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Figure 1: Our Infinite 3D Landmark detector improves accuracy and temporal stability over existing detectors, is easy to use due to built-in
face detection (b), can predict any number and layout of landmarks (c), and facilitates several downstream 3D applications like determining
landmark visibility (d), 3D face reconstruction (e) and texturing (f).

Abstract
In this paper, we examine 3 important issues in the practical use of state-of-the-art facial landmark detectors and show how
a combination of specific architectural modifications can directly improve their accuracy and temporal stability. First, many
facial landmark detectors require a face normalization step as a preprocess, often accomplished by a separately-trained neural
network that crops and resizes the face in the input image. There is no guarantee that this pre-trained network performs optimal
face normalization for the task of landmark detection. Thus, we instead analyze the use of a spatial transformer network that
is trained alongside the landmark detector in an unsupervised manner, jointly learning an optimal face normalization and
landmark detection by a single neural network. Second, we show that modifying the output head of the landmark predictor to
infer landmarks in a canonical 3D space rather than directly in 2D can further improve accuracy. To convert the predicted
3D landmarks into screen-space, we additionally predict the camera intrinsics and head pose from the input image. As a side
benefit, this allows to predict the 3D face shape from a given image only using 2D landmarks as supervision, which is useful
in determining landmark visibility among other things. Third, when training a landmark detector on multiple datasets at the
same time, annotation inconsistencies across datasets forces the network to produce a suboptimal average. We propose to add a
semantic correction network to address this issue. This additional lightweight neural network is trained alongside the landmark
detector, without requiring any additional supervision. While the insights of this paper can be applied to most common landmark
detectors, we specifically target a recently-proposed continuous 2D landmark detector to demonstrate how each of our additions
leads to meaningful improvements over the state-of-the-art on standard benchmarks.
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† Now at Google

1. Introduction

Facial landmark detection is a well understood and heavily investi-
gated problem in computer vision, with many applications in com-
puter graphics. For example, detecting a set of predefined 2D facial
key points on an image is often an integral step in tasks like 3D face
reconstruction, facial tracking, face image editing and deep face
swapping. There exists a plethora of algorithms for facial landmark
detection, ranging from simple methods that rely on heuristics to
deep neural networks trained on large annotated databases consist-
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ing of hundreds of thousands of images. In this work, we look at
three common issues plaguing many of the current state-of-the-art
facial landmark detectors, and propose three extensions that, when
combined, improve the practicality, accuracy and temporal stability
of facial landmark detection.

First, most landmark detectors require a face normalization step
as a preprocess, which is usually implemented as a separate pre-
trained neural network that crops and resizes the face in the image.
In that case, the normalization process has no knowledge of the
downstream landmark detection task, and as such there is no guar-
antee that the normalization network will create optimal input face
images for landmark detection. Furthermore, evidence shows that
the normalized images can be temporally unstable - making the task
more difficult for the landmark detector. These issues can be alle-
viated by introducing a spatial transformer network that is trained
alongside the landmark detector in an unsupervised manner, jointly
learning an optimal face normalization and landmark detection at
the same time by a single architecture.

Second, we show that landmark accuracy and stability can be
improved by inferring the landmarks in a canonical 3D volume and
projecting them onto a virtual camera plane to obtain the 2D land-
mark positions. In this process we learn also the head pose and
camera focal length from the input image. Not only does this give
more stable 2D landmarks, it also allows to predict the 3D shape
of the face from the given image only using 2D landmarks as su-
pervision. Obtaining the landmarks in 3D also helps determine the
visibility of the predicted landmark set, which is very useful for
downstream applications.

Third, most deep landmark detectors are trained on multiple
datasets from different sources at the same time, each dataset con-
taining many face images and corresponding 2D landmark anno-
tations. Most datasets aim to portray the same semantic set of 68
landmarks on the face, facilitating cross-dataset training. Unfortu-
nately, due to inconsistencies in human annotation, there often ex-
ists a minor discrepancy in landmark semantics from one dataset
to another. As an illustrative example, consider a landmark at the
tip of the nose. In one dataset the annotations may be consistently
higher than in another dataset, essentially corresponding to a dif-
ferent semantic location on the face. Existing landmark detectors
do not account for this and can thus result in a suboptimal aver-
aging across datasets. We propose to add a lightweight semantic
correction network that can predict the per-dataset inconsistencies
in semantics, resulting in overall higher accuracy when training on
multiple datasets simultaneously.

While our work is not the first to use spatial transformers for face
alignment or predict landmarks in 3-dimensions, the benefit of this
paper is in exploring the effects of these architectural changes in
modern facial landmark detectors. Furthermore, to our knowledge
this work is the first to propose a semantic correction network to im-
prove training across datasets. As we will propose, the best results
are achieved with a novel combination of architecture changes.

Concretely, in order to demonstrate the three improvements
we use a recently-proposed continuous 2D landmark detec-
tor [CZGB23] as our baseline. This baseline method represents
the semantic landmarks as 3D query positions on a canonical face
mesh, and the network takes a 3D query and a normalized face

image as input and predicts the 2D pixel corresponding to the 3D
query point. The baseline method already shows state-of-the-art
performance when predicting the standard set of 68 landmarks, and
offers the additional feature that any additional points on the face
may be predicted at runtime. We therefore consider this a strong
baseline to demonstrate our proposed architecture changes. Despite
the already strong performance of the baseline method, we will
show that our proposed architecture changes improve accuracy and
usability even further, advancing the state of the art in facial land-
mark detection as seen in Fig. 1.

