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Abstract. Incorporating diffusion models in the image compression do-
main has the potential to produce realistic and detailed reconstructions,
especially at extremely low bitrates. Previous methods focus on using
diffusion models as expressive decoders robust to quantization errors in
the conditioning signals. However, achieving competitive results in this
manner requires costly training of the diffusion model and long inference
times due to the iterative generative process. In this work we formulate
the removal of quantization error as a denoising task, using diffusion to
recover lost information in the transmitted image latent. Our approach
allows us to perform less than 10% of the full diffusion generative process
and requires no architectural changes to the diffusion model, enabling the
use of foundation models as a strong prior without additional fine tuning
of the backbone. Our proposed codec outperforms previous methods in
quantitative realism metrics, and we verify that our reconstructions are
qualitatively preferred by end users, even when other methods use twice
the bitrate.
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1 Introduction

In today’s digital era, multimedia content dominates global internet traffic, mak-
ing the development of efficient compression algorithms increasingly important.
Traditional codecs, which use handcrafted transformations [1, 42], are now out-
performed by data-driven neural image compression (NIC) [7,8,33] methods that
optimize for both rate and distortion. Nevertheless, most current methods still
produce blurry and unrealistic images in extremely low bitrate settings [5,13,24].
This is the result of such methods being optimized for rate-distortion, where dis-
tortion is measured with pixel-wise metrics like mean-squared error (MSE) [10].
The rate-distortion-realism3 triple tradeoff [4,10,32] formalizes this phenomenon
and states that optimizing for low distortion (i.e., pixel-wise error) necessarily

3 We use “realism” and “perception” interchangeably, representing the similarity of the
reconstructed image to other natural images.
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Fig. 1: Visual examples of our proposed method and various classes of image compres-
sion codecs. Traditional (BPG [1]) and autoencoder-based (ELIC [20]) codecs suffer
from blocking or blurring, and reconstructions from GAN-based (ILLM [34]) and previ-
ous diffusion-based (HFD [24]) methods contain high-frequency artifacts. Our proposal
is as realistic as the original image while recovering a high level of detail. Bitrates are
shown relative to our method. Best viewed digitally.

results in unrealistic images (i.e., images that do not fall on the manifold of nat-
ural images). In low-bitrate scenarios, however, it can be preferable to decode
realistic (thus, more perceptually pleasant) images, even if that means lower
performance in pixel-wise metrics [6].

Generative compression methods [5, 32, 34] try to reconstruct realistic im-
ages by introducing GAN architectures and adversarial or perceptual losses. In
image generation, however, diffusion models [15] have now emerged as a power-
ful alternative, outperforming GANs [15] and achieving state-of-the-art realism
scores [37]. Diffusion models are thus a natural fit for generative image compres-
sion architectures targeting low-bitrate scenarios. Yet, their applicability and
adoption is hindered by large model size and prohibitively expensive training
times, requiring multiple GPU years and hundreds of thousands of dollars [14].
The introduction of open-source foundation models [11] has the potential to de-
mocratize these powerful models and provide strong priors that can be explored
for feature extraction or transfer learning on a variety of domains [19], for exam-
ple image generation [45], depth estimation [27], and even music generation [16].

The use of foundation diffusion models as prior for image compression, how-
ever, is still an underexplored research area. Some works address this task [12,30]
but operate at extremely low bitrates (less than 0.03 bpp) where reconstructed
image content significantly differs from the original, limiting applicability. Only
Careil et al . [13] apply foundation diffusion models in a practical compression
setting. However, they modify the base model architecture and thus require fine-
tuning on a large dataset containing millions of images. Other works, which train
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the diffusion component from scratch, operate at relatively high bitrates [44]
where low pixel-wise distortion can be achieved, or perform image enhance-
ment [18, 24] rather than native end-to-end compression. Notably, all current
work on diffusion-based image compression tasks sample the output image from
pure noise, requiring the full diffusion sampling process, which can take up to
one minute per image [44] due to its iterative nature.

