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Figure 1: We propose a single model to handle the various aspects of the colorization problem: multiple colorization results,

user guidance through hints or prompts, and temporal stability. Existing methods are not able to address all these aspects at

once while achieving competitive results on all of them.

ABSTRACT

Image and video colorization are among the most common prob-

lems in image restoration. This is an ill-posed problem and a wide

variety of methods have been proposed, ranging from more tra-

ditional computer vision strategies to most recent development

with transformer-based or generative neural network models. In

this work we show how a latent di�usion model, pre-trained on

text-to-image synthesis, can be �netuned for image colorization

and provide a �exible solution for a wide variety of scenarios: high

quality direct colorization with diverse results, user guided col-

orization through colors hints, text prompts or reference image

and �nally video colorization. Some works already investigated

using di�usion models for colorization, however the proposed so-

lutions are often more complex and require training a side model

guiding the denoising process (à la ControlNet). Not only is this

approach increasing the number of parameters and compute time, it

also results in sub optimal colorization as we show. Our evaluation
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demonstrates that our model is the only approach that o�ers a wide

�exibility while either matching or outperforming existing meth-

ods specialized in each sub-task, by proposing a group of universal,

architecture-agnostic mechanisms which could be applied to any

pre-trained di�usion model.
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1 INTRODUCTION

Modi�cation of the colors, whether it is for artistic purposes [Coen

et al. 2001] or for the restoration of heritage footage [ame 2017],

is a very common task in video production. As a result, there is a

large body of works addressing several aspects of the problem with

some notable ones [Antic 2020; Iizuka and Simo-Serra 2019] in the

recent years. It is interesting to note that the problem is far from

https://doi.org/10.1145/3641519.3657509
https://doi.org/10.1145/3641519.3657509
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being solved and remains an important topic in modern workshops

on image and video restoration [Kang et al. 2023a].

Given the complexity of the task and the particularly ill-posed

nature of the problem, earlier colorization works have focused

on the propagation of color hints provided by the user. This can

be either in the context of colorizing a single image [Levin et al.

2004], or temporal propagation [Welsh et al. 2002]. Among the

most recent advances here we can cite UniColor [Huang et al. 2022]

that uses a combination of a Chroma-VQGAN model and a trans-

former for diverse results. For unconditional colorization, a recently

published work [Kang et al. 2023b] achieves impressive results us-

ing transformers, with one notable limitation of producing only

one colorization variant per image. Additionally, user guidance or

multi-frame output are not considered. To tackle diverse coloriza-

tion, generative models have been used, with some of the most

recent works relying on di�usion models [Liu et al. 2023b; Saharia

et al. 2022]. In particular leveraging models that have been trained

for text-to-image synthesis on large datasets. However these works

often consider complex changes, with either a parallel model that

is trained to condition the denoising [Liu et al. 2023a,b; Zhang et al.

2023] or a more involved modi�cation of denoising model [Chang

et al. 2023].

Despitemore andmore impressive results, there is still no generic

solution that would be competitive on the various sub-tasks associ-

ated with colorization. In addition to this, text-to-image di�usion

models that have been trained on extremely large-scale datasets em-

bed a high-level visual understanding, which we think is important

to address a problem such as colorization. In this work we show

how a latent di�usion model (namely stable di�usion [Rombach

et al. 2022]) can be �netuned after minor modi�cations to address

the colorization problem. Additionally, we show how to take into

account di�erent modalities such as text, color hints from user or

previously colorized frames both during training and inference

time. On top of that, by leveraging various consistency-improving

techniques, the model could be utilized for video colorization with-

out any additional training, bringing the high quality colorization

to the video domain. We note that such a strategy for using a vision

foundation model have been explored concurrently to our work on

related tasks such as optical �ow [Saxena et al. 2023a] or depth [Ke

et al. 2023] estimation.