2. Related Work

As facial landmark prediction is one of the most studied fields in
computer vision, doing a complete summary would be outside the
scope of this paper. Nevertheless, in the following we highlight
the most relevant works with a focus on methods predicting 3D
landmarks and state-of-the-art methods. We refer the reader to the
recent surveys of Wu et al. [WJ19], Wang et al. [WGTL14] and
Khabarlak and Koriashkina [KK22] for a more in-depth review.

Traditionally, facial landmark detectors output 2D landmarks,
corresponding to the locations on the image plane [CBGB20a,
WBH∗22, CZGB23]. Slightly less common, 3D landmark predic-
tors have also been proposed in the literature. For example, the Face
Alignment Network from Bulat et al. [BT17] proposes an addi-
tional network that turns 2D landmark predictions into 3D, leverag-
ing some 3D annotated data for training. Zadeh et al. [ZCLBM17]
use a mixture of local convolutional experts network in an end-to-
end framework, predicting 3D landmarks with heatmaps. Yanda et
al. [MCG∗22] use a graph convolution network to predict 3D land-
marks. Another common way of including 3D knowledge when
predicting landmarks is to leverage a generic 3D face model and
deform it [BZLS17] or use an underlying 3D morphable face
model [BHS∗17, ZLL∗16, GZY∗20]. The method proposed by
Basak et al. [BMC∗23] predicts a denser set of 3D landmarks but
can only output a fixed layout.

Recently introduced, Spatial Transformer Networks
(STNs) [JSZK15] are a class of neural networks that allow
to spatially transform feature maps based on the feature maps
itself, without additional supervision. A very fitting application for
these STNs is the prediction of a bounding box, or crop, used for
a downstream application. Some works use a STN to jointly learn
a face alignment step with a face recognition network [WKL∗17]
or with a facial emotion recognition network [LJCMK∗21]. More
similar to us, Lv et al. [LSX∗17] use supervised Spatial Trans-
former Networks to re-initialize a pre-computed rough bounding
box, they require additional supervision for the STN output while
our proposed method can be trained in a fully unsupervised
manner.

Recently, Wood et al. [WBH∗22] proposed dense 2D facial land-
mark detection for 3D face reconstruction, and achieved state-of-
the-art results by fitting a 3D morphable model to a dense set of
around 700 facial landmarks [WBH∗21]. This work was succeeded
by the work of Chandran et al. [CZGB23] that proposed a land-
mark detector capable of predicting an arbitrary number of facial
landmarks ranging from arbitrarily sparse to arbitrarily dense lay-
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outs, thereby improving the flexibility of today’s facial landmark
detectors.

Since our method also predicts 3D landmarks as an intermediate
step, we also point out face reconstruction algorithms like Token-
Face [ZCL∗23], MICA [ZBT22], DECA [FFBB21], and 3DDFAv2
[GZY∗20]. Finally as we propose a query deformation network to
address semantic inconsistencies in landmark annotations across
multiple datasets, we also note the work of Meng et al. [MDC∗23]
in dataset unification, which looked at aligning discrete object cate-
gories for object detection. However, their approach cannot be read-
ily adapted to address semantic inconsistencies in continuous 2D
landmark annotations as in our work.

In contrast to all previous methods, we believe our work is the
first to combine a spatial transformer network for automatic bound-
ing box detection in a continuous landmark detector that predicts
3D landmarks with a mechanism to account for annotation incon-
sistencies across training datasets. Furthermore we both quantita-
tively and qualitatively demonstrate the benefits of our approach
over a state-of-the-art method [CZGB23].

3. Method

We select the recently proposed continuous landmark detector of
Chandran et al. [CZGB23] as our baseline architecture and make
small yet impactful additions to it in our work. The continuous 2D
landmark detector requires two inputs consisting of a normalized
face image I′ and query positions pk on a canonical 3D shape.
Given these inputs, their method makes use of an image feature ex-
traction network F , and a queried landmark predictor P that pre-
dicts 2 outputs (lk,ck), where lk refers to the 2D coordinates and ck
the confidence of each facial landmark that corresponds to a unique
input query point, which is position-encoded using an MLPQ. The
networks F , P and Q are trained end-to-end in a supervised man-
ner using a collection of facial landmark datasets containing ground
truth landmark positions. Chandran et al.report multiple variations
of their continuous 2D landmark detector, where each variant of-
fers a tradeoff between prediction accuracy and speed. We use the
ConvNext + MLP variant as our baseline architecture as it achieves
a good balance between speed and accuracy. We refer to this archi-
tecture as the baseline method in the rest of the paper.

We will now describe the three extensions to this baseline, each
of which notably improves the performance (as we will demon-
strate in Section 5.4), while also adding new capabilities like land-
mark visibility estimation and face texture estimation to the net-
work. Our extensions consist of i) A spatial transformer network S
for built-in face localization (Section 3.1), ii) A modification of P
to include a 3D landmark prediction head for improved overall ac-
curacy (Section 3.2), and iii) A semantic correction network in the
form of a query deformer network D, designed to handle semantic
inconsistencies in ground truth annotations across training datasets
(Section 3.3). Our final network architecture that includes all three
extensions is shown in Fig. 2.

