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Abstract—Modern video encoders are complex software con-
taining dozens of parameters, which allows them to be configured
to different scenarios, requirements, or specific titles or scenes.
Besides the number of parameters, the inter-dependency between
them adds to the complexity of finding a per-title optimized
combination of encoding parameters. Even though good practices
in the industry have emerged, with the definition of presets per
content type (e.g., film vs. cartoon), such practices are suboptimal
for specific titles or scenes. Indeed, finding the best encoding
parameters for a piece of content is currently a mix of best
practices and trial-and-error artwork. We propose an efficient
video encoder autotuner based on offline Bayesian optimization
and supervised machine learning. Our proposal uses Bayesian
optimization to search for a per-title best encoding parameter
set offline to generate a dataset. Then, we use the generated
dataset to train machine learning models that can map features
extracted from the content to the best encoding parameters.
Our experiments show that our generated dataset can find a
combination of parameters that improves up to approximately
−14.49% BD-Rate (0.77 BD-PSNR) and −11.59% BD-Rate (2.12
BD-VMAF) when optimizing for PSNR and VMAF, respectively.
In comparison, our prediction models can recover ∼80% of such
performance while requiring only one fast encoding (compared
to hundreds of encodes of a search optimization).

Index Terms—Video encoder, Encoding parameters, Bayesian
Optimization, Deep Learning

I. INTRODUCTION

V Ideo is one of the most important media for communica-
tion and entertainment in today’s digital world, dominat-

ing global internet traffic. Video compression standards [1]–[3]
provide the key technologies that support the successful de-
ployment of digital video. Modern video encoders have many
parameters that can be tuned to specific scenarios (e.g., on-
demand vs live video) or in a per-content/scene manner (e.g.,
cartoon vs live action content). Examples of encoding param-
eters include the number of reference frames, rate-distortion
optimization mode, adaptive quantization mode and strength,
number of B-frames, motion estimation range, deblocking
filter strength, etc. However, finding the best encoding param-
eters for a specific content/scene is non-trivial.

A naive approach is to brute-force all the combinations
of values for different parameters, encode the content with
such combinations, and then choose the one with the best

quality (according to a specific quality metric). The huge num-
ber of available parameters and the exponential combination
of them, however, makes such an approach impractical. An
improved method is using optimization methods (e.g., genetic
algorithms [4] or Bayesian optimization [5]) to guide the
search for the best encoding parameters per title. Sharma et
al. [6] is an example of such a work that uses genetics algo-
rithms to find the best encoding parameter for H.265/HEVC
(High-Efficiency Video Coding) [7]. However, even though
such approaches can provide an approximation of the optimum
encoding parameter values per content/scene, they still require
hundreds of encodings for each title during inference.

Brute-force-based approaches have also been proposed for
bitrate-ladder construction for HTTP-based dynamic adaptive
streaming (HAS) [8]–[10]. More recently, data-driven methods
have been explored for such a problem [11]–[14]. In HAS,
the video content is split into short segments. Each segment
is then encoded at different resolutions and quality levels,
which constitutes a bitrate-ladder. During streaming, based
on network conditions, display resolution, etc., the client can
dynamically decide which representation to download for each
segment. One key issue of bitrate ladder optimization is to
predict for each target bitrate which resolution provides the
best quality. Such a problem can be seen as a specific case
of video encoder parameter autotuning, in which resolution is
the only parameter being selected.

In this paper, we propose a data-driven method that enables
a significantly faster decision process than previous video
encoder autotuning methods. Our proposal is based on i) gen-
erating an offline dataset through optimization methods (e.g.,
Bayesian optimization or genetics algorithms) and then ii) us-
ing such data to learn a model that predicts the best encoding
parameter. The main goal is for the model to learn the best
encoding parameters found on such a dataset and, by imitating
such behavior, extrapolate to predict the best encoding param-
eters on new samples. Our proposal is also non-invasive since
it does not need any change on the encoder. Compared to
previous approaches, our proposed method allows for a better
exploration of the search space (due to the per-title dynamic
exploration of the space of parameters) and faster inference



time (due to the learned prediction models).
We use H.264/AVC (Advanced Video Coding) [1], [15] as

our target codec and evaluate our method on the PSNR (Peak-
Signal-to-Noise Ratio) and VMAF (Video Multimethod As-
sessment Fusion) [16] quality metrics. However, our overall
proposal is encoder-agnostic, and it can be easily applied to
different encoders, encoder parameter sets, and target quality
metrics. Experimental results show that our dataset generation
method supports (without any changes on the encoder itself)
an improvement of -14.49% BD-Rate (0.77 BD-PSNR) and
-11.59% BD-Rate (2.12 BD-VMAF) when optimizing for
PSNR and VMAF, respectively. Our prediction models can re-
cover ∼80% of that performance with just one faster encoding
process (compared to hundreds of encoding of optimization-
based approaches).