To advance the state of the art, we propose a novel image compression codec
that uses foundation latent diffusion models as a means to synthesize lost details,
particularly at low bitrate. Leveraging the similarities between quantization er-
ror and noise [7], we transmit a quantized image latent and perform a subset of
denoising steps at the receiver corresponding to the noise level (i.e., quantiza-
tion error) of the latent (similar to diffusion image editing techniques [31]). The
key components of our proposal are: i) the autoencoder from a foundation latent
diffusion model to transform an input image to a lower-dimensional latent space;
ii) a learned adaptive quantization and entropy encoder, enabling inference-time
control over bitrate within a single model; iii) a learned method to predict the
ideal denoising timestep, which allows for balancing between transmission cost
and reconstruction quality; and iv) a diffusion decoding process to synthesize
information lost during quantization. Unlike previous work, our formulation re-
quires only a fraction of iterative diffusion steps and can be trained on a dataset
of fewer than 100k images. We also directly optimize a distortion objective be-
tween input and reconstructed images, enforcing coherency to the input image
while maintaining highly realistic reconstructions (Fig. 1) due to the diffusion
backbone.

In sum, our contributions are:

– We propose a novel latent diffusion-based lossy image compression pipeline
that is able to produce highly realistic and detailed image reconstructions at
low bitrates.

– To achieve this, we introduce a novel parameter estimation module that si-
multaneously learns adaptive quantization parameters as well as the ideal
number of denoising diffusion steps, allowing a faithful and realistic recon-
struction for a range of target bitrates with a single model.

– We extensively evaluate state-of-the-art generative compression methods on
several datasets via both objective metrics and a user study. To the best of
our knowledge, this is the first user study that compares generative diffu-
sion models for image compression. Our experiments verify that our method
achieves state-of-the-art visual quality as measured in FID and end users
subjectively prefer our reconstructions.

2 Related Work

Although diffusion models have seen significant successes in the machine learning
community, their use in the image compression domain is still limited.

Yang and Mandt [44] proposed the first transform-coding-based lossy com-
pression codec using diffusion models. They condition a diffusion model on con-
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textual latent variables produced with a VAE-style encoder. Despite showing
competitive testing results, their method operates in a relatively high bitrate
range (0.2bpp and above). It thus leaves room for improvement, particularly at
lower bitrates, where the powerful generation capabilities of diffusion models can
be used to reconstruct images from lower entropy signals.

Diffusion models have also been proposed to augment existing compression
architectures by adding details to images compressed with autoencoder-based
neural codecs [18, 24]. These methods are sub-optimal since they address an
image enhancement task decoupled from compression; in other words, they post-
process a compressed image rather than train an image compression method
end-to-end. Images reconstructed in this manner often contain high-frequency
artifacts or entirely lose image content as the diffusion model cannot rectify
artifacts introduced in the initial compression stage.

Several works develop codecs for extremely low bitrate compression (less
than 0.03 bpp) via latent diffusion. These methods condition pretrained text-to-
image diffusion models with text and spatial conditioning such as CLIP embed-
dings [6,30] and edge [30] or color [6] maps, respectively. Most notably, Careil et
al . [13] augment a latent diffusion model with an additional encoder and image
captioner to produce vector-quantized “hyper-latents” and text signals which are
used to generate an image at the receiver. However, their architectural changes
require substantial fine-tuning of the underlying diffusion model, hindering the
advantages of using a foundation model. Additionally, in general, the extremely
low bitrate of these methods results in reconstructions that, while realistic, vary
significantly in content from the original images.

Notably, all existing works focus on regenerating the image at the receiver
side from low-entropy conditioning signals, requiring tens or hundreds of costly
diffusion sampling steps per image. Our novel formulation of processing a quan-
tized latent representation allows us to predict and perform the ideal number of
denoising diffusion steps, typically between 2 and 7% of the full process, depend-
ing on the bitrate. Combined with a learned per-content adaptive quantization,
we propose the first diffusion-based image compression codec with inference-time
bitrate control and demonstrate that our method produces more realistic recon-
structions and more faithfully represents the input image compared to previous
works on generative image compression (see Sec. 5).