3.1. Spatial Transformers for Built-In Face Localization

Facial landmark prediction algorithms, although differing in their
details, often rely on detecting a bounding box of the face in the in-

put image as a preprocessing step to simplify the job of the neural
network (or algorithm). Despite the existence of several commonly
used face detection techniques [KS14, ZZLQ16], this preprocess-
ing step is often surprisingly susceptible to failures in practice, and
often results in temporally unstable bounding boxes that can cause
several problems for downstream applications (see Fig. 5). Further-
more as the bounding boxes for face detection were predetermined
independent of landmark detection, there is also no guarantee that
the such cropped faces are an optimal input to a landmark predic-
tion network.

In our first addition to the baseline method, we introduce a Spa-
tial Transformer Network [JSZK15] which replaces the explicit
face detection and normalization step. Spatial Transformer Net-
works (STNs) were originally developed with the intention of of-
fering a neural network the flexibility of geometrically transform-
ing the input to maximize its training objective. STNs are typi-
cally small neural networks, designed to predict a parameterized
2D transformation in an unsupervised manner, which is used to re-
sample the input image before it is fed to a downstream neural net-
work. Incorporating a spatial transformer network has indeed been
explored previously in applications like face tracking, registration,
recognition, etc [BZLS17,WKL∗17,PZZ∗22,BLB23]. In our work,
we revisit this idea and explore their applicability inside a state of
the art continuous facial landmark detection system.

In Fig. 2, we show how we introduce the spatial transformer
S into the architecture of Chandran et al. [CZGB23]. Our spatial
transformer is a convolutional neural network that takes the input
image I and predicts the parameters θ of a 2D transform. A 2× 3
transformation matrix is constructed from θ with which the input
pixel grid is resampled to result in the normalized image I′.

θ = S(I) (1)

I′ =W(I; θ) (2)

HereW refers to a resampling operator that, given a transforma-
tion corresponding to θ, resamples the original image I and pro-
vides the normalized image I′. The exact nature and number of
parameters in θ depends on the class of the 2D transformation pre-
dicted by the spatial transformer. For example, a similarity trans-
formation can be fully represented by 4 scalars that include an
isotropic scale, a rotation in the image plane, and a 2D translation.
On the other hand, 6 scalars are required to properly represent an
affine transformation as it also models anisotropic scaling, shearing
and so on. While any class of 2D transformations can be predicted
by a spatial transformer, in our work we explored both similar-
ity and affine transformations (see Section 5.3.1) and empirically
found affine transformations to provide the best performance.

The warped image I′ is the equivalent of the localized face im-
age that is usually obtained using face detectors or other normal-
ization techniques. The image I′ is then fed as input to the image
feature extraction network F from Chandran et al. [CZGB23]. Dif-
ferent from the baseline method, the resulting 2D landmarks l′k lie
in the screen space of I′ and not I. However the ground truth land-
marks are still defined with respect to the original image I. There-
fore we restore the predicted landmarks l′k to the original image I
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Figure 2: Our inputs include a face image I (un-normalized) and positions pk on a canonical shape C. A spatial transformer S auto-
normalizes the face for the feature extractor F , which predicts image features fi and camera plus head pose parameters γi. Query points pk
are passed through our new query deformer D to account for different datasets D j, and are then position-encoded by Q. A 3D landmark
predictor P estimates the landmarks in a canonical 3D space, which are projected to the camera plane and transformed back to original
image space.

using the inverse spatial transformation corresponding to θ
−1 to

result in lk.

lk = T (l′k; θ
−1), (3)

where T denotes applying the 2D transformation corresponding to
θ
−1 on the landmarks l′k. The spatial transformer network is trained

alongside the rest of the network in an end-to-end fashion. As the
output of the spatial transformer is unsupervised, it is free to learn
any transformation of the input such that landmark prediction loss
is minimized. In Section 5.3.1 we discuss some interesting proper-
ties of learning unsupervised face RoIs with a spatial transformer.

3.2. 3D Landmark Prediction

Our second extension is a reformulation of how the 2D landmarks
are predicted. In the baseline architecture, the output of the queried
landmark predictor P are normalized 2D landmarks lk ∈ [-1, 1],
and a 1D confidence ck value for each landmark. When running
landmark detection on in-the-wild videos, as a persons speaks and
moves around, certain landmarks become occluded; like the jaw-
line landmarks as a person turns to one side. Having knowledge
of the visibility of the predicted landmarks can be valuable for
downstream applications like 3D face reconstruction, giving a re-
construction algorithm the ability to trust invisible landmarks less.
While the confidence values ck predicted by the baseline method
have some correlation to visibility, the confidence values are not
always semantically interpretable and therefore are not guaranteed
reason about landmark visibility. To address this problem, we mod-
ify the queried landmark predictor P such that it predicts 3D land-
marks in a canonical space, which are posed and reprojected onto
the screen to obtain 2D landmarks. As a result, our method is able
to accurately reason about the visibility of the predicted 2D land-
marks. Furthermore, in our approach the 3D landmarks are learned
in an unsupervised manner and are predicted in a continuous fash-
ion for each input query. This allows users to predict virtually an

unlimited number of 2D landmarks in any configuration, and rea-
son about their visibility. We will next describe the details of our
3D landmark prediction approach.

