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Fig. 1. We present a deep generalized physical face model that can be fit to a single face image or 3D scan. The model produces an identity-specific material
space composed of rest bones, skin, and the soft tissue that resides in-between, together with per-expression jaw transformations and element actuations
for facial simulation. Once fit to an unseen identity, the model can be animated to create physics-based facial animation. Applications like retargeting,
interpolation, anatomy editing, and physical effects such as collision avoidance and muscle paralysis are shown in Sec. 6.

Physically-based simulation is a powerful approach for 3D facial animation as
the resulting deformations are governed by physical constraints, allowing to
easily resolve self-collisions, respond to external forces and perform realistic
anatomy edits. Today’s methods are data-driven, where the actuations for
finite elements are inferred from captured skin geometry. Unfortunately,
these approaches have not been widely adopted due to the complexity
of initializing the material space and learning the deformation model for
each character separately, which often requires a skilled artist followed by
lengthy network training. In this work, we aim to make physics-based facial
animation more accessible by proposing a generalized physical face model
that we learn from a large 3D face dataset. Once trained, our model can be
quickly fit to any unseen identity and produce a ready-to-animate physical
face model automatically. Fitting is as easy as providing a single 3D face
scan, or even a single face image. After fitting, we offer intuitive animation
controls, as well as the ability to retarget animations across characters. All
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the while, the resulting animations allow for physical effects like collision
avoidance, gravity, paralysis, bone reshaping and more.
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1 INTRODUCTION
For decades, 3D facial animation has continued to be a challenging
and well-studied problem in computer graphics. The quest for more
realistic facial motion continues because believable 3D characters
are one of the leading contributors to widespread adoption of CG
content in films, video games and virtual environments. The reverse
is also true, in that unrealistic 3D characters can lead to a widespread
rejection of the CG content, which is what makes high-quality
facial animation so critical. Most often, faces are parameterized and
controlled by linear blendshape rigs, which are popular due to their
simplicity and ease of use. Unfortunately, blendshape rigs suffer
from well-known drawbacks like providing only linear motion and
exhibiting surface inter-penetrations (particularly around the lips).
An alternative, and more physically accurate approach is to use
physical simulation for facial animation, where anatomical muscle
actuations drive the soft tissue deformation. As a benefit, within a
simulator it is easy to add constraints to identify surface contacts
and prevent collisions, while producing more natural nonlinear face
motion. Originally, physics-based methods were popular only in
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academic settings due to their complexity of adoption in production,
however recently more anatomical and physics-inspired approaches
have gained popularity in the film industry [Choi et al. 2022]1.
There are generally two approaches to physics-based facial ani-

mation. In the first-principles-based method, researchers model the
muscle actuation mechanism according to the authentic complex
muscle structures in the face, either obtained through MRI [Sifakis
et al. 2005] or an off-the-shelf muscle template [Bao et al. 2018;
Ichim et al. 2017]. Although physiologically sound, this strategy is
laborious, and its realism highly depends on the accuracy of the
anatomical model. As such, a second approach emerged based on
shape targeting [Klár et al. 2020], where fine-grained and structure-
agnostic actuation is inferred from the captured skin geometry and
used to target the undeformed soft tissue [Srinivasan et al. 2021;
Yang et al. 2022, 2023]. Since only the skin geometry and skeleton
are required, this method largely eases the modeling labor while
assuming great flexibility, high fidelity, and improved realism.
While the shape targeting approach is attractive, it is currently

only tractable for a few hero characters in a production. This limita-
tion stems from two aspects. First, although the modeling effort is
less than a first-principles approach, there is still a dedicated setup
procedure required for each character. This involves scanning and
tracking extensive facial skin geometry, coupled with capturing
the underlying skeleton to delineate the material space—the un-
deformed soft tissue situated between the rest skeleton and skin,
which is essential for simulation. Following this, a dedicated neu-
ral network is meticulously trained to predict muscle actuation for
each expression-dependent deformation. Secondly, there is a time-
consuming, memory-intensive, and identity-specific differentiable
simulation based on the Finite ElementMethod (FEM) in the training
loop. As a result, it would be infeasible to learn a universal generic
model from multitudinous identities within a reasonable amount of
time and resources, using the currently-available architectures for
soft-tissue-based physical face animation. This situation is further
aggravated by the fact that the existing large facial datasets lack
precise information on the material space, directly forestalling the
FEM simulation.
In this work we aim to alleviate these issues and make physics-

based facial animation more freely accessible. To this end, we pro-
pose a new, generalized physical face model that can be easily
adapted to any new character without manual setup costs. We ac-
complish this by learning a single implicit neural model for actuation
mechanisms trained on a large dataset of hundreds of identities per-
forming a variety of expressions. Naturally, the above-mentioned
limitations would pose a considerable problem for this approach
as each identity would require a personalized material space and
training on such a large dataset with simulation in the loop would
be impossible. We overcome these hurdles with our two main contri-
butions. First, we propose a design that allows for training without
FEM simulation in the loop, which is fast and memory efficient,
allowing us to train on a large dataset of faces and learn the general-
izability one would need for such an application. Second, we propose
an architecture that automatically predicts an identity-conditioned

1https://www.fxguide.com/fxfeatured/exclusive-joe-letteri-discusses-weta-fxs-new-
facial-pipeline-on-avatar-2/

material space by warping a single canonical material space. Despite
not having FEM simulation in the training loop nor hand-crafted
per-identity material spaces, our network still produces outputs that
are compatible with a physics simulator. The resulting faces can
be animated using physics-based facial animation, where various
physical effects can be easily incorporated.

Our model is conditioned on two latent codes, one for identity and
one for expression, and the output is an identity-specific material
space (i.e., skull, jaw, skin and soft tissue in between) coupled with
identity- and expression-specific actuations and bone kinematics
that can all be readily provided to an off-the-shelf physics simulator.
As a result, our pre-trained network can be used to generate an
animation-ready physics-based simulation model for any new char-
acter, simply by modifying the identity latent code. We demonstrate
that our model can be fit to a single 3D neutral scan of an actor, or
even simply to a single face image. Once fitted, the model allows
animation through the controls of a common 3D morphable face
model, which are mapped to our latent space. Furthermore, our
method supports animation retargeting by swapping identity codes.
In all cases, the resulting animation benefits from physical effects
like the detection of surface contacts and collision avoidance, the
ability to paralyze parts of the face, edit anatomical bone structures,
and obey gravitational or other external forces.
In summary, we propose a physical face model that is as gener-

alizable and controllable as current linear blendshape models, but
with the added benefit of more physically-accurate facial deforma-
tions. We believe our work will help to democratize physics-based
facial animation, making it as simple as fitting an animation-ready
simulation model to a single scan or image.

2 RELATED WORK
Facial models used in animation range from simple global linear
shape models to complex local models that incorporate the under-
lying facial anatomy through anatomical constraints or physical
simulation. We will focus our discussion on anatomical face models
and the generation of 3D face models from monocular input.