3 Background

Neural Image Compression. Lossy neural image codecs (NIC) are commonly
modeled as autoencoders, in which an encoder E transforms an image x to a
quantized latent ŷ = ⌊E(x)⌉, while a decoder D reconstructs an approximation
of the original image x̂ = D(ŷ). Based on Shannon’s rate-distortion theory [38],
during training, E and D are optimized to minimize the rate-distortion trade-off:

Ltotal = Lbits(ŷ) + λLrec(x, x̂) (1)
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Fig. 2: Rate-distortion (Fig. 2a) and visual (Fig. 2b) comparisons of our method to
naively quantizing and entropy coding the latents of a latent diffusion model (Stable
Diffusion [37]). The LDM baseline requires nearly triple the bits to achieve comparable
performance to our method and severly degrades the image at lower bitrates. Perform-
ing additional diffusion steps still does not produce a realistic image (Fig. 2b, right).
The color gradient of the dots in Fig. 2a represents the number of denoising steps.

where Lrec is a measure of distortion (commonly MSE), Lbits(ŷ) is an esti-
mate of the bitrate needed to store ŷ, and λ controls the trade-off between rate
and distortion. According to Shannon’s theory, Lbits(ŷ) = − log2 P (ŷ), where P
is a probability model of ŷ.

As Lrec is often formulated as a pixel-wise difference between images [10],
especially at low bitrate, it can lead to unnatural artifacts in the reconstructed
images (e.g ., blurring). In such scenarios, it is interesting to design D such that
the distribution of reconstructed images closely follows the distribution of natural
images (i.e., that it produces realistic images), even though this results in lower
pixel-wise distortion [10]. Generative image compression methods, such as our
proposal, focus on optimizing this rate-distortion-realism trade-off [4].

Diffusion. Diffusion models (DMs) [23,39] are a class of generative models that
define an iterative process q(xt|xt−1) that gradually destroys an input signal as
t increases, and try to model the reverse process q(xt−1|xt). Empirically, the
forward process is performed by adding Gaussian noise to the signal; thus, the
reverse process becomes a denoising task. The diffusion model Mθ approximates
the reverse process by estimating the noise level ϵθ of the image and using it to
predict the previous step of the process:

xt−1 =
√
αt−1x̃0 +

√
1− αt−1ϵθ, with x̃0 =

xt −
√
1− αtϵθ√
αt

(2)

Here, t is the current timestep of the diffusion process, xt and αt represent
the sample and variance of the noise at timestep t, respectively, and x̃0 is the
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predicted fully denoised sample from any given t. Eqs. 2 can be simplified to

xt−1 = Mθ(xt, t) (3)

where Mθ(·) is one forward pass of the diffusion model. It is therefore possible
to sample from a DM by initializing xT = N (0, 1) and performing T forward
passes to produce a fully denoised image.

Latent diffusion models (LDMs) [37] improve memory and computational
efficiency of DMs by moving the diffusion process to a spatially lower dimensional
latent space, encoded by a pre-trained variational autoencoder (VAE) [28]. Such
a latent space provides similar performance of the corresponding pixel-space
DMs while requiring less parameters (and memory) [9]. These types of DMs are
trained in a VAE latent space where y = Evae(x) and a sampled latent y0 can
be decoded back to an image x̂ = Dvae(y0).

