameters in the components involved in generating the
embedding do not contribute to the video size. However,
current hybrid approaches fail to exploit this potential and
employ unnecessarily small encoders that severely limit the
expressibility of the extracted embeddings.

In contrast, T-NeRV generates its embeddings via a sig-
nificantly larger and more sophisticated network. Conse-
quently, its embeddings are much more powerful and aid the
decoding process by allowing the decoder to predict more
accurate independent frames. These are, in turn, warped
based on the predicted optical flow maps, resulting in im-
provements in both static and dynamic video sequences.
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Figure 3. Our proposed T-NeRV architecture combines GOP-specific features with frame-specific embeddings and upsamples them with a
flow-based decoder. Components that are transmitted as part of the video state are highlighted in bold.

3.3. Video-Specific Fine-Tuning

Existing video INRs offer many architectural parameters
that could be fine-tuned to specific content to achieve higher
compression performance. However, such optimizations
have to be performed manually, a process that currently ex-
ists devoid of any meaningful cues.

In comparison, T-NeRV offers an intuitive way to op-
timize for different levels of motion in videos: Combin-
ing frame-specific embeddings with GOP-specific features
yields a lever to regulate the ratio between the amount
of static and dynamic information that the network cap-
tures. Moreover, by employing an end-to-end compression
scheme [18] and placing an entropy penalty on the model’s
weights and embeddings, T-NeRV learns to fine-tune itself
with respect to the target content during the encoding pro-
cess, e.g., by spending more bits on the feature grids for
high-motion videos than for static ones (cf. Sec. 5.4).

4. T-NeRV: A Tunable Video INR

The proposed T-NeRV architecture is outlined in Fig. 3. It
consists of a hybrid encoder and a flow-based decoder. The
encoder generates a latent feature zt ∈ RcL×h×w from a
ground truth frame Ft ∈ R3×H×W and a frame index t,
from which the decoder reconstructs a frame F̂t. The aspect
ratio of the latent matches that of the frame, i.e. h

w = H
W .

During training/encoding, the network performs forward
passes as depicted. Once training concludes, only the com-
ponents highlighted in bold in Fig. 3 are kept as part of the
video state. Decoding a frame thus amounts to obtaining the
GOP-specific features from the feature grid, concatenating
them with the frame-specific embedding to obtain zt, and
passing zt through the decoder.

Model Size Stages Blocks p. Stage Channels p. Stage

HNeRV 0.2M 5 (1, 1, 1, 1, 1) (64, 64, 64, 64, 16)
T-NeRV 19.4M 5 (3, 3, 9, 6, 3) (64, 128, 256, 512, cE)
ConvNeXt-T 29.0M 4 (3, 3, 9, 3) (96, 192, 384, 768)

Table 1. Comparison of the encoders employed by HNeRV and
T-NeRV with the original ConvNeXt-T model [32].

4.1. Frame-Specific Embeddings

The frame-specific embedding et ∈ RcE×h×w is one of the
two components of the latent feature zt. It is generated in
two steps: An encoder extracts a spatial frame embedding
êt ∈ RcE×h×w from Ft, which is then augmented with tem-
poral information, as shown on the bottom left in Fig. 3.

Inspired by HNeRV, we use an encoder based on the
ConvNeXt architecture [32] to extract êt from the input
frame Ft. However, T-NeRV employs an encoder that is
almost 100× the size of HNeRV’s encoder and follows the
reference model much more closely (cf. Tab. 1). T-NeRV’s
encoder is thus more likely to exhibit similar performance
as ConvNeXt, allowing our method to extract significantly
more powerful embeddings.

The spatial frame embedding êt is further augmented
with temporal information. To that end, we positionally en-
code t with b = 1.25 and l = 80 and pass it to a three-layer
MLP with GELU [21] activation. Its output is reshaped into
a temporal feature st ∈ RcE×h×w, matching the dimension
of êt. The temporal feature st is then fused into êt to obtain
the frame-specific embedding, i.e.

et = êt · (1 + αt · st), (1)

where αt ∈ R is a learnable factor specific to each frame
that modulates how much temporal information is fused
into the embedding. This lets the network decide on a per-



frame basis whether and to what extent to incorporate tem-
poral information into the embedding.