A thorough evaluation of the trained model is provided using

the most common datasets and evaluation metrics, including a user

study. All evaluations clearly demonstrate the versatility of our

model and its top performance on a wide range colorization sub-

tasks, rivaling other more specialized models focused on single

aspects of the problem. Ultimately we present a uni�ed solution for

the general colorization problem.

Our contributions can be summarized as follow:

• Leveraging vision foundation models for the colorization

problem.

• A single versatile model capable of achieving state-of-the-art

results in the various image colorization sub-tasks.

• A detailed evaluation including a user study which demon-

strates the superiority of our model.

2 RELATED WORK

In general state-of-the-art methods and algorithms su�er from one

or more of the following problems:

• Single colorization output or limited diversity.

• Sub-optimal visual performance in general.

• High specialization towards a particular sub-task, with little

or no room for generalization.

• Complex architecture design around latent di�usion models.

Our model aims at addressing all of these issues, obtaining high

quality and diverse colorization results, while accepting various

forms of guidance. Next we review the di�erent types of colorization

works, focusing on most recent and best performing ones.

2.1 Automatic colorization

We can cite [Iizuka et al. 2016; Zhang et al. 2016] among the initial

works adapting classical CNN architectures, essentially treating

the problem as a classi�cation task. Others use patch matching like

strategy [Cheng et al. 2015], object detection [Su et al. 2020] or

instance segmentation [Zhao et al. 2020]. Some [Larsson et al. 2016;

Xia et al. 2022] also predict color distribution.

Transformer models [Vaswani et al. 2017] are exploited for the

task of image colorization [Kumar et al. 2021], with Weng et al. and

Ji et al. [2022; 2022a] further specializing the standard architecture.

Transformers are largely used in the recent top performing model

DDColor [Kang et al. 2023b]. Still, all of these methods provide

single or very limited number of colorization results, which, given

the nature of the problem, is not always desirable.

For diverse colorization results, methods based on generative

models such as VAE [Deshpande et al. 2017] or GANs [Wu et al.

2021] were proposed. Vitoria et al. [2020] additionally utilize classi�-

cation module for colorization guidance. Di�erent methods [Huang

et al. 2022] use GAN both as an auxiliary module to generate im-

ages queries from the latent space of a pretrained GAN [Vitoria

et al. 2020], or condition the GAN network directly [Kim et al.

2022], e�ciently sampling the colorized images. Finally, a range

of specialized methods with custom procedures have shown a lot

of promise [Antic 2020], combining the classical and adversarial

training methods.

2.2 User-guided colorization

If we consider the end use case for colorization problem, it is very

likely to be part of an interactive image (or video) editing tool. The

nature of the problem is such that users would very likely want to

guide the colorization. To that end, a handful of guiding modalities

were introduced: color hints, reference images and text.

Color hint based colorization is the most prominent one, with

some early works formulating the color propagation as an opti-

mization problem [Levin et al. 2004]. More recently neural network

based models also explored user guidance [Endo et al. 2016; Zhang

et al. 2017]. In their work, Xiao et al. [2019] discriminate between

the local and global inputs, enabling �ner control over the coloriza-

tion process. Finally a range of transformer [Yun et al. 2023] or

GAN [Dou et al. 2021] based methods where also proposed for

leveraging user inputs.

Reference-based colorization aims at transferring the color from

a reference image to the grayscale one. Earlier works [Welsh et al.
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Figure 2: Overview of the proposed model. We re-purpose a pre-trained latent di�usion model. During training, We randomly

sample an image that is encoded with �. The denoising UNet is trained to revert di�usion steps. In this case the model

additionally takes as input the encoding of the grayscale image with potentially some areas with colors. We change the �rst

convolution to adjust for this change with a speci�c weight initialization. The right side shows the inference process with a

grayscale (no hints). The decoded image after denoising may contain artifacts due to the limited capacity of the decoder. This

is not an issue for colorization as only Hue/Chroma values need to be copied and image details are maintained by using the

original lightness of the grayscale image.