Since LDMs are based on VAEs, they can also be considered a type of
compression method. However, their applicability in lossy image compression
is hindered by inherent challenges. LDMs lack explicit training to produce dis-
crete representations, resulting in highly distorted reconstructions when used
for lossy compression [24], and cannot navigate the rate-distortion tradeoff. To
highlight such issues, Fig. 2 shows the performance of the same LDM used by
our method (without modifications) as a compression codec compared to our ap-
proach optimized for lossy image compression. In this experiment, we manually
sweep over a range of quantization and diffusion timestep parameters, encoding
the images under the different configurations. Specifically, we encode to the la-
tent space, quantize according to the chosen parameters, compress with zlib [2],
run the chosen number of denoising diffusion steps, and decode back to image
space. As shown, the unmodified LDM requires nearly 3x the bits to achieve com-
parable performance to our method and cannot produce realistic images at low
bitrates, regardless of the number of diffusion steps performed (Fig. 2b). Thus,
deploying LDMs for compression requires thoughtful consideration to maximize
their effectiveness.

4 Method

Fig. 3 shows the high-level architecture of our method. It is composed of a vari-
ational autoencoder (containing an encoder, Evae, and a decoder, Dvae) a quan-
tization and diffusion timestep parameter estimation network (Pϕ), an entropy
model, and a latent diffusion model (Mθ).

Our encoding process is performed as follows: First, the image x is encoded
into its latent representation y = Evae(x). Then, y is quantized by an adaptive
quantization method parameterized by γ (i.e., ẑ = Q(y, γ)). Finally, ẑ is entropy
encoded and stored or transmitted.

During decoding, the inverse quantization transformation computes ŷt =
Q−1(ẑ, γ), which is then used as input to the generative LDM process over t
denoising steps to recover an approximation ŷ0 of the original latent represen-
tation y. Finally, ŷ0 is decoded by the VAE decoder into a reconstructed image
x̂ = Dvae(ŷ0). Algorithm 1 shows the complete encoding/decoding process.
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Fig. 3: Overview of our approach. The input image x is encoded into latent space
and transformed according to predicted parameters γ before quantization and entropy
coding. The quantized representation ẑ is transmitted with γ and predicted diffusion
timestep t as side information. At the reciever the latent is inverse transformed, diffused
over t steps, and decoded back to image space.

A key feature of our method is that both the quantization parameters γ
and the number of denoising steps t can be adapted in a per-content and per-
target-bitrate manner (controlled by the rate-distortion trade-off parameter λ).
To achieve this, we train a neural network Pϕ(y, λ) that predicts both t and γ.

Intuitively, our method learns to discard information (through the quantiza-
tion transformation) that can be synthesized during the diffusion process. Be-
cause errors introduced during quantization are similar to adding noise [7,8,33]
and diffusion models are functionally denoising models, they can be used to
remove the quantization noise introduced during coding.

4.1 Latent Diffusion Model Backbone

Aiming at avoiding extensive training time, we use Stable Diffusion v2.1 [37] for
certain modules of our architecture, particularly, Evae, Dvae, and Mθ. Note that
our method works independently of the base model. We select Stable Diffusion
as it is one of the only foundation latent diffusion models with publicly available
code and model weights.

4.2 Parameter Estimation

As aforementioned, the quantization parameters, γ, and the optimal number
of denoising steps the diffusion network should perform, t, are predicted by a
neural network Pϕ(y, λ), which takes as input the latent y and the rate-distortion
trade-off λ.

Adaptive Quantization. Our adaptive quantization function Q is defined as
an affine transformation T for each channel of the latent y, parameterized by γ,
before applying standard integer quantization, i.e.,

ẑ = Q(y, γ) = ⌊T (y, γ)⌉ (4)
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Fig. 4: Intermediate states of the sequential denoising process in our decoder. Our
method predicts the optimal number of denoising steps, highlighted in red, to produce
the most perceptually pleasing output. Best viewed digitally.

γ is transmitted as side information in order for the decoder to perform the
inverse transform at the client side, i.e.,

ŷt = Q−1(ẑ, γ) = T −1(ẑ, γ) (5)

Timestep Prediction. Contrary to an image generation task, which begins
diffusion from “pure noise”, in our compression task, we start the diffusion pro-
cess from a quantized latent, which already contains structural and semantic
information of the content. In such a scenario, performing the entire range of
denoising steps during decoding is both wasteful and results in over-smoothed
images. Therefore, we learn to predict the subset of denoising diffusion steps
that produces optimal decoded images. Fig. 4 illustrates how the decoded im-
age quality changes based on the number of diffusion steps performed by the
decoder, where too few or too many steps result in noisy or over-smoothed im-
ages, respectively. Because the number of optimal denoising steps depends on
the amount of noise in the latent (and therefore the severity of quantization),
and vice versa, we predict t and γ jointly in the parameter estimation module.