As human faces deform in a characteristic way, facial landmarks
are often strongly correlated with one another. Applications such a
3D face reconstruction [FFBB21] try to leverage this fact by mak-
ing use of a 3D shape prior in the form of a morphable face model to
predict plausible face shapes even in challenging, less constrained
scenarios. These 3D priors play an important role in mitigating fail-
ure cases and always producing reasonable face-like outputs. We
incorporate such an increased robustness into continuous 2D land-
mark detection without requiring a morphable model, by predicting
3D landmarks as offsets on top of a mean face shapeM. To accom-
modate this extension, we make 2 changes to the baseline’s image
feature encoder F and the queried landmark predictor P which are
described below.

Head Pose and Camera Estimation. We modify the image fea-
ture encoder F such that when given a normalized image I′, in
addition to predicting the image feature descriptor fi, it predicts a
vector γi consisting of head pose (R,T ) and camera intrinsics ( fd).

fi,γi = F(I′) (4)

γi = [R,T, fd ] (5)

We parameterize head pose as a 9D vector consisting of a 6D ro-
tation vector R [ZBL∗19] and a 3D translation T . While in theory
only the head pose is enough to re-project a 3D landmark through a
fixed canonical camera, we empirically found that predicting cam-
era intrinsics allows for increased accuracy (see Section 5.4). For
the camera intrinsics, we only predict a single focal length in mil-
limeters (mm) under an ideal pinhole assumption. To bias the train-
ing towards plausible focal lengths, the focal length in γi is a focal
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length displacement fd that is added to a predefined focal length
f f ixed which we set to 60mm.

Unsupervised 3D Landmark Prediction. The queried landmark
predictor P in the baseline architecture predicts a 3-dimensional
output (lk,ck). We increase the dimensionality of the output to 4
dimensions such that it now predicts (l3d

k ,ck), where l3d
k is a 3D

offset vector. For each query point pk, P predicts a 3D offset that
is added to the corresponding point on a mean face shape m3d

k to
result in the canonical 3D position L3d

k of the queried landmark.

qk =Q(p′k) (6)

(l3d
k ,ck) = P( fi,qk) (7)

L3d
k = l3d

k +m3d
k (8)

Here, p′k is the deformed query point (described next in Sec-
tion 3.3) and Q is a position-encoding MLP. Note that there are no
special requirements on the mean face shape m3d

k , other than that
we recommend it shares the same topology as the canonical face
shape C for ease of use. The canonical 3D position L3d

k of a land-
mark is then transformed using the head pose (R,T ) predicted by
the image feature encoder F to result in L̄3d

k . Then L̄3d
k is projected

through a canonical camera with a focal length of f f ix+ fd to result
in the normalized 2D landmark l′k.

L̄3d
k = T (L3d

k ; R,T ) (9)

l′k = ψ(L̄3d
k ; f f ixed + fd) (10)

These normalized landmarks l′k are restored to the screen space
of the input image I using θ

−1 resulting in the final 2D landmarks
lk. The confidence values ck of the 3D landmarks L3d

k are trans-
ferred over to the 2D landmarks lk for training with the Gaussian
NLL loss. This allows our approach to infer 3D landmarks while
continuing to supervise all networks with only 2D ground truth as
before.

3.3. Query Deformer for Inconsistent Landmark Annotations

The third and final contribution of our work addresses the practical
issue of training a facial landmark detector on multiple datasets
simultaneously. While most datasets aim for consistent annota-
tions within the dataset, it can be the case that different datasets
are slightly inconsistent across the datasets, even for the same se-
mantic landmarks on the face. Additionally, our baseline method
from Chandran et al. [CZGB23] has the added benefit that it can be
trained on datasets with vastly different landmark configurations.
However one drawback of their approach is the reliance on per-
dataset queries that have to be predefined or hand annotated on the
canonical shape C. This is another source of potential annotation
mistakes, leading to additional inconsistencies.

While post process strategies like label translation [WBH∗22]
and query optimization [CZGB23] do alleviate this problem to
some extent, they are only mitigation strategies and do not address
the problem directly.

In our work, we tackle this problem at training time by proposing
a query deformer module D. Given a query point pk and a dataset
identifier D j ∈ RN the query deformer predicts a displacement dk
of the query point. The displacement dk is added to the input query
pk to result in a canonical query p′k that is learned during training to
represent all datasets fairly. However when using a query deformer
module, it is important to ensure that queries corresponding to dif-
ferent datasets continue to remain on the manifold of the canonical
face C. To ensure this, we operate in the parametric UV space of
the canonical face and provide 2D UV queries as input to the query
deformer D, resulting in 2D displacements. The displaced UV co-
ordinate is used to sample a position map of the canonical face to
result in the 3D query. This 3D query, p′k is then fed as input to
the rest of the pipeline as shown in Fig. 2. With this modification,
our new continuous landmark predictor has the option of deform-
ing queries pk from the training datasets to a different position on
the canonical shape such that inconsistent query annotations for the
same semantic landmark across datasets can be corrected for during
training.