2002] rely on classical processing and matching between pixels,

while more recent ones [He et al. 2018] propose a matching network

to �nd the best reference image. Xue et al. and Bai et al. [2022;

2020] propagate the color in a coarse-to �ne manner. More recently

transformers [Wang et al. 2023; Yin et al. 2021] enable the long-

context attention operation and matching between reference and

target images.

Text-based colorization emerged most recently, following the

success of language processing in other research areas [Li et al. 2022;

Radford et al. 2021]. Manjunatha et al. [2018] utilize LSTM combined

with extracted visual features. Chen et al. [2018]. introduce the color

via object segmentation. Further improvements were made using

attention-based modules [Chang et al. 2022; Weng et al. 2022b].

Finally, in multi-modal conditioning several of the aforemen-

tioned guidance strategies are used. Usually the problem is tackled

through the reduction of the di�erent multi-modalities into a single

one, by applying di�erent pre-processing modules [Huang et al.

2022; Yan et al. 2023].

2.3 Video Colorization

Video colorization poses the additional challenge of temporal consis-

tency across the frames needs. Condition-based image colorization

methods can be utilized, usually along with optical �ow [Jampani

et al. 2017] or instance tracking [Akimoto et al. 2020]. However this

is less reliable and prone to accumulated correspondence errors.

Di�erent deep learning modules [Shi et al. 2023; Yang et al. 2022;

Zhang et al. 2019] have been introduced to tackle the problem of

consistency. Similarly to the single image case, generative mod-

els [Zhao et al. 2022] enable more diverse colorization results. We

refer to Kang et al. [2023a] for an in-depth discussion around video

colorization methods.

2.4 Di�usion models for colorization

With the emergence of di�usion models [Ho et al. 2020; Rombach

et al. 2022], a plethora of di�erent applications in the image and

video domain have been explored. In particular, conditional image

generation [Zhang et al. 2023], image editing [Brooks et al. 2023;

Hertz et al. 2022; Kawar et al. 2023; Mokady et al. 2023], monocular

depth estimation [Saxena et al. 2023b] etc. Saharia et al. [2022]

propose an image space di�usion model that can be used for var-

ious image enhancement problems, including colorization. This

model shares the same limitation as other image space di�usion

models in terms of compute or lack of publicly available pre-trained

model on large datasets. Reusing pre-trained latent di�usion model

is the most commonly adopted path. A �rst option is training a

ControlNet [Zhang et al. 2023] model for gray-scale image con-

ditioning. Another is to design a colorization speci�c auxiliary

module [Liu et al. 2023b]. This line of work was extended to video

colorization [Liu et al. 2023a], where the auxiliary attention mod-

ules for temporal consistency were implemented and trained. Some

approaches explored the �netuning of pre-trained di�usion models

for this speci�c task [Lin et al. 2023] and furthermore introducing

additional conditioning modalities, such as hints [Carrillo et al.

2023]. Lastly, Change et al. [2023], propose cross-modality modules

for increased local, object level control. Although they share the
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Figure 3: Overview of the color guidance through text. To colorize the grayscale image using the full prompt, we create parallel

denoising paths: �rst a main path with a prompt ~ where all color information is removed; then, a path for each color from

the full prompt (in this case ~1 and ~2). After each denoising steps the latents from the parallel paths are merged using the

attention maps associated with each object token. This is repeated< times until color information is integrated in the main

path (Here we continue the parallel paths for illustration).

common objective of re-purposing a pre-trained model, all these

works propose complex and involved modi�cations. This in op-

position to our proposal: while the changes are simpler they still

demonstrate a large versatility in terms of control and great col-

orization performance validated both with quantitative evaluation

and a user study.