Architecture. The parameter estimation neural network Pϕ(y, λ) employs a
fully convolutional architecture. We stack alternating downsampling (i.e., stride
2) and standard convolutional layers, increasing filter count as depth increases.
In the last layer, we reduce the output filter count to correspond with the to-
tal number of parameters estimated4 and apply mean average pooling on each
output channel to produce a single scalar for each parameter. We use SiLU [21]
activation between each convolutional layer. No activation is applied after the
final convolutional layer. However, we apply sigmoid activation on the scalar
4 We use 2 quantization parameters per latent channel plus one additional parameter

for timestep prediction. As the image latent has 4 channels we predict a total of 9
parameters per image.
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Algorithm 1 Encoding and Decoding process
Given: image x
y ← Evae(x)
γ, t← Pϕ(y)
ẑ← Q(y, γ)
bitstream ←→ ẑ ▷ Entropy code using P (ẑ)

ŷt ← Q−1(ẑ, γ)
for n = t to 1 do

ŷn−1 ←Mθ(ŷn, n) ▷ Eq. 3
end for
x̂← Dvae(ŷ0)

predicted timestep to guarantee a range of [0, 1]. To condition Pϕ on the tar-
get bitrate, we expand λ to the same spatial dimension as the latent sample
and concatenate them along the channel dimension before processing with the
parameter estimation network.

4.3 Entropy Coding

We use a joint contextual and hierarchical entropy model to encode the quan-
tized latent to a bitstream. Such models have been extensively researched in the
literature [8,33,36]. We select Entroformer [36] as our entropy model as it yields
the best performance in our experiments. It consists of a transformer-based hy-
perprior and bidirectional context model to estimate the latent’s distribution
P (ẑ), which is used to encode it to a bitstream via arithmetic encoding [35].

4.4 Optimization

Following Eq. 1, we jointly optimize the tradeoff between the estimated coding
length of the bitstream and the quality of the reconstruction:

L = − log2 P (ẑ) + λ ∥ x− x̂ ∥22 . (6)

We train our model on the Vimeo-90k [43] dataset and randomly crop the
images to 256×256px in each epoch. Our model is optimized for 300,000 steps
with learning rate 1e-4. We randomly sample λ ∈ [1, 5, 10, 20] at each gradient
update to train for multiple target bitrates within a single model.

While our main motivation was to utilize foundation models without signif-
icant modification, we do make minor adjustments in our pipeline to allow for
optimization of trainable modules upstream. During training, it is prohibitively
expensive to backpropagate the gradient through multiple passes of the dif-
fusion model as it runs during DDIM [40] sampling. Therefore, we perform
only one DDIM sampling iteration and directly use x̃0 as the fully denoised
data (see Eq. (2) and Appendix B). For the low timestep range our model op-
erates in, we observe that the difference between x̃0 and the true fully denoised
data x0 is minimal and sufficient for the optimization of the parameter esti-
mation module. At inference time, we perform the standard iterative DDIM
process. Additionally, during the diffusion sampling process, the timestep t is
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Fig. 5: Quantitative comparison of our method with other baselines. We outperform
all methods in (a) rate-realism while remaining competitive with the best performing
generative codecs in (b) pixel-wise distortion metrics.

used to index an array of required precomputed values (e.g ., variance schedule
αt). This discretization prevents optimization of the parameter estimation net-
work. Therefore, we implement continuous functions for each required value and
evaluate them with the predicted timestep during training.

5 Experiments

We compare our method to state-of-the-art generative and diffusion-based image
compression codecs via objective metrics and a subjective user study. Fig. 7 also
shows qualitative comparisons of ours to different methods.