The dataset code D j is a N dimensional vector per training
dataset that is optimized for along with the training of the land-
mark predictor. For example, when training with the studio dataset
of Chandran et al. [CBGB20b] together with a synthetic dataset
such as the one of Wood et al. [WBH∗21], we set N=2 and opti-
mize for two different codes D0 and D1.

With these 3 extensions to the baseline architecture of Chandran
et al. [CZGB23], we are able to predict an unlimited number of
2D/3D landmarks on face images without requiring an explicit face
detection step, and while also accommodating inconsistencies in
annotations across training datasets. With these modifications in
mind, we refer to our new landmark detector as the Infinite 3D
Landmark Predictor while evaluating our results in Section 5.

4. Implementation Details

Training Data. For training we exclusively use a studio dataset
consisting of dense facial skin landmarks [CBGB20b] and an in-
the-wild synthetic dataset containing sparse landmark annotations
[WBH∗21]. We annotate queries on the canonical shape for both
datasets similar to Chandran et al. [CZGB23] and train both the
baseline method and our proposed extension from scratch. In total,
our training dataset consists of 37,344 studio images with 47,022
dense facial skin landmarks and 100,000 in-the-wild images with
68 sparse facial landmarks. Our evaluation data is the common sub-
set of Sagonas et al. [STZP13] and contains 554 images.

We perform various photometric and geometric augmentations
on the training images and landmarks to increase the generalization
capabilities of our network. We train all reported methods for 25
epochs, with a batch size of 64 on an A6000 GPU. We use a the
AdamW [LH17] optimizer with a learning rate of 1e-4.

Network Details. We used the convnext_tiny model for our spatial
transformer network S, and replaced the last linear layer to pre-
dict 4 and 6 outputs for the similarity and affine STN respectively.
Similar to the baseline method of Chandran et al. [CZGB23], we
use the convnext_base model for our feature extraction network
F . The query deformer D, and the position encoder Q, are MLPs
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with 2 hidden layers with GeLU activations and contain 64 neu-
rons per hidden layer. The landmark prediction MLP P , consists
of 4 hidden layers with 512 neurons per layer. All networks were
written using standard building blocks available in the torch and
torchvision packages.

Runtime. As we use small networks for both the spatial trans-
former and the query deformer networks, our work adds minimal
overhead in terms of computation time to the baseline method. Our
final network consisting of all proposed components runs at 46 fps
on a RTX 3090 GPU in comparison to the baseline method which
runs at 48 fps.

5. Results

We now showcase various results of our method, and evaluate how
each of our design choices improves the overall performance over
the baseline method [CZGB23].

5.1. Qualitative Results

In Fig. 3 we show the stagewise results of our landmark detec-
tion pipeline on images captured under various practical scenarios
including in-the-wild videos, multiview studio setups, and helmet
mounted cameras. We show results for both portrait and landscape
aspect ratios and for resolutions ranging from 256 × 256 in-the-
wild images to 4K resolution studio setups. In all cases, similar to
the majority of existing facial landmark predictors, the images are
square padded and resized to 256× 256 before feeding them as in-
put to our network. Our jointly trained spatial transformer network
is able to localize the face consistently in all scenarios as shown in
the second column. Resampling the image with the output of the
spatial transformer results in normalized face images I′ (third col-
umn). These images are fed to the image feature encoder F and the
rest of our landmark prediction pipeline producing intermediate 3D
landmarks L̄3d

k (fourth column), and ultimately the final 2D land-
marks lk (final column). As illustrated in this figure, our method
provides good results for all of these complex scenarios.

As our method improves on the continuous landmark detection
of Chandran et al. [CZGB23], we are able to predict an unlimited
number of 2D landmarks in any configuration on arbitrary images
of human faces. In Fig. 4, we show a qualitative comparison of
2D landmarks on in-the-wild videos versus the baseline method
of Chandran et al. [CZGB23]. Our method retains the flexible na-
ture of the baseline in predicting continuous, arbitrary facial land-
marks under, while additionally not requiring face normalization as
a pre-processing step. While both methods show comparable per-
formance on common in-the-wild videos, our method starts to sig-
nificantly outperform the baseline on challenging test conditions
like helmet camera data as seen in the last row. The landmarks pre-
dicted by our method capture the overall face shape and expression
better than Chandran et al.when trained on the same data. We hy-
pothesize that our 3D landmark prediction, which makes use of a
mean face shape and our estimation of camera instrinsics, jointly
help make our method more robust than the baseline.