3 METHOD

Our objective is to learn the conditional distribution of color images

? (� |�gray) given the gray scale image �gray. To use a latent di�usion

model [Rombach et al. 2022], images are encoded using a variational

auto-encoder (VAE). Applied to our use case, the images � and

�gray are respectively encoded via the encoder � into their latent

space representation G and Ggray, and ? (G |Ggray) is the conditional
distribution the latent di�usionmodel learns. In the forward process,

noise is added according to the current time step C ∈ {0, . . . ,) }

GC =
√
WG0 +

√

1 − Wn (1)

with n ∼ N(0, � ) and the parametrization of W controls the variance

schedule of the process. To model the reverse process we train a

denoising UNet n\ with parameters \ , that minimizes the following

loss

L = E
G,~,C,n

| |n − n\ (GC , g\ (~), C, Ggray) | |22 (2)

where G = � (� ) and � are sampled from an image dataset with

corresponding text prompts ~, while C is uniformly sampled in a

set of di�usion steps. g\ is the part of the model that transforms

text prompts.

3.1 Adapting a Foundation Model for
Colorization

Text-to-image synthesis models trained on billions of images learn

a powerful representation of visual content. To repurpose such

a model for colorization we need to address two issues: �rst, the

model needs to be adapted to use gray scale image conditioning, and

second, we need to overcome the stable di�usion decoder limitations

in reconstructing image details [Betker et al. 2023].

We address the �rst point by modifying the neural network archi-

tecture, as illustrated in Figure 2. The denoising UNet is augmented

to incorporate the latent representation, Ggray, of the grayscale

image as an additional input. However, a crucial aspect is the ini-

tialization of the weights for the kernel of the �rst convolution

layer. Employing any of the default strategies [He et al. 2015] for

this initialization doesn’t allow the model to converge. Instead, we

need to repurpose the pre-trained weights. Speci�cally, the �rst

convolutional layer utilizes a : × : × 2in × 2out kernel. This di�ers
from the original pre-trained model that uses a : × : × 2org

in
× 2out

kernel. The details in Figure 2 demonstrate how values from the

original kernels are copied into the new one, while the remaining

weights are initialized to 0.

The second issue: lack of quality in the reconstruction of the

VAE, can be e�ectively circumvented in colorization case by em-

ploying a di�erent color space. Since lightness channel of the image

encapsulates all the texture details, we can retain original grayscale

image lightness while incorporating the Chroma/Hue information

from the model prediction. In our case, we utilize the CIELab color

space.

3.2 Versatile User Guided Colorization

Despite its simplicity, the proposed method demonstrates adapt-

ability accross a diverse range of scenarios.

Diverse Colorization Results. The right side of Figure 2 illustrates

the process of colorizing a gray scale image. Firstly, latent values

G) are sampled, then a series of = denoising steps are conducted

with the available conditioning information, in this case Ggray and~.

After denoising, the image is decoded using the decoder � from the

pre-trained VAE. We exclusively retain the hue/chroma from the

decoded image and keep the lightness from the original grayscale

image. During the denoising stage, we employ the classi�er-free
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guidance [Ho and Salimans 2022] and DDIM sampling [Song et al.

2020] similar to standard Di�usion Model approaches.

n = (1 +F)n\ (GC , C, ~, Ggray) −Fn\ (GC , C, Ggray) (3)

Since we use a generative model for colorization, we can output

diverse colorization results by sampling di�erent latent G) . As illus-

trated in Figure 4, this ability to produce multiple interpretations is

crucial for ill-posed problems like colorization: multiple plausible

colorizations can exist for a given grayscale image.

Color Hints. Since the model utilizes the pre-trained encoder,

incorporating color hints at the image level is straightforward: sim-

ply providing the desired colors hints directly within the grayscale

conditioning image. We denote �∗gray (see Figure 2) a grayscale im-

age that contains colors hints and its corresponding encoding G∗gray.
During training, the conditioning image �∗gray can contain a variable

number of colored patches. In this case, we avoid providing text

(both during training and testing) and set ~ to an empty string to

avoid interference with the provided color hints.

During inference, a simple user interface permits any number

of color hints (color prompts) on the image. We also employ the

classi�er-free guidance, incorporating the hints

n = (1 +F)n\ (GC , C, G∗gray) −Fn\ (GC , C, Ggray) (4)

Figure 4 demonstrates that even within this color hints guidance, a

number of variations are possible.