Datasets. We conduct experiments on the following datasets: i) Kodak [29],
which consists of 24 images 768×512px (or inverse). ii) the CLIC2022 [3] test
set, which contains 30 high-resolution images resized such that the longer side
is 2048px. We center crop each image to 768×768px due to the high memory
consumption required to process large images with Stable Diffusion; and iii) MS-
COCO 30k, which has recently been used for evaluating the realism of the
reconstruction of compression methods [4, 24]. The dataset is preprocessed as
stated in [4], resulting in 30,000 images of size 256×256px each.

Metrics. We evaluate our proposal and baselines using: PSNR and MS-SSIM,
as measures of pixel-wise distortion; LPIPS, as a more perceptually-oriented
distortion metric; and FID [22], to evaluate the realism of the reconstructed
images. FID measures the similarity between the distributions of source and
distorted images, and thus has been widely used as a measure of realism [4,32],
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particularly for image generation tasks. Since FID requires a higher number of
samples of both source and distorted images, we focus the FID comparison only
on MS-COCO 30k.

Baselines. We compare our method against GAN- and diffusion-based im-
age codecs. HiFiC [32] is a well-known generative neural image compression
codec and remains a strong GAN-based baseline, while the recently proposed
ILLM [34] improves upon the HiFiC architecture and is available at more com-
parable bitrates to ours. For diffusion-based approaches, we use CDC [44] and
HFD [24], the only two other practical works in this field. Both HFD and
Careil et al . [13] are trained on large proprietary datasets and therefore can-
not be reproduced for comparison. For this reason, we compare to HFD only
on the Kodak dataset and FID score on MS-COCO 30k as these are the only
results available, and cannot compare to Careil et al . For all other methods, we
use released pretrained model weights and run with default parameters. How-
ever, for CDC we increase the number of denoising sampling steps to 1000 to
produce higher quality reconstructions.

User study. As qualitative metrics often fail to capture the perceptual qual-
ity of image reconstructions [10, 41], we further perform a user study to assess
the visual quality of our results. The study is set up as a two-alternative forced
choice (2AFC), where each participant is shown the source image and recon-
structions from two methods and is asked to choose the reconstruction they
prefer. We select 10 samples from the Kodak dataset with the smallest differ-
ence in bitrate between our method and the other generative model baselines,
namely CDC, ILLM, and HFD. 5 Thus, in a session, a participant is requested
to do 60 pairwise comparisons. Each sample is center-cropped to 512×512px so
that all images being compared are shown side-by-side at native resolution (i.e.,
without resampling). 6 Participants can freely zoom and pan the images in a
synchronized way. However, because the methods locally provide different types
of reconstructions, we ask the participants to inspect the images in their entirety
before rating.

Following [32], we use the Elo [17] rating system to rank the methods. Elo
matches can be organized into tournaments, where ranking updates are applied
only at the end of the tournament. We perform two separate experiments, where
a tournament is considered to be 1. a single comparison or 2. all image compar-
isons from the same user. As Elo scores depend on game order, a Monte Carlo
simulation is performed over 10,000 iterations, and we report the median score
for each method.
5 In a pilot study, we have also considered to include BPG and HiFiC. However, since

it was clear that they always performed worse than other methods in our target
bitrate range, and to avoid fatigue with long rating sessions (we target a session
time around 15–20min) we removed them from the study.

6 The images used in the study and respective bitrates can be found in the Supple-
mentary Materials.
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Fig. 6: Computed Elo ratings from the user study with Elo tournaments set for each
comparison (left) or for each participant (right). Higher is better. The box extends to
the first and third quartiles and the whiskers 1.5× IQR further.