II. PROBLEM FORMULATION

We consider the encoder as a function E that takes the
frames of a video V = {F1, F2, ..., Fn}, the specific encoding
parameters p = {p1, p2, ..., pp}, and the target bitrate b as
input. The outputs of the encoder are a set of encoded frames
V ′ = {F ′

1, F
′
2, ...F

′
n}, i.e.,

V ′ = E(V, p, b). (1)

Given the set of encoding parameters, the encoder tries its
best to encode V into V ′ while keeping the final bitrate as
close as possible to b. The final achieved quality and bitrate
depend on the encoder heuristics themselves and how the user
controls such heuristics based on p.

Given an objective quality metricM(V,V ′), finding the best
set of encoding parameters can then be defined as,

max
p1,p2,...∈P1,P2,...

M(V,V ′), (2)

where V ′ is given by Eq. (1). Common examples of M
are PSNR, SSIM [17], and VMAF [16]. The goal of the
above problem is to find the best parameters set p ∈ P that
maximizes output quality produced by the encoder.

As aforementioned, a straightforward solution for the prob-
lem above is using optimization algorithms, e.g., genetic
algorithms [6], simulated annealing [18], and Bayesian op-
timization [5]. Such approaches require hundreds of function
evaluations to converge to the maximum solution. However,
since the evaluation of the encoder function (i.e., encoding
the content and compute the objective quality) is an expensive
process, running such an optimization search approach per
title/scene during inference time is prohibitive.

III. PROPOSED METHOD

We first use a Bayesian optimization-based approach to gen-
erate an offline dataset (Subsection III-A). The dataset is then
used to train machine learning models (Subsection III-B) in a
supervised way to approximate the best encoding parameters
solution found in the offline dataset. Fig. 1 overviews the
proposed method.

A. Dataset generation

For each video in the source dataset, we perform a Bayesian
optimization-based approach to guide the search for the “best”
encoding parameters for that video. Also, for each video,
we extract features that can characterize its content. These
features can later be used to predict the ground-truth encoding
parameters found by the optimization search.

1) Bayesian Optimization: Bayesian optimization is an
approach to optimizing objective functions that take a long
time to evaluate. It uses the accumulated knowledge in the
known area of the search space to guide sampling in the
remaining area in an iterative process. For that, it builds a
surrogate for the objective and quantifies the uncertainty in that
surrogate using a Gaussian process regression, and then uses
an acquisition function to decide where to sample. Bayesian
optimization has been used in many optimization tasks when
the function to be optimized needs to be treated as a black box,
e.g., as hyperparameter search for deep learning [19] [20] or
in parameter tuning of compilers [21].

Bayesian optimization is a good fit for our problem because
it does not assume first or second-order derivatives, and
thus can work with the encoder as a black-box function.
However, our overall proposal is not dependent on Bayesian
optimization and could perfectly work with other optimization
search algorithms, e.g., genetics algorithms. One drawback
of genetics algorithms, however, is that they require many
more encode runs to converge when compared to Bayesian
optimization.

For our implementation of Bayesian optimization, we as-
sume that there is a default preset pdef that we want to improve
upon and only consider samples that have a better quality than
pdef . For each target bitrate b, each video sample goes through
the above Bayesian optimization approach, being encoded a
maximum of N times. Algorithm 1 details such a process.

Algorithm 1 Pseudo-code for the proposed Bayesian
optimization-based dataset generation.

1: for all V in the source content dataset D do
2: Place a Gaussian process prior on f
3: n← 0
4: pbest(V)← pdef
5: Observe f at pdef point
6: while n ≤ N do
7: Update the posterior probability distribution on f

using the gathered data so far
8: Let xn be a maximizer of the acquisition function

over x, where the acquisition function is computed
using the current posterior distribution.

9: Observe yn = f(xn)
10: n← n+ 1
11: end while
12: Save the point evaluated with the maximum f(x) as

best encoding parameter for V , pbest(V)
13: end for



Fig. 1. Overview of the proposed approach.

(a) (b) (c) (d)
Fig. 2. Examples of the Bayesian optimization search performed for different samples from Inter4K optimized for PSNR (a)–(b) and VMAF (c)–(d).