Reference Image Colorization. Propagating colors to a grayscale

image from a reference image, can also be done as long as hints can

be propagated in a meaningful way. To achieve this, we leverage

recent advances in semantic matching [Luo et al. 2023; Tang et al.

2023] and semantic segmentation [Kirillov et al. 2023]. Given a

reference image �A4 5 , semantic segmentation are extracted from

each image. Then, within each matching semantic region, keypoint

matches are computed against the gray scale image �6A0~ . Colors

from the reference image are copied to the corresponding positions

in the grayscale image, which is then provided as conditioning to

the denoising model (See Figure 4.c). This approach builds upon

existing color hints conditioning, inspired by [Huang et al. 2022],

and aims at automating the color transfer between semantically

similar objects, diverging from the standard de�nition of reference

image conditioning in image colorization.

3.3 Attention for Text Edits and Multi-frame
Colorization

During the denoising process, it is possible to extend the possibili-

ties of the model by manipulating the spatial attention maps. We

demonstrate this for text prompts guidance for object colorization

and cross-frame color propagation for video colorization.

Object colorization through text. During the �ne tuning of the

model for colorization, text prompts are still provided. This means

it is possible to guide the colorization through text input. To o�er

a �ner, instance-level control over this process and avoid color

leakage, we use the cross-attention maps associated with each

object token. More speci�cally, we create a list of "color" words (i.e

{red, green, . . .}) which can be identi�ed in the text prompts during

inference.

Conditioning Diverse results
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Figure 4: Diverse colorization results under various condi-

tioning. (a) From a single gray scale image, several valid col-

orization can be sampled. (b) When color hints are provided

(note the red and green pixels), the hints are respected while

still o�ering variability in the colorization. (c) A reference

image can be used for colorization hints: Note how the colors

around the eyes and feathersmatch. (d) Finally, a text prompt

can be used.

We use the example illustrated in Figure 3, to present the method

without loss in generality. In the text input we match objects and

associated colors. Given the two objects to colorize with speci�c

colors, we create 3 parallel denoising processes with text prompts

~, ~1 and ~2. The main denoising process has the prompt ~ where

speci�c color prompts have been removed (to avoid color leakage).

Then a text prompt is created for each object to colorize: ~1 and

~2 in this case. We note that we obtain the attention maps in a

fashion similar to [Hertz et al. 2022] with the key di�erence that

we do note require the compute expensive DDIM inversion [Song

et al. 2020] or Null-Text Optimization [Mokady et al. 2023]. After

each denoising step, the attention maps for prompted words are

extracted and reformed into the latent masks, which is used to

merge the latents into the main denoising process with prompt

~. This denoising process with merging is repeated< times, after

which the color information is integrated, and the parallel branches

are not needed. Although< can be freely adjusted, we notice that
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Table 1: Image colorization evaluation, COCO validation set.

Bold, underlined and double-underlined formatting respec-

tively indicate �rst, second and third performing method.

FID↓ SSIM↑ LPIPS↓ PSNR↑ CF↑ ΔCF↓ CIE2K↓

1
sa
m
p
le
(d
ef
au
lt
)

DeOldify [Antic 2020] 10.79 0.940 0.177 22.37 20.4 18.11 9.51
BigColor [2022] 9.02 0.910 0.215 20.33 33.92 17.85 11.45
CT2 [2022a] 8.55 0.909 0.233 20.67 31.11 14.79 10.65
DISCO [2022] 8.19 0.912 0.223 20.83 29.58 15.05 10.28
UniColor [2022] 8.01 0.919 0.209 20.95 17.60 34.43 10.72

ControlNet [2023] 8.47 0.902 0.241 19.64 43.35 15.81 12.41
PBDi�usion [2023b] 8.31 0.918 0.221 20.24 36.21 14.03 11.83