5.1 Results

Quantitative results. Fig. 5 shows the rate-distortion (as measured by PSNR,
MS-SSIM, and LPIPS) and rate-realism (as measured by FID) curves of our
methods and baselines. Our method sets a new state-of-the-art in realism of re-
constructed images, outperforming all baselines in FID-bitrate curves. In some
distortion metrics (namely, LPIPS and MS-SSIM), we outperform all diffusion-
based codecs while remaining competitive with the highest-performing genera-
tive codecs. As expected, our method and other generative methods suffer when
measured in PSNR as we favor perceptually pleasing reconstructions instead of
exact replication of detail (see Sec. 3).

User study. Fig. 6 shows the outcome of our user study. The methods are
ordered by human preference according to Elo scores. The average bitrate of the
images for each model are shown below the name of the methods. As can be
seen in the Elo scores, our method significantly outperforms all the others, even
compared to CDC, which uses on average double the bits of our method. This
remains true regardless of Elo tournament strategy used.

Visual results. Fig. 7 qualitatively compares our method to generative neu-
ral image compression methods. Our approach can consistently reconstruct fine
details and plausible textures while maintaining high realism. HFD often syn-
thesizes incorrect content (door in row 1, flowers in row 5, and mural in row 6)
or produces smooth reconstructions (flower petal in row 2, face in row 3, red
barn in row 4, and face and hat in row 7). CDC and ILLM introduce unnatural
blurry or high-frequency generative artifacts (flower bud in row 2 and tree in
row 4) even in cases where they use 2x the bitrate of our method.

Complexity. To assess the practicality and efficiency of our method, we com-
pare the runtime and size of our model with CDC and ILLM. We report the
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Fig. 7: Qualitative comparison of our method to the baselines. Images are labeled as
Method@bpp (bpp is also shown as a percentage of our method). Best viewed digitally.

average encoding/decoding time (excluding entropy coding) for all images from
the Kodak dataset. All benchmarks were performed on an NVIDIA RTX 3090
GPU. Our method processes an image in 3.49 seconds, nearly twice as fast as
CDC, which requires 6.87 seconds. ILLM processes an image in 0.27 seconds.
However, it is important to note that diffusion-based methods are in general
slower than other codecs due to their iterative denoising nature. Due to the Sta-
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ble Diffusion backbone, our method is more complex than CDC (1.3B vs. 53.6M
parameters, respectively), while ILLM contains 181.5M parameters. However,
the large majority of our parameters come from the diffusion backbone. Our
trained modules (e.g ., Pϕ and the entropy model) contain only 36M parameters.

Reducing the computational burden of diffusion models is an active research
area [25, 26], parallel to ours. Our method is fundamentally independent of the
chosen foundation model, thus advances on reducing the complexity of Stable
Diffusion can ultimately also improve our proposal.

Limitations. Similar to other generative approaches, our method can discard
certain image features while synthesizing similar information at the receiver side.
In specific cases, however, this might result in inaccurate reconstruction, such as
bending straight lines or warping the boundary of small objects. These are well-
known issues of the foundation model we build upon, which can be attributed
to the relatively low feature dimension of its VAE. Despite this, our generated
content is still closer to the original content than the other diffusion compres-
sion methods, as confirmed by our subjective study, and can be qualitatively
compared on Fig. 7.

Ethical concerns. A core challenge of generative machine learning is the misgen-
eration of content. Specifically at very low bitrates, identities, text, or lower-level
content can vary from the original image, and thus may raise ethical concerns
in specific scenarios.

6 Conclusion

Via our proposed novel lossy image compression codec based on foundation la-
tent diffusion, we produce realistic image reconstructions at low to very low
bitrates, outperforming previous generative codecs in both perceptual metrics
and subjective user preference. By combining the denoising capability of diffu-
sion models with the inherent characteristics of quantization noise, our method
predicts the ideal number of denoising steps to produce perceptually pleasing
reconstructions over a range of bitrates with a single model. Our formulation
has faster decoding time than previous diffusion codecs and, due to reusing
a foundation model backbone, a much lower training budget. Potential future
work includes the integration of more efficient backbone models [25,26] and the
support for user control to navigate the rate-distortion-realism trade-off.
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