2) Feature extraction: Aiming at predicting the best encod-
ing parameters, we extract features from the video samples to
characterize them and be used as input by machine learning
algorithms. Specifically, we extract the following features:

a) Spatial Information (SI) and Temporal Informa-
tion (TI): 1 SI is computed as the Root Mean Square (RMS)
difference between the Sobel maps of each of the frames [22],

SI(v, u) =

√
1

w × h

∑
i,j

|sij |2, (3)

where w and h are the width and height of the u and v frames
and

s = S(v)− S(u), (4)

S(z) =
√
(G1 ∗ z)2 + (GT

1 ∗ z)2, (5)

where ∗ denotes the 2-dimensional convolution operation, and
G1 is the vertical Sobel filter. TI is based on the motion
between adjacent frames, Mt(i, j), defined as the difference
of the pixel luminance at the same location, at time t, i.e.,

Mt(i, j) = Ft(i, j)− Ft−1(i, j), (6)

where Ft(i, j) is the pixel at the (i, j) of the t-th frame. TI is
computed as the maximum over time of the standard deviation
over space of Mn(i, j) over all i and j.

b) Energy-based Video Complexity Features: we com-
pute the per-frame average spatial energy (E) and average
temporal energy (h), following the definition of [23]2.

1https://github.com/Telecommunication-Telemedia-Assessment/SITI
2https://github.com/cd-athena/VCA

c) First pass features from x264: 3 Together with the
above features, we also run a fast encode of x264 which
allows us to extract the following features4: Q: Average of
macroblocks QPs before adaptive quantization; AQ: average
of macroblocks QPs after adaptive quantization decided by
the rate control; MV: bits used by the motion vectors; Tex:
Number of bits used by the texture component; and Misc: bits
spend in other signalization, e.g., slice header and skip flags.

SI, TI, Energy-based Video Complexity, and 1st-pass fea-
tures are computed per frame, and then statistics on those
features (mean, standard deviation, minimum, and maximum)
are computed for each video sample.

B. Prediction Models

Given a dataset that maps features to the best-found encod-
ing parameters, machine learning methods can then be trained
in a supervised way to predict such values. The goal is to
learn a model that can learn Mθ(V ) ≈ pbest(V) for any V ,
where θ are the model’s parameters. Two main approaches are
possible: classification or regression. From a small number
of combinations, it is straightforward to train a classification
model. However, this limits the approach to a pre-defined
number of presets. Since our found best encoding parameters
are not pre-defined, i.e., the values are dynamically chosen
based on the optimization search approach, we opt for using
a regression approach. In our experiments, we focused mainly
on XGBoost and Multi-Layer Perceptron (MLP) models, but
our general proposal is not restricted to them. We also exper-
imented with SVM (Support Vector Machines) and Random

3https://www.videolan.org/developers/x264.html
4A more detailed description of those features can be found at the x264

documentation.



Forest models, but omitted these results here since XGBoost
and MLP consistently performed better in our experiments.

IV. EXPERIMENTS

A. Datasets generation and analysis

We experiment with the freely available dataset Inter4k5,
which is composed of one thousand 4k videos of 5 seconds
duration each. We downsampled all the sample videos to
1920x1080 resolution and used that as our source dataset
for the following experiments. This source dataset is named
Inter4K-HD in the rest of this document. We generated three
versions of this initial dataset, which we named Inter4K-
HD/PSNR, Inter4K-HD/VMAF, and Inter4K-HD/VMAF-
MultiRes. Inter4K-HD/PSNR and Inter4K-HD/VMAF use,
respectively, PSNR and VMAF as the target metric for
the Bayesian optimization discussed in Section III, whereas
Inter4K/VMAF-MultiRes is similar to Inter4K/VMAF but
also allows to configure the resolution of the output video as
an additional encoding parameter.

For all the three dataset variants above, we focus on
H.264/AVC as our target codec, using the very-slow preset
from x264 as our default preset pdef . Table I details the
range of encoding parameters and the default values used in
the Bayesian optimization. The “resolution” parameter is only
used for Inter4k-HD/VMAF-MultiRes dataset.

TABLE I
H.264/AVC ENCODING PARAMETERS AND RANGES USED DURING

BAYESIAN OPTIMIZATION FOR OUR DATASET GENERATION.