DDColor Large [2023b] 7.35 0.935 0.184 22.36 32.12 11.22 9.88
VVFM (Ours) 7.92 0.930 0.201 20.90 34.43 13.01 10.25

B
es
t
o
f
5

sa
m
p
le
s

VVFM (Ours) 7.29 0.942 0.162 23.11 32.19 9.44 8.53

PBDi�usion [2023b] 8.02 0.929 0.191 21.99 33.41 11.73 9.70

UniColor [2022] 7.93 0.923 0.200 21.85 31.62 13.52 10.25

ControlNet [2023] 8.18 0.914 0.214 21.21 39.53 12.75 10.24

BigColor [2022] 8.68 0.915 0.223 20.44 32.13 15.56 10.95

setting it in range between 50−80% of the the total number of steps

consistently produces good results.

Cross-frame Color propagation for video colorization. Similarly to

text, we leverage self attention maps to guide the colorization by

paying attention to the appropriate regions, i.e., the other frames.

We adopt a strategy similar to [Khachatryan et al. 2023] where

self-attention operation in the model is repurposed to cross-frame

attention. Given a key-frame : and a subsequent frame 8 the atten-

tion becomes for a given head

CF-Attn(&8 ,  : ,+: ) = Softmax

(

&8 ( : ))
√
2

)

+: (5)

where & ,  and + respectively denote queries, keys and values,

following the notation introduced by [Rombach et al. 2022]. Con-

sidering Hue/Chrome as the predicted quantities, helps reducing

the temporal stability issues associated with latent di�usion mod-

els. We can create longer temporally stable video, which means

the key-frame : the model uses in cross-frame attention cannot

remain the same, so after the pre-de�ned period, a new keyframe is

chosen and its self-attention maps are used as the conditioning for

the following frames. The experimental section evaluates various

temporal propagation strategies and key-frame intervals. FInally,

the described approach not only demands no further �ne-tuning

or training, but it also introduces no additional computations com-

pared to the sampling of the same number of independent images,

e�ciently extending the existing model to video colorization.

4 RESULTS

We evaluate various aspects of the proposed model. This includes

demonstrating the �exibility in terms of colorization, addressing

several use cases including with and without user guidance and

exploring multi-frame colorization. We provide extensive compar-

isons against state-of-the-art methods in the di�erent settings.

4.1 Datasets and Implementation Details

Datasets. Similar to existing methods, for evaluation we use the

COCO [Lin et al. 2014] validation set. We also use the validation set

from the NTIRE video colorization challenge [Kang et al. 2023a].

Ground truth captions were already provided in the COCO

dataset. For NTIRE dataset, we caption images using BLIP [Li et al.

2022]. Finally, to successfully train the model for the colorization

task, it was essential to �lter out grayscale images from the training

sets. Those images deteriorate the quality of the colorization results,

especially on historical black-and-white images. To achieve this,

we again utilize image captioning to detect and remove grayscale

or near-grayscale images from the training sets.

Implementation Details. The proposed solution should be com-

patible with any latent space di�usion model. However one of our

key insight is to leverage a vision foundation model, and StableD-

i�usion 2.1 [Rombach et al. 2022; StabilityAI 2022] is the one we

select as starting point. We train the model for 10k and 40k iter-

ations for NTIRE and COCO respectively, using the batch size in

range [4, 8] with learning rate 14 − 4 and Adam optimizer. By intro-

ducing the text prompt dropout probability of 0.4 we increase the

robustness of the model to the missing text prompts and stimulate

the model to infer the colors from the grayscale directly or from the

color hints, if provided. During training, image hints are randomly

sampled as a number of patches of various sizes from the ground

truth image which were left colorized on the conditioning grayscale

image.

How to evaluate colorization? Similar to state-of-the-art we report

common imagemetrics for evaluation (PSNR, SSIM and LPIPS [Zhang

et al. 2018]). These are however not very suitable for the evalua-

tion of colors, and it is common to include more representative

metrics such Frechet inception distance (FID) [Heusel et al. 2017],

CF [Hasler and Suesstrunk 2003] and CIEDE2000 [Alessi et al. 2014].