2.1 Physics-Based Facial Animation
Physics-based facial animation typically employs two main ap-
proaches. The first, known as the first-principles-based method,
requires users to intricately model the muscle actuation mechanism
based on the complex structures of facial muscles. These structures
are derived from sources such as CT/MRI scans [Sifakis et al. 2005]
or pre-existing muscle templates [Bao et al. 2018; Ichim et al. 2017].
While this approach ensures physiological accuracy, the generation
of such models is labor-intensive and the realism of the resulting
animation heavily relies on the precision of the anatomical and
biomechanical models.

In response to the challenges posed by the first-principles-based
method, a second approach has emerged, known as shape targeting
[Klár et al. 2020]. In this methodology, every element within the
mesh is considered active and subject to actuation for the purpose of
inducing forces that drive the motion of the face or body. To repro-
duce identity-specific facial expressions, an actuation mechanism
is optimized based on face capture data. In the work of Srinivasan
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et al. [2021], the integration of neural networks with a comprehen-
sive muscle model facilitated the learning of the muscle actuation
mechanism. Subsequent advancements in the field transitioned to-
wards an implicit neural representation, rendering the actuation
mechanism more compact and independent of resolution [Yang
et al. 2022]. Building upon this foundation, Yang et al. [2023] fur-
ther extended the methodology by training the neural network on
captured data from a small number of individuals simultaneously.
This multi-identity training approach enables the model to learn
diverse expression styles based on distinct actuation patterns and
allows applications such as style retargeting.
Notably, these actuation-based approaches streamline the mod-

eling process by only necessitating skin geometry and bone data
for model training. Nevertheless, their heavy reliance on identity-
specific data, hand-crafted material spaces and architectures that
only allow training on one or few identities at a time represent
significant limitations, particularly hindering their generalizability
and widespread application in production settings. We address this
by introducing a generalized physical face model that can be easily
adapted to any new character.
The recent work of Wagner et al. [2023] is the closest in spirit

to our work, as we share a common motivation although very dif-
ferent solutions. They propose an extension to linear blendshape
models that aims to mimic physics-based facial animation within
a linear framework. Physical simulation is only used to generate
training data, not at runtime, and thus they are tied to the prescribed
simulation effects present in the dataset. For example, they cannot
handle lip collisions, which is a primary reason to employ simula-
tion for facial animation. On the other hand, we propose a nonlinear
physics-based face model trained on real capture data, which can
be fit to any novel identity and provide a true physical model that
employs simulation at runtime to allow any desired physical effect,
including lip collision avoidance.

2.2 Anatomically-Constrained Face Models
Anatomical constraints on the facial surface are often used to plau-
sibly restrict the range of the skin deformations. The anatomically-
constrained local deformation model, introduced in the context of
monocular facial performance capture by Wu et al. [2016], initially
established a connection between the skin surface and anatomical
bones. This was achieved by modeling the thickness of the soft
tissue between a bone point and the skin surface, together with skin
sliding coupled with bulging. This anatomically-constrained face
model was also beneficial in face modeling applications, helping
untrained users to quickly create believable digital characters [Gru-
ber et al. 2020]. In the domain of facial performance retargeting,
Chandran et al. [2022] employed the same model to confine a re-
targeted shape within the realm of anatomically plausible shapes
specific to a target actor. An implicit variant of the anatomical face
model was presented by Chandran and Zoss [2023], which facili-
tates the learning of a continuous anatomical structure that densely
constrains the skin surface. The model can disentangle deforma-
tion arising from rigid bone motion and non-rigid deformations
created by muscle activations. Qiu et al. [2022] learned an anatomi-
cal facial shape model from medical imaging data, and presented a

morphable model that is able to generate faces that jointly model
the skull, facial surface and appearance. Choi et al. [2022] replaced
the muscle-based parameterization used earlier [Sifakis et al. 2005;
Srinivasan et al. 2021] by a collection of muscle fiber curves, whose
contraction and relaxation provide a fine-grained parameterization
of human facial expression. The approach strikes a balance between
the requirements for anatomically-based and artist-friendly mod-
els, but comes at the expense of reduced physical accuracy, as the
simulation is solely employed in a pre-processing step to acquire an
approximate deformation model of muscle fibers.
Similarly, our approach is designed for ease of usability, as it

shares the generality and controllability characteristics found in
existing linear blendshape models, yet it offers the additional advan-
tage of achieving more physically accurate facial deformation.

2.3 Morphable 3D Face Models
As our generalized physical face model is driven by identity and
expression and produces a deformed 3D face as the output, it is akin
to traditional 3D morphable face models in current literature [Blanz
and Vetter 1999; Chai et al. 2022; Dai et al. 2019; Li et al. 2017; Yang
et al. 2020a], with the main difference that ours allows to simulate
physical effects. A common application of most 3DMMs is their use
inmonocular face reconstruction, e.g., fitting themodel to images. As
such, we present a high-level summary of existing techniques where
a morphable model is used to recover a person’s facial geometry in
3D either by directly optimizing the face shape based on an observed
image or through an inference-driven approach that trains neural
networks to predict the parameters of a morphable model.

Determining the optimal 3DMM shape, expression, and pose pa-
rameters for a given RGB image is achieved through either analysis-
by-synthesis optimization [Gecer et al. 2019, 2021] or deep neural
network regression [Feng et al. 2021; Zhang et al. 2023; Zielonka
et al. 2022]. Recently, there have also been several approaches that
rely on additional perception based loss terms to improve the visual
quality of these morphable model fits [Danecek et al. 2022; Filntisis
et al. 2022; Otto et al. 2023].

Comprehensive surveys on 3DMMs and their application inmonoc-
ular face capture are provided by Egger et al. [2020], and Morales et
al. [2020]. As an application of our generalized physical face model
we also show the ability to fit the model to unseen identities in the
form of a single face image. However, we do not propose a compet-
ing method for accurate 3D geometry reconstruction but rather a
convenient approach to obtain an animatable physical model, using
a similar fitting approach as in the field of monocular face capture.

3 PRELIMINARIES: ACTUATED FACE SIMULATION
In continuum mechanics, motion is characterized by an invertible
map 𝜙 : X ∈ Ω0 → x ∈ Ω from the undeformed material space
Ω0 to the deformed space Ω. The deformation gradient, F(X) =

∇X𝜙 (X), encodes the local transformations including rotation and
stretch. The quasi-static state of 𝜙 in the absence of external force
is governed by the point-wise equilibrium:

div · P = div · 𝜕Ψ
𝜕F

(F) = 0, (1)
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where P is the first Piola–Kirchhoff stress tensor that measures
the internal force. For hyperelastic material, P is associated with
a specific energy density function Ψ that describes the material
behavior. Intuitively, Eqn. (1) means the net force within the material
is zero everywhere.