Parameter Range Default

aq_mode (0, 2) 1
aq_strength (0, 1.0) 1.0

bframes (0, 16) 3
deblock_alpha (−6.0, 6.0) −1.0

deblock_beta (−6.0, 6.0) −1.0
ipratio (0, 1.6) 1.4
mbtree (0, 1) 1

merange (4, 32) 16
qcomp (0, 1.0) 0.6

ref (1, 16) 4
subme (1, 8) 7

target-bitrate (fixed) 1Mbps–5Mbps
max-rate (fixed) (1.5×target-bitrate)

bufsize (fixed) (2.0×target-bitrate)
psy-rd (fixed) 1

psy-trellis (fixed) 0.15

VMAF-MultiRes Only

resolution {1080p, 720p, 540p, 360p} 1080p

For each target bitrate in our dataset (1Mbps, 2Mbps,
3Mbps, 4Mbps, and 5Mbps), each video sample goes through
the above Bayesian optimization approach, being encoded a
maximum of N = 200 times. In total, for each version of
the Inter4K-HD dataset, we generate 5 target bitrate × 200
encodings × 1000 videos, i.e., 1 million unique encodes.
Finally, for each video and target bitrate, we selected the
best metric found from these encodings as the ground truth

5https://alexandrosstergiou.github.io/datasets/Inter4K/

of our offline datasets, following Algorithm 1. For illustrative
purposes, Fig. 2 shows examples of performing our Bayesian
optimization approach for sample titles in the dataset, compar-
ing the performance of the default preset to the best encoding
parameter found during the optimization.

Table II and Fig 3(a) show the statistics of the Inter4K-
HD/PSNR, in which, we can find a parameter set that provides
up to +0.91 PSNR in the low bitrate regime compared to the
default preset. Table III and Figs 3(b) show the statistics of
the Inter4K-HD/VMAF, in which, we find a parameter set
supporting up to +4.70 VMAF scores on average in the lower
bitrate regime when compared to the default preset. Finally,
Table IV and Fig 3(c) show the statistics of the Inter4K-
HD/VMAF-MultiRes dataset.

TABLE II
INTER4K-HD/PSNR DATASET STATISTICS. VALUES ARE REPORTED IN

THE FORMAT: “AVG. PSNR (STANDARD DEVIATION)”.

Inter4K-HD/PSNR
Bitrate Default Best Avg. ∆PSNR

1Mbps 33.56 (5.76) 34.47 (5.88) +0.91 (2.56)
2Mbps 37.05 (5.82) 37.81 (5.91) +0.76 (0.48)
3Mbps 39.02 (5.81) 39.70 (5.89) +0.68 (0.44)
4Mbps 40.07 (5.25) 40.70 (5.36) +0.64 (0.44)
5Mbps 41.45 (5.75) 42.06 (5.86) +0.61 (0.45)

TABLE III
INTER4K-HD/VMAF DATASET STATISTICS. VALUES ARE REPORTED IN

THE FORMAT: “AVG. VMAF (STANDARD DEVIATION)”.

Inter4K-HD/VMAF
Bitrate Default Best Avg. ∆VMAF

1Mbps 60.65 (18.23) 65.35 (16.66) +4.70 (2.56)
2Mbps 79.19 (13.13) 81.25 (12.36) +2.06 (1.50)
3Mbps 86.72 (10.21) 88.02 (9.67) +1.30 (1.14)
4Mbps 90.69 (8.25) 91.64 (7.83) +0.95 (0.93)
5Mbps 93.06 (6.82) 93.82 (6.49) +0.75 (0.78)

TABLE IV
INTER4K-HD/VMAF-MULTIRES DATASET STATISTICS .VALUES ARE
REPORTED IN THE FORMAT: “AVG. VMAF (STANDARD DEVIATION)”.

Inter4K-HD/VMAF
Bitrate Default Best Avg. ∆VMAF

1Mbps 60.65 (18.23) 70.01 (13.86) +9.37 (2.56)
2Mbps 79.19 (13.13) 82.75 (10.69) +3.57 (1.50)
3Mbps 86.72 (10.21) 88.59 (8.59) +2.57 (1.14)
4Mbps 90.69 (8.25) 91.90 (7.05) +1.21 (0.93)
5Mbps 93.06 (6.82) 93.97 (5.88) +0.91 (0.78)

Our results show that the improvements supported by the
Bayesian optimization are inversely proportional to the target
bitrate, which is expected since at lower bitrates choosing the
encoding parameters carefully is more important. Also, when
comparing the results from Table III and Table IV it is clear
the significant VMAF improvements on lower target bitrates
in Inter4K-HD/VMAF-MultiRes. Such improvements comes
from the ability to choose a lower resolution to compensate
for higher compression artifacts. (see Fig. 4)



(a)

(b)

(c)
Fig. 3. Inter4K-HD/H.264 dataset distribution when optimizing for (a) PSNR, (b) VMAF, and (c) VMAF/MultiRes.