5.2. Quantitative Evaluation

We now discuss quantitative evaluation of our infinite 3D landmark
predictor on a popular 2D facial landmark benchmark [STZP13] in

Table 1: Quantitative Evaluation on the Common Benchmark of
Sagonas et al. [STZP13]

Method NME
Baseline (ConvNext + MLP) [CZGB23] 3.19
Ours 2.89

Table 2: Temporal Stability Metric computed on Test Studio Videos

Method Temporal Error
Baseline [CZGB23] 3.05
Baseline + Spatial Transformer (Affine) 2.41
Baseline + 3D landmarks 3.05
Ours 2.37

Table 3. Conventionally this benchmark provides both training and
test data to compare landmark prediction algorithms. However we
find that the training data in this benchmark contains copyrighted
images and so to respect copyright, we exclusively use only the
test data from [STZP13] for evaluation and do not finetune our net-
works on the training data. For quantitative evaluation, we report
the Normalized Mean Error (NME) in Table 1. As it would prac-
tically be infeasible to retrain previous landmarks detectors on the
same data as what we use in our evaluation, we leave out other
state of art methods from this table to avoid confusion. Finally our
training data (see Section 4) consisting of studio [CBGB20b] and
synthetic data [WBH∗21] contains 3D consistent landmarks even
for occluded points like the jawline, and having been trained on
this data, our method always predicts 3D consistent landmarks. As
the benchmark evaluation data contains sliding landmarks on the
jawline that are not 3D consistent, we leave out the 17 jaw land-
marks from the ground truth test data and only use the remaining
51 landmarks for quantitative evaluation. This avoids the need to
perform mitigation strategies like label translation [WBH∗22] and
enables us to fairly showcase the magnitude of our improvements.

In addition to reporting the spatial accuracy of the landmarks,
we compare the temporal stability of predicted landmarks on left
out dynamic sequences from a studio dataset [CBGB20b] where
perfect ground truth is available. We report a temporal normalized
mean error in Table 2. This temporal metric is computed as follows

Etemporal =
1

NT

T

∑
t=1

N

∑
k=1

||pt+1
k − pt

k||2−||g
t+1
k −gkt ||2

||gt+1
k −gkt ||2

(11)

where pt
k and gt

k refer respectively to the kth predicted and ground
truth landmarks in frame t. This temporal metric ignores absolute
positional errors between the predicted and ground truth landmarks
and only concerns itself with the average difference in velocities
of a predicted landmarks in subsequent frames with respect to the
corresponding landmarks in the ground truth.

Our method outperforms the state-of-the-art baseline of Chan-
dran et al. [CZGB23] on both metrics, thereby quantitatively cor-
roborating the value of our contributions.

https://doi.org/10.1111/cgf.15126
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Figure 3: Our method can predict accurate facial landmarks on a number of practical scenarios including studio setups, in-the-wild videos,
mobile phone recordings, and even helmet mounted cameras. We show the result of each stage of our pipeline with the input image I
(first column), the RoI detected by the spatial transformer (second column), the resampled or normalized face image I′ (third column), the
intermediate 3D landmarks predicted by the model L̄3d

k (fourth column), the resulting 2D landmarks l′k corresponding to I′ (fifth column),
and the final landmark positions lk (last column).
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Input 
Image

Baseline 
[Chandran et al. 23]

Ours

Figure 4: While our method remains competitive with the state-
of-the-art baseline in common scenarios (first two rows), it pro-
vides significantly better results on challenging scenarios like hel-
met mounted cameras, where our method is able to capture the
overall head shape and expression better than the baseline (last
row). Queries pk corresponding to each landmark layout are visu-
alized at the top.

5.3. Evaluation

Having demonstrated the qualitative and quantitative superiority of
our method over state of the art, in this section we take a closer
look at the three extensions to baseline method: i) the spatial trans-
former network, ii) the 3D landmark prediction, and iii) the query
deformation module. We also discuss how each of them contribute
to the overall performance of the system in Section 5.4.

5.3.1. Face normalization with the spatial transformer

We look at face normalization as performed by the spatial trans-
former. As seen in the second column of Fig. 3, our affine spatial
transformer can handle images of different aspect ratios and can
consistently localize the face in several scenarios not restricted to
in-the-wild videos, studio capture sessions, and helmet mounted
cameras.

Conventionally faces are detected using a dedicated face detec-
tion algorithm such as Kazemi et al. [KS14] or a more recent neural
approach of Zhang et al. [ZZLQ16]. As our method removes this
explicit face detection step with a spatial transformer network, we
compare the facial bounding boxes predicted by a state of the art
bounding box detector againt the learned region of interest (RoIs)
predicted by the spatial transformer.

In Fig. 5 we show a qualitative comparison of the bounding box
and their trajectories on typical in-the-wild test videos. We com-
pare two variants of our spatial transformer; each of which predicts
a similarity and an affine transformation respectively against the
widely used method of Zhang et al. [ZZLQ16]. From the displayed
trajectories, it is evident that a jointly trained spatial transformer
predicts temporally smoother bounding boxes when compared to
the method of Zhang et al.. We kindly refer you to our supplemental
video for a better demonstration of the temporal smoothness of our

MTCNN [ZZLQ16] Similarity
Spatial Transformer

A�ne
Spatial Transformer 

(Ours)

Figure 5: We visualize the bounding box trajectories on test videos.
In the first column, we show predictions from the widely used face
detection algorithm of Zhang et al.. While predicting a tighter crop
of the face, the method of Zhang et al.results in a noisy trajectory
for the bounding box even with very little movement of the face. The
learned RoIs predicted by both the similarity (second column) and
affine (third column) spatial transformers, while larger in frame,
are temporally smoother.

learned bounding boxes. While both the similarity and the affine
spatial transformer produce comparably smooth bounding box tra-
jectories, the affine spatial transformer obtained a better score on
our ablation study (see Section 5.4).