The proposed fusion mechanism can be regarded as a
per-frame masking operation on the embedding, allowing
similar frames to obtain different embeddings. The decoder
can leverage this information to decide which parts of the
frame to reconstruct from the frame’s independent frame
and for which parts to rely on inter-frame information.

4.2. GOP-Specific Features

Inspired by FFNeRV, we employ a parametric encoding in
the form of a multi-resolution feature grid to obtain the
GOP-specific features gt ∈ RcG×h×w. In particular, we
use three grids with exponentially increasing temporal res-
olutions, i.e. Gi ∈ RTi×ci×h×w for i ∈ {1, 2, 3}, where
cG =

∑
i ci and Ti+1 = 2 · Ti. We set the resolution of

G3 such that each feature covers at least two frames, i.e.
T3 ≤ N

2 , where N denotes the number of video frames.
During a forward pass, the frame index t is used to select

two features Gi[⌊t/N · Ti⌋, :, :, :] and Gi[⌈t/N · Ti⌉, :, :, :]
that correspond to frame t at every grid level i. The two
features are bilinearly interpolated at every level, and the
results are concatenated to obtain gt. In the backward pass,
only the six features involved in generating gt need to be
updated, speeding up convergence for this component of our
architecture.

4.3. Flow-Based Decoder

The latent zt results from concatenating et and gt and
is passed to the decoder alongside a temporal feature
ut ∈ R128 that is generated by a small two-layer MLP.
The decoder consists of three parts: A pre-block, a series of
five T-NeRV blocks, and a flow module.

Pre-Block. The pre-block consists of a convolutional
layer with a 3×3 kernel that performs channel expansion or
channel reduction, depending on the size of the latent fea-
ture and the dimension expected by the first T-NeRV block.

T-NeRV Blocks. T-NeRV’s decoder employs a series of
five blocks to predict the independent frame and the opti-
cal flow maps. Fig. 4 (a) depicts a T-NeRV block schemat-
ically. A small linear layer extracts per-channel statistics
from a temporal feature and uses them to shift the distribu-
tion of the input tensor via an AdaIN layer, thereby injecting
temporal information. A convolutional layer with channel
expansion and a subsequent PixelShuffle [50] layer perform
spatial upsampling by a factor of s, which is followed by a
GELU activation. Like HNeRV, we employ a low channel
decrease factor r = 1.2 with increasing kernel sizes to al-
locate more parameters to the later stages, aiding the recon-
struction of high-frequency details. This strategy renders
the third T-NeRV block the largest, which is critical given
its dual use in upsampling and optical flow prediction.
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(a) T-NeRV Blocks 1 and 2. (b) T-NeRV Blocks 3 - 5.

Figure 4. Structure of T-NeRV blocks. We replace 5× 5 convolu-
tions with two 3 × 3 convolutions and an additional non-linearity
in the last three blocks.

While HNeRV uses kernel sizes ki = min{2i − 1, 5},
we find 5× 5 convolutions to be computationally expensive
and parameter-inefficient. Instead, we mimic the same re-
ceptive field by two successive 3 × 3 convolutions with an
equal total number of parameters and an additional activa-
tion, resulting in the block structure shown in Fig. 4 (b). The
higher parameter efficiency and the additional non-linearity
further help the decoder in the reconstruction process, par-
ticularly for high-motion sequences.