Following [Kang et al. 2023b], we also compute the di�erence, per-

sample, in colorfulness (ΔCF) with respect to the ground truth. The

objective is to take into account methods that create vivid colors

which are unrealistic.

One issue with methods generating multiple outputs is the selec-

tion of a result for evaluation. Depending on the initial seed, some

results can be worse than others and relying on a single sample

is not su�cient to entirely judge the quality of these models. To

better re�ect this, whenever a model can produce multiple results,

we additionally provide an evaluation row where 5 image results

are randomly generated and the best sample is used for the evalua-

tion. To determine this best sample, we compute several metrics:

PSNR, MSE, SSIM, MS-SSIM, UQI [Wang and Bovik 2002], Relative

Dimensionless Global Error (ERGAS) and Visual Information Fi-

delity (VIF) [Sheikh and Bovik 2006]. Each time a sample is the best

performing according to one of the metrics, it receives one vote.

The sample with most votes is used for the evaluation.

4.2 Grayscale Image Colorization

In comparisons to other models we limit ourselves to the most

recent and top-performing methods. Qualitative comparison of the

colorization results is presented in Figure 7.

The quantitative evaluation on COCO validation set is presented

in Table 1. The rows are split in 2 groups. In the �rst group a single

output is evaluated. For the deterministic methods this is their only

output. For generative methods, we randomly sample the seed value

once and use that 1 sample for evaluation. In the second group,
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Figure 6: Hint colorization. Evaluation on the COCO dataset

using FID and CIEDE2000.

generative methods are sampled 5 times, and the best is used for

evaluation.

For the colorization task, it is common to consider that FID and

ΔCF to be the most representative of the quality of the colorization

results [Kang et al. 2023b]. While being extremely competitive

with a single random sample (DDColor Large [Kang et al. 2023b]

performs best in this case), our method largely outperforms all the

existing methods when considering multiple samples (see Table 1).

Similar conclusions are made with ImageNet. Note that we limited

the comparisons in this case to the top performingmodels on COCO

dataset.

For a task that is as subjective as colorization, it is important to

consider the user evaluation, which we designed to compare against

best-performing models. Similar to the numerical evaluation, we

take into account the capacity of generative models, by creating

multiple samples for each grayscale image. In a �rst �ltering pro-

cess, 3 users are asked to blindly select the best colorization for

each grayscale image. After this �ltering stage is done, we have a

single color image for each method. The results of the survey are

presented in Figure 5 where we clearly see a preference of the users

for our method. Additional details about the survey can be found

in supplementary material, including ELO scores [1978].

One aspect we also demontrate is the ability of our model to

colorize image with various skin tones. A thorough analysis needs

to be done before any real life applications, however since lightness

contains a lot of information about the expected skin tone it seems

reasonable to expect good results as illustrated in Figure 11.

Our proposed architecture adjustment and training strategy

can be applied on any pre-trained di�usion model. To illustrate

this we have implemented the proposed change on a di�erent ver-

sion of stable di�usion (SD1.4) and on two di�erent architectures:

SDXL [Podell et al. 2023] and Pixart-U [Chen et al. 2023]. Results in

Table 2: Evaluation using NTIRE Video Colorization vali-

dation set. We have two sets of comparisons, without and

without using BistNet as a way to propagate color accross

key-frames. Bold and underlined fonts respectively indicate

�rst and second method.

FID ↓ CDC ↓
Baseline (DeOldify) 47.15 0.00348

TCVC [2021] 46.5 0.00309

VCGAN [2022] 44.9 0.00337

DDColor [2023b] 34.88 0.06600

VVFM (without Cross Attention) 26.8 0.01246

VVFM 33.0 0.00343

Baseline (DeOldify) + BistNet 48.53 0.00342

DDColor + BistNet 36.29 0.00306

VVFM (without Cross Attention) + BistNet 32.0 0.00351

VVFM + BistNet 37.7 0.00301

Figure 13 show that all the di�erent models are able to successfully

colorize grayscale images.