The second interesting inference from Fig. 5 is that irrespective
of the class of the transformation it predicts, the spatial transformer
always prefers slightly rotated bounding boxes that place the face
more or less along the diagonal of the bounding box. Currently we
do not have an explanation for this preference and we find it an
intriguing phenomenon.

Spatial Transformers on Convolutional Architectures. Finally
as spatial transformer networks can also be integrated as a stan-
dalone component into other convolutional architectures that are
commonly used in keypoint detection, we present an evaluation
where we prepend a spatial transformer to an hourglass network
[NYD16] and measure the improvement it provides in facial land-
mark detection. To support end-to-end training with a heatmap
regression network, we use the softargmax operator to convert
heatmaps into 2D landmark coordinates in normalized image space
[CBGB20a], and restore the normalized landmarks to the original
input space by inverting the transformation predicted by the spa-
tial transformer (see Eq. 3). When the hourglass network is trained
in such a manner on a synthetic dataset [WBH∗21], and evaluated
on the 300-W common benchmark, adding the spatial transformer
lowers the NME of the hourglass network from 5.15 to 4.91. This
demonstrates that our end-to-end training strategy with a spatial
transformer has benefits that go beyond the continuous landmark
detection framework that we use as a baseline in our work.

5.3.2. Infinite 3D Facial Landmarks

Face Reconstruction. Our new 3D landmark predictor extends the
method of Chandran et al.by predicting an arbitrary number of 3D
facial landmarks in any layout on normalized input image I′. Con-
trary to most existing 3D face reconstruction method, our 3D land-
mark predictor only predicts the 3D points corresponding to the

https://doi.org/10.1111/cgf.15126
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Figure 6: We visualize the normalized image I′in the first row and
an overlay of a mesh created using L̄3d

k on the image in the second
row. The tight overlay of the mesh on the image demonstrate the
strong performance of unsupervised pose estimation from F and
3D landmark predictor P .

input queries pk. However by densely querying every point on the
canonical shape C, our method can readily be used to provide a full
face mesh that matches I′. In Fig. 6, we visualize the mesh ob-
tained by densely querying our landmark predictor and overlay it
on the normalized image I′. The results indicate that we learn plau-
sible 3D face shapes for in-the-wild images even though we only
use sparse 2D landmark supervision for training.

Even in the absence of constraining the predicted vertex offsets
with a shape prior; such as a 3DMM, our method produces plau-
sible face shapes. In Fig. 7, we show several examples of the pre-
dicted canonical face shape for an input image from multiple views.
The predicted canonical shape looks plausible even under extreme
expressions. We hypothesize that this could be a consequence of
the dense 2D supervision from the studio dataset.

Texture Completion. One useful application of having the ability
to implictly predict a mesh in the topology of the canonical shape
is that it allows us to recover the texture of person’s face from mul-
tiview images or a video. In Fig. 8, we show the recovery of a full
face texture from a multiview studio setup consisting of 4 cameras.
For each view, we first pass the image through our landmark detec-
tor and predict 3D landmarks corresponding to each skin point on
the canonical face mesh. Then we reproject the RGB colors from
the normalized image I′ onto the posed mesh that is created us-
ing L̄3d

k and share the same triangles as C. The reprojected colors
are unwrapped into a texture using the UV parameterization of the
canonical face C, allowing us to create view specific textures for
each input. These textures are then merged to a single combined
texture (by averaging across the views).

Visibility Estimation. Our method thus has the ability to predict
arbitrary 2D landmarks on the image, and to produce a dense 3D
face mesh that can overlay well on the normalized image I’. As a
consequence of both of these abilities, we can accurately estimate
the visibility of arbitary 2D facial landmarks on an image. In Fig. 9,
we demonstrate this new capability of visibility estimation that our
method adds to the baseline approach. These landmark visibility
estimates can later be used by downstream applications (like 3D
face reconstruction) to assign weights to different landmarks based
on their visibility.

Lastly though our approach produces temporally smoother re-
sults than the baseline as seen in Table 2, our method still operates

Input Image Predicted 3D Shape
00 +45o-45º

Figure 7: We visualize the predicted canonical shape from 3 differ-
ent views (2 profile and 1 frontal) to demonstrate that our method
can predict plausible facial geometry even for extreme expressions.

Images Per-View Texture
Combined 

Texture
Textured

Mesh

1

1 2

2

33 44

1 2

3 4 1 2 3 4

Figure 8: Our ability to predict 3D landmarks allows for the recov-
ery of a full face texture from multiview images. We show images
captured in a studio setting from 4 different viewpoints in column
1. Columns 2-5 show the view-specific texture map reconstructed
by the dense prediction of 3D landmarks on the input images. The
number corresponding to the view from which the texture was re-
constructed is shown in the bottom left of the per-view textures.
Column 6 shows the combined texture spanning the full face that is
obtained by averaging the per-view textures. In the last column, we
apply the texture on the predicted 3D face mesh for visualization.
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Visible Landmarks Occluded Landmarks

Figure 9: Our method can result in accurate visibility labels for any desired facial landmark. We show the visibilities estimated on a video
for two different landmark layouts in rows 1 and 2. Our visibility labels accurately reflect the motion of the subject’s head.
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Figure 10: We visualize the estimated focal lengths on 11 test
videos and find that they remain reasonably consistent and stay
within an acceptable range.

on each image independently. Therefore while processing videos,
our image encoder F can estimate slightly different focal length
displacements fd for each frame in the video as we impose no other
constraints on the training of the landmark detector other than 2D
landmark supervision. We visualize the predicted focal lengths on
test videos at inference time in Fig. 10 and found that although the
focal length changes across the video, the values stay reasonably
consistent and always in a meaningful range.