Flow-Guided Frame Aggregation. We adopt FFNeRV’s
flow-guided aggregation module to exploit information
from adjacent frames via optical flow, as shown on the bot-
tom right of Fig. 3. The head layer after the fifth T-NeRV
block predicts an independent frame It ∈ R3×H×W and
two aggregation weights wI , wA ∈ RH×W , which are nor-
malized via a softmax layer. A copy of It is detached
from the computation graph and stored in an independent
frame buffer. We define an aggregation window W , e.g.,
W = {−2,−1, 1, 2}, to leverage information from previ-
ous and following frames. During the forward pass of frame
t, the head layer after the third T-NeRV block predicts opti-
cal flow maps M(t, t+j) ∈ R2×H/4×W/4 and weight maps
wM (t, t + j) ∈ RH/4×W/4 for every j in the aggregation
window W . The flow and weight maps are upsampled by
a factor of four via bilinear interpolation, and the latter are
normalized by applying a softmax function. The flow maps
M(t, t+j) are then used to warp the corresponding adjacent
independent frames It+j , and the results are aggregated to
obtain the aggregated frame At and the final frame F̂t, i.e.

At =
∑
j∈W

wM (t, t+ j) · WARP(It+j ,M(t, t+ j)), (2)

F̂t = wI · It + wA ·At. (3)

4.4. Compression

We build on the INR compression framework proposed by
Gomes et al. [18]. They model INR compression as a rate-
distortion problem L = D + λR, where D denotes some
distortion loss, R represents the entropy of the INR pa-
rameters θ, and λ establishes a trade-off between the two.



Model Size Resolution Beauty Bospho. Honey. Jockey Ready. Shake. Yacht. Avg.

NeRV [10] 12.6M (720, 1280) 35.70 37.81 41.23 36.39 29.16 36.84 31.13 36.00
E-NeRV [31] 12.5M (720, 1280) 35.93 39.59 41.62 37.05 30.98 38.58 32.50 36.61
C-NeRV [18] 12.5M (720, 1280) 35.95 39.66 41.55 36.82 30.58 38.62 32.50 36.53
FFNeRV [28] 12.4M (720, 1280) 35.99 39.91 41.52 38.19 32.28 38.09 33.69 37.10
HNeRV [11] 12.4M (720, 1280) 29.47 27.93 40.14 27.68 31.05 28.58 25.26 30.02
DNeRV [62] 12.4M (720, 1280) 35.76 36.33 41.55 36.14 30.17 38.31 31.85 35.73
T-NeRV (Ours) 12.4M (720, 1280) 36.11 40.67 41.60 39.63 35.23 38.84 34.74 38.12

NeRV [10] 3.0M (960, 1920) 33.43 33.47 38.32 31.50 24.16 33.67 27.56 31.73
E-NeRV [31] 3.0M (960, 1920) 33.47 33.65 38.78 29.04 23.70 34.47 27.70 31.54
C-NeRV [18] 3.0M (960, 1920) 33.46 33.76 38.70 28.89 23.88 34.32 27.66 31.52
FFNeRV [28] 3.0M (960, 1920) 33.62 33.72 38.82 32.80 25.82 34.19 28.37 32.48
HNeRV [11] 3.0M (960, 1920) 33.64 34.59 39.16 31.76 25.49 34.81 29.20 32.66
DNeRV [62] 3.0M (960, 1920) 33.58 34.55 39.12 31.95 25.77 34.75 28.94 32.67
T-NeRV (Ours) 3.0M (960, 1920) 34.34 35.65 40.26 34.80 28.24 35.25 29.46 34.00

Table 2. Video representation results in terms of PSNR on UVG [40] in the two settings proposed by [10] and [11]. Best results are marked
in bold, second-best results are underlined. T-NeRV significantly outperforms all previous methods in both settings.

Training an INR on loss L jointly minimizes rate and dis-
tortion during training, allowing the authors to more effi-
ciently compress the model parameters θ with the Deep-
CABAC [60] entropy-coding library after training.

Since this process requires a discrete set of symbols such
as Z, the authors perform quantization-aware training [23],
leveraging the straight-through estimator (STE) [7] to en-
sure differentiability. Each layer is quantized independently
using scale reparametrization [43] with two trainable pa-
rameters. The entropy of each layer is estimated indepen-
dently by fitting a small neural network to the layer’s weight
distribution, following the approach outlined in [5].