4.3 User Guided Colorization

Color Hints. Our model accepts the color hints by users, which

provides a convenient way to quickly colorize images in a desirable

color. To evaluate this aspect we use the COCO dataset, where

we keep a number of color hints provided from 5 to 100. Here we

compared to 2 other state-of-the-art methods: UniColor [Huang

et al. 2022] and iColorIT [Yun et al. 2023]. Evaluation is presented

in Figures 6 using FID and CIEDE2000 with respect to ground truth

images. We show qualitative results in Figure 8, where our method

which produces realistic colors even in regions without hints.

Reference Image Colorization. Our reference colorization pipeline

is inspired by UniColor [Huang et al. 2022] which propagate hints

from the reference image to the grayscale. Besides Figures 4 and 10

that illustrate this, additional examples are provided in the supple-

mentary material.

Text Guided Colorization. Text guided colorization pipeline is

set against two works from state-of-the-art: Di�Color [2023] and

UniColor [2022]. The �rst propose a complex model built around

latent di�usion, and uses context text embedding optimization. The

second makes use of CLIP to design a text-to-hints model and then

transforming the text to local color hints. In our case by simply

considering the appropriate attention map during the denoising

process, we able to achieve vivid and realistic colorization that

match the text prompt as illustrated in Figure 9.

4.4 Multi-frame Colorization

For qualitative comparison we used the model trained on COCO

image dataset and showcased its performance on several clips (see

Figure 14), comparing against the state-of-the-art and demonstrat-

ing the bene�ts of cross-frame attention. Overall both TCVC [2021]

and VCGAN [2022] result in signi�cant colorization artifacts (color

bleeding, etc). Best performing single framemethodDDColor [2023b],

demonstrates interesting colorization results but without extensive

temporal stability. This problem can be mitigated by using BiST-

Net [Yang et al. 2022] to temporally smoothen the colorization
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over the sequence. Using our model without cross-frame attention

(VVFM-without cross-attention) produces colorful but temporally

inconsistent results, which is expected. Adding the cross frame

attention, maintains temporally stable results.

Numerical evaluation on NTIRE video colorization dataset use

two o�cial metrics, namely FID and Color Distribution Consistency

Index (CDC) [Liu et al. 2021]. For this quantitative evaluation (and

only here) we �netune the model on the training set of the NTIRE

challenge. We then run the evaluations on the validation dataset. It

is possible to use BiSTNet exemplar-based colorization for better

temporal consistency, and we evaluation both DDCcolor and our

model with and without this additional processing. The results

are presented in Table 2. It is interesting to note that BiSTNet

consistently improves the temporal stability measure at the cost

of reduced colorfulness. Additionally, we do the ablation study on

the keyframe period of the cross-attention mechanism, varying it

from 5 to 50 frames. The results are presented in supplementary

material.

5 DISCUSSION

In this work we have presented how to use a vision foundation

model to address several aspects of the colorization problem. For

single shot grayscale image colorization the model achieves com-

petitive results against most recent works. Additionally multiple

samples can be created, in which case the model achieves state-of-

the-art performance. More importantly the model is versatile and

can be used on a wide variety of scenarios: hint based colorization,

text guidance and video. By leveraging the cross attention maps, we

demonstrate that we can achieve good results on text guidance and

temporal coherency with a simpler approach than existing works.

Pushing for further improvement would require to overcome some

of the limitations associated with the latent di�usion model: such

as the limited capacity of the autoencoder that can lead to imperfect

colorization for small objects. Additionally a �ner control over the

text guided colorization or handling strong motion would require

more work, and these are active areas of research in the community.
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Figure 7: Qualitative comparisons of image colorization methods.
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Figure 12: Examples of historical image

colorization.
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Figure 13: Examples of image coloriza-

tion for di�erent pre-trained model

backbones.
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Figure 14: Qualitative comparisons of video colorization methods.
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