5.3.3. Query Deformation Module

Controlling Landmark Styles. The query deformation module,
while allowing the network to account for query inconsistencies
across datasets at training time, also allows us to infer the same
landmarks in different styles at inference time by varying the
dataset ID D j. In Fig. 11, we show the same set of facial landmarks
predicted on a test image, when using two learned dataset codes
D0 and D1 which correspond to the studio dataset of Chandran et
al. [CBGB20b] and the synthetic dataset of Wood et al.respectively.

5.4. Ablation Study

Finally we quantitatively measure the effect of each of our addi-
tions to the baseline method of Chandran et al. using the normalized
mean error (NME) on the benchmark of Sagonas et al. [STZP13].
Adding the spatial transformer, the 3D landmark predictor, and the
query deformation module to the baseline architecture individually
improves the performance of the baseline method. Our infinite 3D
landmark detector includes the best performing variations all of
our 3 proposed extensions and consists of an Affine Spatial Trans-
former, 3D landmark prediction with focal length displacements fd ,
and the query deformation module. We clarify that while report-
ing the NME when using the query deformation module, we use a
dataset code that resulted in the lowest error, which corresponded
to the code of the studio training dataset [CBGB20b].

6. Limitations And Failure Cases

We observe that our method can fail under strong head rotations
as shown in the first row of Fig. 12. The spatial transformer can
also have difficulties in localizing the face tightly when face occu-
pies a small region in the input image (see second row in Fig. 12).
Another limitation of our approach is that it is designed to handle
only inputs containing a single subject, while a generic face detec-
tion algorithm can handle inputs with arbitrary number of faces.

https://doi.org/10.1111/cgf.15126
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Dataset ID 0 Dataset ID 1

Figure 11: We visualize the effect of varying the dataset ID at in-
ference time and how this shifts the landmarks slightly reflecting
the original styles in which the two different training datasets were
annotated.

Table 3: Quantitative Evaluation on the 300-W Benchmark

Method Common
Set

Challenging
Set

Baseline B [CZGB23] 3.19 6.37
B + Spatial Transformer (Similarity) 3.13 6.29
B + Spatial Transformer (Affine) 3.07 6.22
B + 3D landmarks ( f f ixed ) 2.99 5.75
B + 3D landmarks ( f f ixed + fd ) 2.96 5.76
B + Query Deformation 3.13 5.93
Ours 2.89 5.71

Finally as our network process a single image at a time, it can pre-
dict different canonical 3D shapes even when only the viewpoint of
the input changes. In Fig. 13 we show how the predicted canonical
shape changes for an input face in a profile view when compared
to a frontal view. Restricting the predicted shape using a 3DMM or
enforcing some multiview consistency during training might mini-
mize these effects and produce more consistent geometry.

7. Conclusion

In this work we present Infinite 3D Landmarks, an improved
method for continuous 2D facial landmark detection by introduc-
ing three architectural changes to a recent state-of-the-art landmark
detector. First, we add a spatial transformer network to automat-
ically predict the facial bounding box, removing the need for of-
fline face normalization. Training this network alongside the land-

Head 
Rotation

Scale

Figure 12: We show examples of failure cases (highlighted by red
dots) involving strong head rotations (first row) and large changes
in scale (second row). While our method can produce reasonable
predictions for profile views, it starts to break down as the subject
turns around completely. Strong in-plane rotations of the head are
also a challenging case. Our method gracefully degrades in quality
as the scale of the face in the input image changes drastically.

Landmarks 
(Frontal)

Landmarks 
(Pro�le)

Canonical
Shape

(Frontal)

Canonical
Shape

(Pro�le)

Shape
Di�erence

Figure 13: Even when the predicted 2D landmarks are correct, our
method can predict different canonical face shapes for different in-
put views of the same subject as it only processes a single image
at a time. The predicted landmarks and the canonical 3D shape
for a frontal and profile image are shown in the first four columns.
The change between the two predicted shapes is visualized as a
heatmap in the last column (scale 0-10 mm).

mark predictor optimizes the bounding box detection for our spe-
cific task. Second, we modify the output head of the landmark pre-
dictor to estimate landmarks in a canonical 3D space, together with
the head pose and camera focal length, allowing the network to
reason about the 3D spatial layout of the landmarks and compute
important metadata like landmark visibility. Finally, we explicitly
account for inconsistencies in landmark annotations across differ-
ent training datasets by introducing a query deformer network, fur-
ther improving the accuracy of the landmark prediction. Our con-
tribution is the combination of these three modifications, which we
use to augment the baseline landmark detection method of Chan-
dran et al. [CZGB23] and demonstrate significant improvements
in accuracy and temporal stability. Finally, the predicted 3D land-
marks are also beneficial for downstream applications like 3D face
reconstruction, texture completion and landmark visibility estima-
tion.
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