We extend this framework to handle parametric encod-
ings, such as T-NeRV’s feature grids, as well as embed-
dings. We treat each of the three feature grids in T-NeRV’s
multi-resolution grid as an individual layer with its own
quantization parameters. During a forward pass, each grid
is quantized and dequantized using the scale reparametriza-
tion scheme before bilinearly interpolating two of its fea-
tures. We further adopt one entropy model per grid, allow-
ing the network to determine the extent to which the features
at each temporal frequency should be compressed.

In contrast, we adopt a single entropy model for all
frame-specific embeddings, encouraging the network to ex-
ploit redundancies between frames. This counterbalances
the injection of temporal information into the embeddings
discussed in Sec. 4.1, restricting the network to only use
such information when the gain in video quality outweighs
the increase in entropy. We complement this with individ-
ual quantization parameters for each embedding, leading to
a negligible overhead of eight bytes per frame, as we do not
compress the quantization parameters. In turn, the network
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Figure 5. Rate-Distortion performance of T-NeRV on UVG in
terms of PSNR. Our method outperforms HEVC and the previ-
ous state-of-the-art video INRs across the entire BPP spectrum.

has more freedom to decrease the error induced by quantiza-
tion for specific frames, e.g., those whose embeddings were
injected with significant amounts of temporal information.

5. Experiments
We validate our architecture on the UVG [40] dataset,
which comprises one 300-frame and six 600-frame videos
at a resolution of 1920 × 1080 pixels. In line with previ-
ous works, we evaluate video quality with the peak-signal-
to-noise ratio (PSNR) [17] and the multi-scale structural
similarity index (MS-SSIM) [59] that are averaged across
frames in each video. We present results in terms of PSNR
in the following section while the corresponding MS-SSIM



data can be found in the supplementary materials. Due to
the flow-based nature of our decoder, we employ the same
distortion loss as FFNeRV, including its hyperparameters:

l(y, y′) = 0.7 ·
∣∣∣∣y − y′

∣∣∣∣
1
+ 0.3 · (1− SSIM(y, y′)), (4)

LD(θ) =
1

T

T∑
t=1

l(Ft, F̂t) + 0.1 · l(Ft, It) + 0.1 · l(Ft, At). (5)

We train T-NeRV using the AdamW [34] optimizer that has
shown to be more effective for modern neural networks than
Adam [27] with a learning rate (LR) of η = 5 · 10−4 and
a batch size of 1. A linear warm-up for 20% of the total
epochs precedes a cosine annealing LR schedule [33] for
the remainder of the training process. However, instead of
letting the LR decay to zero, we impose a minimum LR of
0.075η to ensure that the last 5% of epochs perform mean-
ingful steps. We use W = {−2,−1, 1, 2} as our aggrega-
tion window for all experiments.

5.1. Video Representation

We assess the representational capacity of T-NeRV in two
distinct settings proposed by NeRV and HNeRV, respec-
tively. In the first setting, a large model represents a video
with frames resized to 720p. The second setting is more
challenging, using a smaller model to represent a video
cropped to a 2:1 aspect ratio with 1920 × 960 pixels. We
compare our approach to six related works, i.e. NeRV, E-
NeRV, C-NeRV1, FFNeRV, HNeRV, and DNeRV.

To that end, we implement T-NeRV and the six base-
lines in a common framework, using the default configu-
rations whenever possible and otherwise adjusting them in
the spirit of the respective architecture.2 We train all meth-
ods for 300 epochs without compression (i.e. λ = 0), using
each method’s default hyperparameters and loss function.
To maintain fairness, we apply the modified cosine anneal-
ing LR schedule to all methods. For T-NeRV, we employ
embeddings of size (35, 9, 16), features of size (30, 9, 16)
in all three grids, and upsampling factors (5, 2, 2, 2, 2) for
the first setting. For the second setting, we use embeddings
and features of sizes (8, 8, 16) and (11, 8, 16), respectively,
and upsampling factors (5, 3, 2, 2, 2).