In the context of actuated face simulation, the material space Ω0

is defined as the undeformed soft tissue space confined between the
rest bones 𝜕Ω0

bones and skin 𝜕Ω0
skin. 𝜕Ω

0
bones consists of the skull

𝜕Ω0
skull and the jaw 𝜕Ω0

jaw, which will constrain and drag the soft
tissue during articulation. The deformed space Ω is the soft tissue
space of the target expression. ForΨ, the shape targetingmodel [Klár
et al. 2020] is employed:

Ψ(F,A) = min
R∈SO(3)

| |F − RA| |2𝐹 = | |F − R∗A| |2𝐹 , (2)

whereA is a symmetric actuation tensor mimicking the local muscle
actuation at a single point. Note that when we later refer to a con-
tinuous tensor field over the entire space, we will use the notation
A(·). R∗ is the polar decomposition of FA, making Ψ rotationally-
invariant. Based on embedded simulation, Ω0 is uniformly dis-
cretized into a simulation mesh Msim using regular elements with
nodal vertices u0, where the discretized skin, skull and jaw are lin-
early embedded with barycentric weightsWskinu0,Wskullu0, and
Wjawu0 respectively. With the Finite Element Method (FEM) applied
to Eqn. (1), the simulation then reduces to an energy minimization
problem w.r.t. the deformed vertices u such that the boundary con-
ditions from the articulated bone are satisfied, as follows:

argmin
u

∑︁
𝑒

𝑉𝑒

2
| |F𝑒 (u, u0) − R∗𝑒A𝑒 | |2𝐹 (3)

s. t.
[
Wskull
Wjaw

]
u =

[
Wskull
RjawWjaw

]
u0 +

[
0
tjaw

]
, (4)

where𝑉𝑒 is the volume for each element 𝑒 while {Rjaw, tjaw} denotes
the rigid transformation for the jaw.
In summary, the simulation entails three core elements:
• Identity material space (Ω0) to getMsim with embedded skin,
skull, and jaw.

• Facial actuation defined by the tensor field A over Msim.
• Jaw kinematics via mandible transformation {Rjaw, tjaw}.

The latter two components function as muscle actuation mecha-
nisms and are utilized as the input physical constraints. This simu-
lation process can be made efficiently differentiable with the adjoint
method, allowing inverse design ofA and {Rjaw, tjaw} from a target
expression of the identity. However, the expensive computation
from the FEM simulation and the requirement of the pre-defined
material space Ω0 prevent this method from lending itself to a large
face dataset of hundreds of identities, where the identity-specific
material space (underlying anatomy) is typically missing.

4 METHOD
Our goal is to build a generalized physical face model from a large
3D face dataset where only skin geometry is given. This face model
should be generative and animatable, such that it can be fit to a va-
riety of input data (e.g., 3D scans or face images) and then animated
with intuitive controls, providing a convenient mechanism to obtain
a physical face model for animation purposes.

To achieve this goal, we propose a new network architecture for
implicit actuation mechanisms (illustrated in Fig. 2). At a high level,
our model is driven by two latent variables 𝛽 and 𝛾 , which represent
the identity and expression, respectively. The output consists of
three essential components: the discretized simulationmeshMsim at
rest, derived from the identity-specific material space D0,𝛽 ; the jaw
transformation {Rjaw, tjaw}; and the actuation tensor field A, both
of which are extracted from the corresponding deformed spaceD𝛾,𝛽 .
These outputs—Msim, {Rjaw, tjaw}, and A—are then employed in
the FEM simulation to accurately deform the face to perform the
given expression.

As mentioned in Sec. 3, actuated face simulation traditionally can-
not be trained on large datasets. Our method is possible thanks to
two novel contributions. The first one is designed for efficient train-
ing, where we parameterize and learn the physical constraints in a
manner free of any FEM simulation (Sec. 4.1). Second, we introduce
a material-space generative network that produces the identity-
specific material spaces automatically, with no manual modeling
(Sec. 4.2). We will first describe these two contributions in isolation,
and then elaborate on how they are combined to provide the com-
plete pipeline (Sec. 4.3). Note that throughout the manuscript, we
use the term “simulation-free” to refer to any process that does not
involve FEM simulation.

4.1 Simulation-Free Learning
Given a material space Ω0, where the skin 𝜕Ω0

skin, skull 𝜕Ω
0
skull

and jaw 𝜕Ωjaw are explicitly defined, we want to infer a continu-
ous actuation field A(·) and a jaw transformation {Rjaw, tjaw} to
match a given expression in a simulation-free manner. Formally, the
objective for the inverse design is as follows:

argmin
𝜙 ( ·),A( ·),Rjaw,tjaw

∫
𝜕Ω0

skin

| |𝜙 (X) − 𝜙 (X) | |22 𝑑X (5)

s. t. div · (∇X𝜙 (X) − R∗ (X)A(X)) = 0, ∀X ∈ Ω0 A = A⊤ (6)

𝜙 (X) = X, ∀X ∈ 𝜕Ω0
skull (7)

𝜙 (X) = RjawX + tjaw, ∀X ∈ 𝜕Ω0
jaw Rjaw ∈ SO(3) (8)

𝜙 ∈ Φbio (9)

where 𝜙 denotes the ground truth deformation that is only defined
on 𝜕Ω0

skin, i.e., through 3D scanning. Eqn. (6) comes from the point-
wise equilibrium of Eqn. (1) with P instantiated from Eqn. (2). Eqn. (7)
and Eqn. (8) guarantee that the skull is fixed and jaw is rigidly
articulated. Eqn. (9) constrains the mapping 𝜙 such that it resembles
bio-mechanically plausible soft tissue deformation, which we refer
to as the space Φbio (and will elaborate on later in the discussion of
the Soft Loss). The motivation of our solution lies in the fact that
given any invertible mapping function 𝜙 , Eqn. (6) can be satisfied
by setting the actuation tensor field A(·) as:

A(X) = R𝜙 (X)⊤∇X𝜙 (X), (10)

where R𝜙 (X) is the polar decomposition of ∇X𝜙 (X) at X. This rep-
resentation gives the zero stress tensor P and hence the zero diver-
gence everywhere. Based on this observation, the inverse design can
be simplified to finding𝜙∗ that closely approximates𝜙 on 𝜕Ωskin while
at the same time satisfying Eqn. (7), Eqn. (8) and Eqn. (9) as much as
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simulator

discretizedcontinuous

expressionidentitycanonical ground truth

Fig. 2. Overview of our model. Driven by identity 𝛽 and expression 𝛾 latent codes, N𝐶 learns to deform a canonical material space Ω𝐶 to be identity-specific,
Ω0,𝛽 . Then N𝑒 learns to deform the material space to match a given expression, Ω𝛾,𝛽 . The latent codes are parameterized by a common 3DMM (𝛽 , 𝛾 ). The
network is trained with physically-inspired constraints so that, after discretization, a simulator will produce physics-based facial animation.

possible. Then, we can compute A(·) and {Rjaw, tjaw} from 𝜙∗ auto-
matically. Specifically, A(·) is obtained with Eqn. (10). {Rjaw, tjaw} is
obtained with Procrustes alignment between 𝜙∗ (𝜕Ω0

jaw) and 𝜕Ω0
jaw.

These physical constraints will be compatible with the simulation
after discretization with FEM.
To achieve this goal, we parameterize the mapping function 𝜙

with an implicit neutral network N𝑒 . Then, we introduce several
novel loss functions to constrain it.