Fig. 4. Histogram of best chosen resolution for Inter4K-HD/VMAF-MultiRes.

Finally, Fig. 5 depicts the average rate-distortion curve of
the default preset and the optimal per-content found for each
of the three dataset variants, while the first row of Table V
shows the improvement in terms of BD-Rate and BD-Metric.

B. Prediction model results

We independently trained prediction models on the different
dataset variants: Inter4K-HD/PSNR, Inter4K-HD/VMAF,
and Inter4K-HD/VMAF-MultiRes. The data was split in
80% for training and 20% for validation and the same split was
used for all the dataset variants on the results presented below.
When splitting the dataset into train/test, we make sure that
for a given content, all the target bitrate data will appear only
either in the training set or in the test set. Thus, we guarantee
that our tests are only performed in video content that was not

seen during training. All the features extracted from the source
content and the encoding parameters are min/max normalized.
For the XGBoost model, we use the default python xgboost
library6 with max_depth = 0, while the MLP is composed of
5 layers, each with 512 neurons. For the MLP training, we use
an adaptive learning rating starting at 1× 10−3 being divided
by 5 every time that 2 consecutive epochs fail to decrease the
loss function, until the tolerance of 1× 10−7.

Table V shows the BD-Rate and BD-PSNR/VMAF for
evaluating the different trained models (XGBoost and MLP)
on the three dataset variants we generated. It also reports
the BD-Rate and BD-PSNR/VMAF computed on the whole
dataset and such metrics computed only on the test set. It is
expected that the upper bound of the prediction model reported
metrics are the ones of “Best (test set)”, while the “Best (full
dataset)” is kept just for reference. From the results, it is clear
that the prediction models are able to recover most of the
performance of the search optimization, while requiring just
one fast encoding and feature extraction step.

V. CONCLUSION

We introduce a video encoder autotuning framework that
takes advantage of Bayesian optimization to search the space
of encoder parameters and build an offline dataset which is
then used to train supervised machine learning methods. Our
method supports an automated and efficient search of encoding
parameters while offering better performance than previous

6https://github.com/dmlc/xgboost



(a) (b) (c)
Fig. 5. Inter4K-HD rate-distortion curves when optimizing for PSNR (a), VMAF (b), and VMAF/MultiRes (c).

TABLE V
BD-RATE/METRIC COMPARING THE BEST IN THE DATASET AND PREDICTED PARAMETERS. DEFAULT PRESET (X264, VERY SLOW) IS USED AS ANCHOR

TO COMPUTE BD-RATE/METRIC.

Inter4k-HD/PSNR Inter4k-HD/VMAF Inter4k-HD/VMAF-MultiRes)
Model BD-Rate ↓ BD-PSNR ↑ BD-Rate ↓ BD-VMAF ↑ BD-Rate ↓ BD-VMAF ↑

Best (full dataset) -14.49 0.77 -11.60 2.32 -16.25 3.76

Best (test set) -13.47 0.71 -11.56 2.08 -16.27 3.70

XGBoost -10.89 (80.8%) 0.56 (78.9%) -9.21 (79.7%) 1.64 (78.8%) -13.25 (81.4%) 3.27 (88.4%)
MLP -10.98 (81.5%) 0.58 (81.7%) -8.73 (75.5%) 1.57 (75.5%) -13.44 (82.6%) 3.17 (85.7%)

fixed parameter search methods. Moreover, after training, our
method provides an efficient solution, which only requires one
fast encoding of the content plus a pass of feature extraction.
Specifically, we demonstrate that using x264, we are able to
find a parameter set that achieves up to 14.49% and 11.59%
BD-Rate reduction compared to very-slow encoding parameter
preset when optimizing for PSNR and VMAF, respectively,
and can recover ∼ 80% of such performance with a much
more efficient prediction model. Our proposed framework also
opens up new avenues for future work. Although we focus only
on simple hand-designed features and more traditional ma-
chine learning algorithms in our experiments, more advanced
features (e.g., deep learning-based ones) and models (e.g.,
Transformers) can be easily integrated into our framework.
The experimentation of our method with other codecs (e.g.,
HEVC and AV1) is another interesting future work.
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