Tab. 2 lists the video representations results. T-NeRV
achieves state-of-the-art performance in both settings, im-
proving by more than 1 dB on average over the second-
best method in either case. In the first setting, the most
prominent improvements can be observed on high-motion
sequences such as Yacht and Ready. On the latter, T-NeRV
beats FFNeRV and HNeRV, the second and third best meth-
ods, by 2.95 dB and 4.18 dB, respectively, resulting in
clearly discernible visual quality improvements, as seen in
Fig. 1. This makes T-NeRV the first hybrid video INR that

1We use C-NeRV to refer to the model from Gomes et al. [18] due to
its fully convolutional nature.

2This process is thoroughly discussed in the supplementary materials.

scales well to larger models and aspect ratios other than
2:1. In the second setting, we further observe significant
improvements in static videos, such as Honey and Shake,
while improving the quality of dynamic videos to a similar
extent as in the first setting.

5.2. Video Compression

We follow the approach outlined in [18] for the com-
pression experiments, validating performance on the UVG
dataset at 1080p resolution. We define four model sizes to
cover the bits-per-pixel (BPP) spectrum and divide the train-
ing/encoding process into two parts. During pre-training,
we train one model for every model size and video for 1200
epochs without entropy-penalization, i.e. λ = 0. This is
followed by 600 fine-tuning epochs with different λ values
for each pre-trained model to achieve different compression
ratios. We collect BPP, PSNR, and MS-SSIM values of ev-
ery fine-tuned model and average them across all videos for
every pair of model size and λ. The upper convex hull then
yields our method’s rate-distortion curve.

We compare T-NeRV’s compression performance to that
of HEVC (x265 with veryslow preset, no b-frames) and
three previous video INRs (C-NeRV, HNeRV, and FFN-
eRV). For HEVC, we employ ffmpeg [55] to collect BPP,
PSNR, and MS-SSIM metrics at different constant rate fac-
tors (CRFs) for each sequence. These metrics are then aver-
aged across all videos compressed with the same CRF. The
results of C-NeRV were gracefully provided by the authors,
while the results for HNeRV and FFNeRV were taken di-
rectly from the respective paper or codebase.

The rate-distortion plot is depicted in Fig. 5. T-NeRV
outperforms HEVC and previous video INR baselines in
terms of PSNR across the BPP spectrum, retaining its ad-
vantage from the video representation task. We provide
per-video rate-distortion curves and qualitative results in the
supplementary materials.

5.3. Ablation Studies

We analyze the contribution of individual T-NeRV compo-
nents by evaluating several ablated models on the video rep-
resentation task. To reduce computation, we evaluate small
models (3M parameters) on the first 300 frames of each
UVG video at a resolution of 720p.

We perform ablations on the encoder and the decoder.
We verify the effectiveness of combining frame-specific
embeddings with GOP-specific features by evaluating mod-
els that employ only embeddings (E1) or only feature grids
(E2). Further, we validate the effect of augmenting embed-
dings with temporal information (E3). We also replace T-
NeRV’s ConvNeXt block with HNeRV’s tiny one for (E4),
while (E5) additionally deactivates the temporal injection
branch. T-NeRV’s decoder has been compared to vari-
ants without flow-guided frame aggregation (D1), without



Model Beauty Bospho. Honey. Jockey Ready. Shake. Yacht. Avg.

T-NeRV 35.52 37.59 41.25 36.75 32.45 35.91 31.96 35.92

(E1) 35.54 37.04 41.19 36.54 32.23 35.94 31.89 35.77
(E2) 35.46 37.07 41.19 35.39 31.21 35.67 31.77 35.39
(E3) 35.49 36.76 41.20 35.82 31.52 35.79 31.52 35.44
(E4) 35.48 36.73 41.21 35.74 31.52 35.77 31.50 35.42
(E5) 35.43 36.60 41.19 35.49 31.09 35.65 31.19 35.24

(D1) 35.51 36.99 41.22 35.67 31.45 35.89 30.88 35.37
(D2) 35.06 33.48 39.22 35.83 31.30 34.96 31.07 34.42
(D3) 35.48 36.72 41.22 35.80 31.48 35.82 31.45 35.42

Table 3. Ablation study of T-NeRV in terms of PSNR on the first
300 frames of UVG sequences. Best results are marked in bold.

the injection of temporal information via AdaIN (D2), and
without the modified T-NeRV block, i.e. with ordinary 5×5
convolutions (D3).