Reconstruction Loss Lskin. The first loss is the reconstruction
loss defined on 𝜕Ω0

skin:

Lskin (𝜕Ω0
skin) =

𝑁𝑣∑︁
𝑖=1

1
𝑁𝑣

| |N𝑒 (X𝑖 ) − x̂𝑖 | |22, (11)

where X𝑖 represents the 𝑖-th sampled point from 𝜕Ω0
skin, and x̂𝑖 indi-

cates the corresponding ground truth position. We sample 𝑁𝑣 points
in total. The correspondence is typically approximated through sur-
face registration.

Rigidity Loss Lrigid. The second loss is to enforce the rigidity of
the bone, inspired by Eqn. (8):

Lrigid (𝜕Ω0
b) = min

R∈SO(3),t∈R3

𝑁𝑏∑︁
𝑖

1
𝑁𝑏

| |N𝑒 (X𝑖 ) − (RX𝑖 + t) | |22, (12)

where we sample 𝑁𝑏 points in total for each region 𝜕Ω0
b. We apply

this loss separately to the skull 𝜕Ω0
skull and the jaw 𝜕Ω0

jaw. Therefore,
we have Lrigid = Lrigid (𝜕Ω0

skull) + Lrigid (𝜕Ω0
jaw).

Fixation Loss Lfix. Specifically to 𝜕Ω0
skull, we introduce the third

loss to enforce the fixation of the skull area, adapted from Eqn. (7):

Lfix (𝜕Ω0
skull) =

𝑁𝑓∑︁
𝑖

1
𝑁𝑓

| |N𝑒 (X𝑖 ) − X𝑖 | |22, (13)

where we sample 𝑁𝑓 points in total on the skull area 𝜕Ω0
skull.

Soft Loss Lsoft. The fourth loss is to learn bio-mechanically plau-
sible deformation based on the Young’s Modulus (𝐸) and Poisson’s
Ratio (𝜈), inspired by Eqn. (9). This loss consists of two terms, an
elastic one and a volume-preserving one:

Lsoft (Ω0) =
𝑁𝑠∑︁
𝑖

1
𝑁𝑠

min
R∈SO(3)

𝜇 | |∇XNe (X𝑖 ) − R| |22+

min
det(D)=1

𝜆 | |∇XNe (X𝑖 ) − D| |22,
(14)

where we sample 𝑁𝑠 points in total inside the material space Ω0.
𝜇 and 𝜆 are the Lamé parameters, describing the material behav-
ior. These two parameters are parameterized by 𝐸 and 𝜈 as 𝜆 =

𝐸𝜈/(1 + 𝜈) (1 − 2𝜈) and 𝜇 = 𝐸/2(1 + 𝜈) respectively. Consistent with
established practices in Projective Dynamics [Bouaziz et al. 2014],
D is defined as a matrix with a determinant of 1, matching the di-
mensions of F. This loss is essential as it not only regularizes the
deformation but also implicitly connects the skin and the bone via
the soft tissue in-between, ensuring that the deformation of one
directly influences the other. In this regard, when the output skin
is supervised towards the ground truth, the jaw is also placed in a
constrained position, hence inferring the jaw kinematics. At a high
level, the idea ofLsoft is to replace the FEM simulation with a neural
surrogate that is smoother and more easily differentiable, akin to
physics-informed neural networks (PINNs) [Raissi et al. 2019].
These four loss terms (Lskin, Lrigid, Lfix, Lsoft) will be used in

our end-to-end training function defined in Sec. 4.3. The signif-
icant benefit of this formulation is that we move the traditional
FEM-discretized simulation out of the learning loop, which makes
the method much faster and easily scalable since all the loss func-
tions are point-wise. In summary, this network generates physically-
constrained deformations that are strategically converted into phys-
ical constraints used in the simulation.

4.2 Material Space Morphing
We now describe our second main contribution to address the fact
that every identity in the dataset needs a custommaterial space. Our
approach is to infer the material space of an identity automatically
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by learning to morph a single canonical material space to any new
person, similar to the idea of canonical warping [Kirschstein et al.
2023; Yang et al. 2023; Zheng et al. 2022].
Given a canonical material space Ω𝑐 , where the canonical skin

𝜕Ω𝑐
skin and bones 𝜕Ω𝑐

bones are explicitly defined, we want to morph
it into thematerial space Ω0 of an identity using another implicit net-
work N𝑐 . We propose three loss functions to constrain the solution
during training.

Identity Loss Lid. The first loss is to provide supervision on the
skin area, similar to Eqn. (11).

Lid (𝜕Ω𝑐
skin) =

𝑁𝑣∑︁
𝑖=1

1
𝑁𝑣

| |N𝑐 (X𝑐
𝑖 ) − X̂𝑖 | |22, (15)

where X𝑐
𝑖
represents the 𝑖-th sampled point from 𝜕Ω𝑐

skin, and X̂𝑖

indicates the corresponding ground truth position on the neutral
identity mesh in the dataset, attainable from 3D scanning.

Bone Shape Loss Lbone. Since we only have direct supervision
on the skin area, we propose to constrain the bone shapes using an
off-the-shelf parametric bone generator [Qiu et al. 2022], which can
predict plausible skull and jaw shapes given a neutral face mesh.
Formally, the loss is as follows:

Lbone (𝜕Ω𝑐
bones) =

𝑁𝑏∑︁
𝑖=1

1
𝑁𝑏

| |N𝑐 (X𝑐
𝑖 ) − X̂𝑖 | |22, (16)

where we sample 𝑁𝑏 points on 𝜕Ω𝑐
bones in total, and here X̂𝑖 is the

pseudo-ground truth bone position on the bone surfaces generated
by the parametric model given the ground truth identity neutral
shape.

Elastic Regularization Lereg. Finally, since we only supervise on
the surface areas, we incorporate an elastic regularization to smooth
the volumetric morphing:

Lereg (Ω𝑐 ) =
𝑁𝑠∑︁
𝑖

1
𝑁𝑠

min
R∈SO(3)

| |∇X𝑐N𝑐 (X𝑐
𝑖 ) − R| |22, (17)

where we sample 𝑁𝑠 points on Ω𝑐 in total. This loss also makes the
training robust to any incorrect estimation from the bone prediction
in Eqn. (16). These three loss terms (Lid,Lbone,Lereg) will be added
to our end-to-end training approach, described next.

4.3 Generalized Physical Face Model
We can now describe our complete pipeline, illustrated in Fig. 2. The
two contributions described in Sec. 4.1 and Sec. 4.2 make it possible
to learn a generalized physical face model from a large dataset of
3D facial scans (skin only). To summarize, given an identity latent
code 𝛽 , our generative implicit network N𝑐 learns to deform points
from a canonical material space Ω𝑐 to an identity-specific material
space Ω0,𝛽 . Then given both the identity code and an expression
latent code 𝛾 , our implicit deformation network N𝑒 generates the
identity- and expression- specific deformations Ω𝛾,𝛽 , from which
the physical constraints can be obtained for simulation.
In order to regularize the identity and expression latent spaces,

encourage disentanglement, and allow for artist-driven animation

after training, we parameterize the latent codes using an off-the-
shelf morphable 3D face model [Li et al. 2017]. Specifically, 𝛽 =

Pid (𝛽) and 𝛾 = Pexp (𝛾), where Pid and Pexp are small MLPs with
three layers each that operate like learnable position encoding, and
𝛽 and 𝛾 are the identity and expression parameters of the 3DMM. To
obtain the input for training, we pre-compute the 3DMMparameters
corresponding to each face in our dataset using least-squares fitting.

Complete Loss Function. Our full set of optimization variables
include the network weights ofN𝑐 ,N𝑒 , Pid and Pexp. We regularize
the latent codes with 𝑙-2 regularization Llreg = | |𝛽 | |22 + ||𝛾 | |22. For
smoothness, we also apply Lipschitz regularization Llip to Pid and
Pexp, as in Yang et al. [2023]. Putting it all together, the complete
objective function for training our face model is:

Ltrain = 𝜆skinLskin + 𝜆rigidLrigid + 𝜆fixLfix + 𝜆softLsoft

+ 𝜆idLid + 𝜆boneLbone + 𝜆eregLereg

+ 𝜆lregLlreg + 𝜆lipLlip,

(18)

where 𝜆∗ are balancing weights. Our model is trained end-to-end in
a simulation-free manner with the direct supervision only from the
skin scans while the anatomical features such as the bone shapes,
jaw kinematics, and the facial actuation, are inferred automatically.

Test-time Optimization and Applications. Once trained, one ap-
plication of our model is to fit it to unseen identities. To accomplish
this, we optimize the latent codes 𝛽 and 𝛾 using an objective that
mirrors the simulation-free approach of our training phase:

Ltest = 𝜆skinLskin + 𝜆rigidLrigid + 𝜆fixLfix + 𝜆softLsoft

+ 𝜆boneLbone + 𝜆eregLereg + 𝜆lregLlreg,
(19)

where we exclude Lid, eliminating the need for the input to depict a
neutral expression, as well as the irrelevant Llip that is intended for
regularizing network weights. During fitting, Lskin and Lbone can
vary depending on the form of the input data. For example, when
fitting to an unseen 3D scan we can use the same scan-to-mesh
loss and predicted bone loss (i.e., Eqn. (11) and Eqn. (16)) as during
training. However, our model is flexible and allows fitting to other
data, such as 2D facial landmarks computed from an image, where
we can formulate Lskin as a 2D projection loss and Lbone as a self-
supervised bone loss, as we will describe later in Sec. 6.1. Notably,
for differing head poses in world-space, optimization includes the
rigid skull transformation.

Once the latent codes are optimized, we can generate the material
space via N𝑐 and evaluate the physical constraints with N𝑒 . After
discretization, we obtain the simulation meshMsim, the actuation
tensor field A over Msim, and the jaw transformation {Rjaw, tjaw},
which can be used for the FEM simulation, as described in Sec. 3.
With an appropriate discretization resolution, the difference be-
tween the fitted result and the simulated result is negligible, as we
show in Sec. 7.
Finally, we can directly manipulate the physical model from the

artist-friendly 3DMM parameters, or swap the identity latent code
for animation retargeting. We can also interpolate between iden-
tity codes for novel face generation. The main superiority of our
physical face model over other traditional deep face models is that
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during simulation, we can add additional physical effects such as
collision handling, external forces, etc. All of these applications will
be demonstrated in Sec. 6.

5 IMPLEMENTATION
In order to train our network there are a number of implementation
details to consider.

Training Data. We use the 3D face dataset presented by Chan-
dran et al. [2020], which consists of 336 identities under various
expressions totaling 13000 face scans in topological correspondence,
with rigid head motion removed. Every identity has one “neutral”
expression that is used in Eqn. (15). As the dataset contains only skin
geometry, we pre-fit the bones using a parametric skeletal model
called SCULPTOR [Qiu et al. 2022], which provides the constraints
for the bone shape loss in Eqn. (16). The skin and the bone surfaces
discretize 𝜕Ω∗

skin and 𝜕Ω
∗
bones, respectively. As mentioned in Sec. 4.3

of the main text, we fit FLAME model parameters (𝛽 , 𝛾 ) to all data
in a pre-processing step.

Canonical Space. The canonical material space Ω𝑐 is defined using
the mean bone and skin surfaces of SCULPTOR. For the bones we
use the topology directly from SCULPTOR, but for the facial skin we
fit the topology from our 3D face dataset to the SCULPTOR mean
face in order to obtain vertex consistency with our dataset, for the
constraints in Eqn. (11) and Eqn. (15).

Training Details. All the losses defined on 𝜕Ω∗
skin 𝜕Ω∗

bones, 𝜕Ω
∗
skull,

and 𝜕Ω∗
jaw are evaluated directly on the mesh vertices, while losses

defined in Ω∗ are computed through uniform sampling of the soft
tissue space. We mask out the necessary face and bone regions for
regression. Specifically, we only consider the frontal face and assign
10 times less supervision weight to the low-confidence regions
(confidence per vertex is available in the 3D dataset). During testing
and evaluation, we use the same masks for consistency. We train
the model for 200 epochs using the Adam optimizer [Kingma and
Ba 2015] with a batch size of 16 and an initial learning rate of 1𝑒 − 4
that remains the same for the first 100 epochs and starts to linearly
decay to zero after.

Hyper-Parameters. The balancing weights for training are set
as follows: 𝜆skin = 20, 𝜆rigid = 20, 𝜆fix = 20, 𝜆soft = 0.1, 𝜆id = 1,
𝜆bone = 0.1, 𝜆lreg = 1𝑒 −4, 𝜆ereg = 0.1, and 𝜆lip = 2𝑒 −6. The number
of sampling points are 𝑁𝑣 = 45𝑘 , 𝑁𝑏 = 5𝑘 , 𝑁𝑓 = 10𝑘 and 𝑁𝑠 = 10𝑘 .
The values for density, Young’s Modulus (𝐸) and Poisson ratio (𝜈)
are set to 0.9 g/ml, 5 kPa and 0.47, respectively, according to related
literature [Xu and Yang 2015].

Network Architecture. The dimensions of our latent codes 𝛽 and
𝛾 are set to 128. For parameterization 𝛽 we use the first 100 prin-
cipal components of the identity space of the FLAME model [Li
et al. 2017], while 𝛾 consists of the full expression space as well as
the 3-dimensional joint pose. The parameterization MLPs for Pid
and Pexp consist of 3 fully connected GeLU layers [Hendrycks and
Gimpel 2016] each with 128 hidden units and the Lipschitz weight
normalization [Liu et al. 2022]. For bothN𝑒 andN𝑐 , we use a condi-
tional SIREN network inspired by Yang et al. [2022] for its sound

100 128 128 128

GeLU (Lipschitz)

GeLU +Tanh

SIREN (30)

Linear

3 128 128 128 128 128 3

Element Mul
Element Add

Fig. 3. Detailed architecture of the identity branch. The size of the inputs,
the latent codes, and the output are shown on the links.

differential properties, which are essential for evaluating the physi-
cal constraints. The backbone consists of 5 SIREN layers [Sitzmann
et al. 2020] each with 128 hidden units and frequency 30, followed
by a linear layer to output the displacement that is then added to the
input vertices to get the final output. The conditioning is achieved
through the weight modulation mechanism proposed by Yang et
al. [2022]. A detailed architecture for the identity branch is shown
in Fig. 3. The expression branch is similarly structured.