Tab. 3 lists the results of the ablation study in terms of
PSNR. We can observe that the temporally augmented em-
bedding constitutes a powerful latent, especially for static
sequences, but adding the feature grids improves video
quality on high-motion sequences. (E3) further highlights
the importance of temporally augmenting the embedding,
while (E4) and (E5) demonstrate that T-NeRV’s significant
improvements in visual quality do not merely stem from
a larger encoder. On the decoder side, access to temporal
information is of paramount importance for all sequences,
while incorporating optical flow as well as replacing 5 × 5
convolutions yield significant gains on dynamic videos.

5.4. Tuning via Entropy Penalization

The video representation results in Tabs. 2 and 3 were ob-
tained with a single configuration per setting that was used
for all UVG videos. However, the representation could
likely be improved by employing configurations tailored to
specific videos. To that end, one could adjust the architec-
tural lever arising from the combination of frame-specific
embeddings and GOP-specific features before training and
encode the video with a modified configuration.

We argue that this step is unnecessary as T-NeRV can
fine-tune itself to specific content by training in an entropy-
constrained way. To demonstrate that, we analyze how
the compressed models from Sec. 5.2 allocate their bits to
the different model components. In particular, we examine
models for the 600-frame UVG sequences that were trained
using the same configuration of 9.3M parameters, where
2.2M, 2.6M, and 4.5M parameters were allocated to the em-
beddings, feature grids, and the decoder, respectively.

Fig. 6 shows the distribution of bytes to our network’s
main components for six video models that were com-
pressed with λ = 1, the largest lambda value at this model
size.3 We can observe that the embeddings dominate the
distribution, which is in line with the observation that the
ablated model (E1) performs best among all ablations in

3Distributions at different λ values can be found in the supplementary
materials.
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Figure 6. Byte distribution in videos compressed with λ = 1.
T-NeRV spends more bits on GOP-specific feature grids for high-
motion content (e.g., Ready) than for static videos (e.g., Honey).

Tab. 3. In contrast, the sizes of the decoder and the fea-
ture grids vary considerably between videos. Upon closer
inspection, however, we can observe a high correlation be-
tween the number of bits allocated to the feature grids and
the degree of motion present in a video sequence. The same
applies to the number of bits spent on the decoder. This
demonstrates that T-NeRV leverages its fine-tuning capabil-
ities and optimizes itself with respect to the target content
during training.

6. Conclusion
We study the effect of combining frame-specific embed-
dings with GOP-specific features when representing videos
as implicit neural representations. This study culminates in
T-NeRV, a novel hybrid INR for video that incorporates the
above combination. We couple this architecture with a re-
cently proposed end-to-end entropy-constrained compres-
sion framework, which we extend to handle embeddings.
Our experiments demonstrate that T-NeRV can represent
and compress videos better than previous INR-based meth-
ods, producing state-of-the-art results in both tasks. We fur-
ther show how the combination of frame-specific and GOP-
specific information can act as a lever for content-specific
fine-tuning, which T-NeRV, guided by entropy-constrained
training, automatically adjusts during encoding. This in-
sight paves the way for future works to explore similar
trade-offs in INR-based compression.

Despite the promising results, there is still a long way to
go before video INRs become viable alternatives to tradi-
tional codecs. T-NeRV, like previous INR-based methods,
suffers from poor encoding speed, requiring many hours of
training to encode a single sequence. Therefore, further re-
search into speeding up this process is required, e.g., by de-
veloping more cost-effective entropy estimation methods.
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