Simulation. We employ hexahedral elements, with a simulation
mesh example depicted in Fig. 2. The discretization resolution is
approximately 2mm based on the study shown in Sec. 7. Once the
simulation meshMsim is discretized, we sample the points inside
Msim to evaluate the actuation tensor field A. For simulation, we
use the same solver as Yang et al. [2022; 2023].

Test Set. For testing, we prepare two datasets. The first dataset is a
static dataset that contains 28 unseen identities totaling 529 scans,
which will be used to examine the model’s generalization to unseen
identities with diverse expressions. The second dataset is a dynamic
dataset consisting of 5 unseen performance sequences of 5 seen
identities, with each sequence lasting around 10s. This dynamic
test set will be used to examine the model’s generalization to un-
seen expression blendweight vectors. This is valuable for animation
retargeting purposes.

Timing. The detailed timing results are presented in Table (1). Dur-
ing the training phase, the average duration per iteration is approx-
imately 0.5 seconds. In the testing phase, for each frame, the latent
space optimization (Optim.) requires about 7 seconds, whereas the
generation of the input physical constraints (PhyCons.) takes ap-
proximately 0.05 seconds, and the simulation process (Sim.) takes
around 2.6 seconds. These timing experiments were conducted on a
system equipped with a single RTX A6000 GPU and a 16-core CPU.

6 RESULTS
We now demonstrate results and applications of our generalized
physical face model, starting with fitting to unseen data (Sec. 6.1),
showcasing the benefit of having a physical model by illustrating
physical effects (Sec. 6.2), facial animation retargeting (Sec. 6.3),

ACM Trans. Graph., Vol. 43, No. 4, Article 94. Publication date: July 2024.



94:8 • L. Yang, G. Zoss, P. Chandran, M. Gross, B. Solenthaler, E. Sifakis, D. Bradley

Table 1. Timing of different components.

Training Testing
Total Per Iter Optim. PhyCons. Sim.

23.13h 0.50s 6.98s 0.05s 2.58s

and identity generation/blending through latent space interpolation
(Sec. 6.4). Please refer to the supplemental video for a more vivid
visualization.

6.1 Fitting to Unseen Data
The primary benefit of our face model is its ability to fit to unseen
identities automatically, alleviating the expensive burden of creating
an identity-specific material space by hand and training an identity-
specific actuation network. Fitting proceeds by optimizing for the
identity and expression latent codes (𝛽 , 𝛾 ) using Eqn. (19). Here, the
skin loss Lskin and bone loss Lbone are adapted based on the type
of data being fit. We illustrate fitting to two different modalities:
fitting to a single 3D face scan and fitting to a single face image.

Fitting to a 3D Scan. It has become common practice to perform at
least a small amount of 3D face scanning for the primary actors in
high-end productions. Given just a single scan, our model can be fit
to provide physics-based animation.When fitting to a 3D scan,Lskin
and Lbone are defined the same way as during training (Eqn. (11)
and Eqn. (16)). Several fitting results are shown in Fig. 4, including
the input scan, the predicted actuations (for the predicted simulation
meshes), the estimated bone shapes and mandible transformation,
and the final simulated facial skin surface. We highlight the very
low error between the simulated result and the input scan. Note
that the input scan does not need to be in a rest configuration since
we fit both the identity and the expression parameters.

Fitting to a Face Image. When a 3D scan is not available, our
model is flexible and can be fit even to a single face image. When
fitting to an image the skin loss is defined in terms of 2D facial
landmarks, and our method predicts not only 𝛽 and 𝛾 but also the
camera projection matrix C. Lskin is then defined as:

Lskin (𝜕Ω0
skin) =

𝑁𝑙∑︁
𝑖=1

1
𝑁𝑙

| |C · N𝑒 (X𝑖 ) − x̂𝑖 | |22, (20)

where X𝑖 represents the 𝑖-th landmark out of the 𝑁𝑙 landmarks
sampled from 𝜕Ω0

skin, and x̂𝑖 indicates the corresponding ground
truth 2D landmark position in screen space. To obtain the ground
truth landmarks we employ a recent high-quality dense landmark
detector [Chandran et al. 2023] and predict approximately 8000
landmarks distributed on the face (please refer to the supplemental
video for an illustration). In this scenario, there is no ground truth
neutral scan to obtain a predicted bone shape for the bone shape
loss Lbone in Eqn. (16). However, we can reformulate Lbone as a
self-supervised bone loss using the estimated skin to predict the
bones:

Input Actuations Bones Skin Error
0 7mm

Fig. 4. Model fitting to a 3D scan. Seven examples are shown for different
identities and different expressions. After fitting, the predicted actuations
and bones allow to simulate the final facial skin mesh, which matches the
input with a very low error.

Lbone (𝜕Ω𝑐
bones) =

𝑁𝑏∑︁
𝑖=1

1
𝑁𝑏

| |N𝑐 (X𝑐
𝑖 ) −P(N𝑐 (𝜕Ω𝑐

skin)) (X
𝑐
𝑖 ) | |

2
2, (21)

where P represents the parametric bone generator [Qiu et al. 2022],
evaluated on the regressed neutral facial skin N𝑐 (𝜕Ω𝑐

skin). Fitting
results are shown in Fig. 1 and Fig. 5. We systematically evaluate a
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variety of images with differing resolutions and lighting conditions.
While not as accurate as fitting to a ground truth 3D scan, the image
fitting results showcase our ability to preserve critical facial features
while providing the most flexible and easy-to-employ version of our
model.
For all fitting results, either to a 3D scan or an image, once the

latent parameters are determined then the model can be animated
as illustrated in Fig. 1 and the supplemental video.

6.2 Physical Effects
Our model allows the simulation of physical effects, which is one of
the key benefits of using physically-based animation.

Collision Handling. Fig. 6 illustrates our model’s capacity to ac-
curately detect and resolve collisions, including lip-lip and tooth-lip
penetrations, a common challenge in facial animation. The collision
resolution is achieved by adding an efficient incremental potential
contact energy [Li et al. 2023] on top of the baseline (Sec. 3).

Paralysis. By adjusting muscle actuation parameters, our model
can replicate some degrees of facial paralysis as illustrated in Fig. 7.
This example demonstrates the model’s sensitivity and precision in
depicting subtle physiological changes.

Bone Reshaping. Our physical model can simulate various cran-
iofacial effects like osteotomy, illustrated in Fig. 8 where the jaw
bone has been scaled down, showing the comparative analysis be-
tween pre- and post-treatment states and highlighting our model’s
effectiveness in representing and adapting to skeletal deformations.

Gravity. Our model can simulate the effects of gravity. Fig. 9 shows
this effect where we rotate the head to different orientations and
the soft tissue is naturally pulled in the corresponding direction.

6.3 Retargeting
Our model can be used for physics-based animation retargeting,
where we transfer facial animations between identities without
interpenetration (see Fig. 10). This is accomplished by changing the
identity latent code to a target subject while keeping the expression
code of the source subject. This application confirms our model’s
ability to maintain realism and physical integrity while producing
identity-specific facial expressions that match a source input.

6.4 Latent Space Interpolation
Another application of our generalized model is that we can sample
new identities from the latent space. We demonstrate this by inter-
polating between two different identities from our training set in
Fig. 11. For each novel identity, the model can be evaluated with
different expression codes to obtain physics-based facial animation.

7 EVALUATION
We evaluate our model from multiple perspectives numerically,
including reconstruction accuracy, jaw rigidity, skull fixation and
anatomical fidelity. For reconstruction accuracy, we adopt four types
of metrics, including 3D vertex-to-vertex error (V2V), 3D scan-to-
mesh error (S2M), F-Score, and normal error. Finally, we evaluate
anatomical fidelity in terms of the bone fidelity and the bone-skin

Actuations Bones SkinInput

Fig. 5. Model fitting to a single face image. Seven different identities and
expressions are shown. After fitting, the predicted actuations and bones
allow to simulate the final facial skin mesh. The result is an animatable
physical model from a very lightweight input.
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Fig. 6. Collision handling. Our physical model is able to accurately detect
and resolve interpenetrating geometries.
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Fig. 7. Paralysis. Our physical model can simulate some degrees of facial
paralysis, demonstrating the model’s sensitivity and precision in depicting
subtle physiological changes.
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Fig. 8. Bone reshaping. Our physical model can simulate various craniofa-
cial effects like osteotomy, where the jaw has been scaled down and the
actuations are replayed on the edited anatomy. The top row shows the
pre-treatment state, and the bottom row shows the post-treatment state.

Fig. 9. Gravity. We show the effect of gravity on a stabilized face with
different head orientations (inset).

penetration. The specific details of each metric are elaborated as
follows:

Source Target Identities

C
as

e 
1

C
as

e 
2

Fig. 10. Our physical model is able to transfer animations from a source
(left) to multiple target identities (right) while being interpenetration-free.

Identity A Interpolation Identity B

Fig. 11. Our physical model is able to smoothly interpolate between different
identities (identity codes) while preserving physical plausibility, such as
collision-free properties.

• Vertex-to-vertex Error (V2V) measures the average of the
Euclidean distances between the ground-truth and the recon-
struction vertices.

• Scan-to-mesh Error (S2M) measures the average of the
Euclidean distances between the ground-truth vertices and
the reconstructed mesh surface.

• F-Score evaluates the reconstruction quality from the point
cloud aspect. It harmonizes the recall and the precision by
computing their harmonic mean. A high F-Score is indicative
of a reconstruction that is both accurate and complete. We
sample 32k points in total and use 1mm as the error threshold.

• Normal Error measures the average of the cosine distances
between the ground-truth and the reconstruction normals.

• Jaw Rigidity quantifies how rigidly the network moves the
jaw, based on V2V metric (see Eqn. (12)).

• Skull Fixation quantifies how well the network fixes the
skull, based on V2V metric (see Eqn. (13)).

• Bone Fidelity quantifies how well the network preserves the
SCULPTOR bone space, based on V2V metric (see Eqn. (16)).

• Penetration Pairs counts the penetration between the bone
and the skin meshes. We use the edge-triangle pair.

Model Accuracy. We first evaluate our model accuracy in terms of
fitting accuracy. Specifically, we fit our model to the static test set
by optimizing our latent codes scan by scan, using Ltest Eqn. (19).
We then run the discretization and the simulation to get the results
for calculating the metrics. Table (2) reports the accuracy of our
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Table 2. Numerical evaluation of the simulated results across various simu-
lation resolutions and network’s output.

Res. (mm) V2V ↓ S2M ↓ F-Score ↑ Normal ↓
6.8 1.4679 0.6615 0.7346 0.0178
4.5 1.1270 0.5466 0.8033 0.0157
3.0 0.9469 0.4892 0.8427 0.0146
2.0 (Ours) 0.8975 0.4721 0.8546 0.0143
1.3 0.8848 0.4666 0.8583 0.0142
Network 0.8642 0.4532 0.8672 0.0141

      Network

V2V Metric F-Score Metric

      Network

Fig. 12. Cumulative curves of V2V and F-Score metrics from the simulated
results across various simulation resolutions and network’s output.

model with different discretization resolutions. The discretization
resolution largely impacts the simulation accuracy. The higher the
resolution is, the more accurate the simulated results are. We in-
clude a row for evaluating the pure fitted output of the network,
which has the lowest error as this is the target of the training ob-
jective. With a discretization resolution of around 2mm we can
achieve comparable accuracy with our network’s outputs, substan-
tiating that our simulation-free learning framework is effective in
inferring plausible physical constraints used in simulation. Fig. 12
plots the cumulative curves on V2V and F-Score metrics. Fig. 13
further demonstrates that our simulation results can achieve high
reconstruction quality.

To further evaluate our model in terms of animation quality, we
test our model on the dynamic set, where we directly use the unseen
expression blendweight vectors to animate the seen identities with-
out any optimization. Table (3) shows that the model generalizes
well to the unseen expression blendweights, paving the way for
animation retargeting. We also report the jaw rigidity and skull fixa-
tion in both datasets, proving that the constraints are well enforced
(see Table (3)).

Ablation. There are two main integral loss terms in our learn-
ing framework, the rigidity loss Lrigid (Eqn. (12)) and the soft loss
Lsoft (Eqn. (14)). In Table (3) and Fig. 14, we show the ablation stud-
ies of the reconstructions denoted as "Ours w/o Lrigid" and "Ours
w/o Lsoft" to assess the importance of each loss term. For both
the quantitative and qualitative measurements, removing one loss
term results in a severe performance decrease, which confirms both
loss terms contribute to higher reconstruction accuracy and better
physical plausibility. Specifically, Lrigid helps to enforce the rigid
movement of the bone, giving better jaw rigidity and skull fixation
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Fig. 13. Qualitative comparison of the simulated results across various
simulation resolutions and network’s output.
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Fig. 14. Qualitative comparison of different methods.

metrics. This leads to better accuracy since the learned actuation
mechanisms are more compatible with the rigid jaw kinematics that
are strictly enforced during simulation. Lsoft gives birth to two mer-
its. First, it helps the model learn plausible soft tissue deformation
(see Actuations in Fig. 14). Second, it builds the connection between
the bone and the skin, therefore being able to gradually drag the jaw
to the physically plausible places during training. Therefore, "Ours
w/o Lsoft" fails to infer the jaw kinematics and always produces
fixed jaw position (see Bones in Fig. 14). This is why its jaw rigidity
metrics and skull fixation are better than our full model (Table (3)).
We further evaluate the impact of our bone shape loss Lbone

by training a comparative model without it, denoted as "Ours w/o
Lbone". As shown in Table (3), "Ours w/o Lbone" performs slightly
better due to the fewer constraints on the bone shape. However,
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Table 3. Numerical evaluation of different components on static and dynamic test sets. We turn on the latent space optimization for static set while turn off it
for dynamic set.

Methods V2V ↓ S2M ↓ F-Score ↑ Normal ↓ Jaw Rig. ↓ Skull Fix.↓

St
at
ic

Ours w/o Lbone 0.8942 0.4702 0.8560 0.0143 0.1378 0.0724
Ours w/o Lrigid 1.2891 0.6758 0.7552 0.0158 2.2540 0.1145
Ours w/o Lsoft 0.9282 0.5077 0.8567 0.0158 0.0460 0.0647
Ours w/o Llip 0.9178 0.4804 0.8486 0.0144 0.1338 0.0764
Ours 0.8975 0.4721 0.8546 0.0143 0.1349 0.0785

D
yn

am
ic

Ours w/o Lbone 0.7237 0.3182 0.9396 0.0070 0.0883 0.0557
Ours w/o Lrigid 1.0632 0.4918 0.8407 0.0077 2.1084 0.0866
Ours w/o Lsoft 0.7815 0.3723 0.9059 0.0086 0.0296 0.0400
Ours w/o Llip 0.7751 0.3399 0.9270 0.0071 0.0915 0.0612
Ours 0.7248 0.3235 0.9354 0.0070 0.0915 0.0638

FL
AM

E
O

ur
s

Error Animation Samples
0 5mm

Fig. 15. Qualitative comparison with FLAME. On the left, we show the
fitting error maps. On the right, we show the animation samples with the
mouth cut-away on the side of each frame.

this relaxation adversely affects the realism of the bone structure
(see Table (5) and Fig. 16), highlighting the crucial role of Lbone
in constraining the overall bone shape. Finally, our Lipschitz reg-
ularization Llip leads to better reconstruction accuracy without
spoiling other metrics (see "Ours w/o Llip" vs. "Ours" in Table (3)
and Table (5)).

Comparison. As the first generalized physical face model, we
benchmark our method against the closely related FLAMEmodel [Li
et al. 2017], focusing on fitting accuracy. Recognizing that FLAME
optimizes using scan-to-mesh distance, we adopt the same met-
ric, replacing the vertex-to-vertex energy in our fitting scheme
with scan-to-mesh distance, to ensure an equitable comparison. Be-
yond our static test set, we have compiled an additional test set of
comparable size from the FACESCAPE dataset [Yang et al. 2020b].
Our method is compared against two configurations of FLAME:
FLAME-100, which uses the first 100 dimensions of the identity
code (matching our parameterization), and FLAME-300, which em-
ploys the full space. Results presented in Table (4) indicate that our
method attains accuracy on par with FLAME across both datasets.
A significant advantage of our model, however, lies in its ability to
support additional physical effects, such as collision handling—areas
where traditional methods often falter. Fig. 15 provides a qualitative
comparison to highlight this capability.

Ours Ours w/o SCULPTOR

C
as

e 
2

C
as

e 
1

Fig. 16. Qualitative comparison of different methods in terms of anatomy.

In addition, we conduct a comparison of our model with SCULP-
TOR, specifically focusing on the issue of bone-skin penetration.
Our experiments reveal that fitting SCULPTOR to a neutral scan fre-
quently results in bone-skin penetration problems. However, thanks
to our elastic regularization (Lereg), our model effectively mitigates
these issues. At the same time, it maintains comparable bone shape
(see Fig. 16 and Table (5)).

Finally, our method is still applicable in Yang et al.’s scenario
when the material space is provided [Yang et al. 2023]. To show this,
we integrate our unique loss functions—Lskin,Lrigid, andLfix—into
Yang et al.’s model architecture, while still adhering to their estab-
lished regularization and training protocols. Table (6) shows the
evaluation on their test set. Our method not only achieves compa-
rable accuracy, but it also offers significantly improved scalability.
For instance, whereas Yang et al. required six GPUs and nearly 2
days to train models for six identities, our methodology can be ef-
ficiently implemented on a single GPU, enabling training for over
300 identities in just one day.

8 CONCLUSION
We present a new model for physics-based facial animation that is
trained on real data of hundreds of identities performing various
expressions, and as such is extremely generalizable and can be fit
to new unseen identities at runtime. As a result, we propose a very
convenient way to generate actor-specific physical face animation
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Table 4. Scan-to-mesh distance of different models on different datasets.
"FLAME-100" is the FLAME model [Li et al. 2017] using the first 100 dimen-
sions of the identity code, whereas "FLAME-300" employs the full space.

Datasets Ours* FLAME-100 FLAME-300
Our Dataset 0.3487 0.4858 0.4318
FaceScape 0.4713 0.6355 0.5596

Table 5. Anatomical evaluation of different models on neutral scans.

Methods Penetration Pairs ↓ Bone Fidelity ↓
Ours w/o Lbone 0 1.9979
Ours w/o Llip 0 1.3124
Ours 0 1.3164
Sculptor 2628 0

Table 6. Quantitative Comparison with [Yang et al. 2023].

Metric Yang et al Ours
V2V 0.3849 0.3813

without any manual model setup. This is possible due to our two
main contributions: an approach for simulation-free learning where
neural networks are trained to produce deformations that are com-
patible with physical simulation but without requiring simulation
in the training loop, and a material space morphing method that can
predict actor-specific skin, bones and soft-tissue volumes automati-
cally. These contributions are the key to being able to train on such
a large dataset efficiently, providing the generalizability needed for
fitting to new identities.
In terms of limitations, we note that we do not attempt to accu-

rately model the inside of the mouth, in part because the training
dataset does not accurately track this region. As such, we ignore the
teeth region on the anatomy model. Also, while we endeavor to cre-
ate constraints that produce physically-accurate animations, there
is no guarantee that the learned actuations are biologically accurate,
especially for unseen identities that are far from the ones seen at
training time. Last, our model is designed with a focus on generality
rather than specificity. As a result, capturing actor-specific facial
details may not be entirely feasible with our method (see the last
row of Fig. 4). Additionally, it is worth noting that when applied
to non-human characters, the model may struggle to accurately
reconstruct the geometry (see Fig. 17).
Nevertheless, we demonstrate the success of our trained model

with very plausible applications of fitting to new face scans, fitting to
face images, animating with physical effects, animation retargeting
and identity interpolation. We additionally provide a detailed evalu-
ation of our method.We hope that our work will help to democratize
physics-based facial animation for many applications.

Input Actuations Bones Skin Error
0 5mm

Fig. 17. Failure case of our method. When fitting to a non-human character,
the model struggles to accurately reconstruct the geometry. We use the
scan-to-mesh distance as the metric to fit and evaluate the model.
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