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Supplementary Material

A Additional Qualitative Results

Figs. 12 - 18 show additional qualitative comparisons between our method and
the baselines from the main text.

We also show full image comparisons between the diffusion-based image com-
pression baselines [25, 46] and strong autoencoder-based [21] and traditional [1]
image codec baselines in Figs. 19 - 23.

B Additional Implementation Details

Foundation Model Backbone. We take Stable Diffusion v2.1 as our founda-
tion model backbone, using the official code repository7 and model checkpoint8.
We use the default configuration, except for minor modifications detailed below.

We utilize the DDIM sampling formulation for the diffusion generative pro-
cess. As mentioned in Sec. 4.4, it is prohibitively expensive to accumulate gra-
dients over multiple DDIM steps during training of our method, therefore we
slightly modify the sampling procedure as follows. At each DDIM step, a predic-
tion of the fully denoised sample x̂0 is also computed (see Eq. (2)). Thus instead
of performing multiple steps of the diffusion process to get the final sample, we
can directly utilize x̂0. Although x̂0 is slightly inconsistent with the true fully
denoised image, at the low timestep range our method operates in we observe
that the difference is minor (see Fig. 8) and has negligible effect on optimization.

Stable Diffusion offers multiple prediction parameterizations, such ✏ or v pre-
diction, which dictates the output of the diffusion model. We utilize ✏ prediction
due to our modifications of the sampling algorithm during training. While the
commonly used v prediction is more stable over the full generation process com-
pared to ✏ prediction, in the low timestep range where our model operates v
prediction reduces almost completely to ✏ prediction [39] and thus is effectively
equivalent.

Entropy Model. Entroformer [37] is used as the entropy model for our method.
We refer readers to the original paper and codebase9 for specific information. We
follow the architectural details in Appendix A.4 of the original paper, but replace
the encoder and decoder with the Stable Diffusion VAE encoder and decoder.
Correspondingly, we also change the output dimension of the entropy model to
match the channel dimension of the Stable Diffusion latent space (i.e. Entro-
former configuration parameter last_channels = 4).

7 https://github.com/Stability-AI/stablediffusion
8 https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-
1_768-ema-pruned.ckpt

9 https://github.com/damo-cv/entroformer

https://github.com/Stability-AI/stablediffusion
https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.ckpt
https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.ckpt
https://github.com/damo-cv/entroformer
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Train Inference Difference

Fig. 8: Comparison of the predicted original sample during training (single diffusion
step), at inference time (multiple diffusion steps), and the difference between the two
(shown from left to right, respectively). Best viewed digitally.

C Similarity of Quantization Error and Noise

In signal processing, quantization error has historically been modeled as uni-
form [12] noise. Ballé et al . [7] first introduced this to the field of neural compres-
sion and since then it has been widely adopted in other neural image compression
methods [8, 21,34,37].

Intuitively, given a quantization bin with lower and upper bounds a and
b, respectively, all values within this range are mapped to the bin center c =
(b�a)

2 during quantization. Thus, assuming a smooth distribution of values before
quantization (as is the case in the latent space of a variational autoencoder), the
error for values within one bin is approximately uniformly distributed across the
bin width (i.e. U(a � c, b � c)). Given a constant bin width, the error across all
quantization bins is therefore also uniformly distributed.

D Details on User Study

Further Evaluation. In Sec. 5.1 of the main text we report median Elo across
all participants and all images, and across all participants (i.e. we update Elo
ratings of the methods after each game and after all comparisons of each par-
ticipant, respectively). In Fig. 9 we additionally report Elo scores where all
comparisons for each image are treated as a mini-tournament (i.e. we update
Elo ratings of the methods after all comparisons of the same image). We report
median Elo score over 10,000 Monte Carlo iterations as in the main text.

The overall ranking order of the methods does not change, although the
variance of the Monte Carlo simulation is larger. This is because the Elo score
update when a higher ranked method beats a lower ranked one is smaller, and
as there are less frequent, aggregated score updates the “stronger” methods are
not penalized due to their strength as much as when updating after every com-
parison.



20 L. Relic et al.

Images Used. For all images used in our user study, we report the filenames
and the bitrate (in bits per pixel) for each method in Tab. 1. We compress and
decompress the entire image with each method and center crop the result to
512⇥512px to display to the user (see Sec. 5).

User Interface. Fig. 10 shows a screenshot of the user interface of our user
study. The original image is shown in the center, while left and right show the
reconstructed images. The order in which each pair comparison appears and the
position of each method (left/right) are randomly selected for each rating. Our
user interface supports synchronized zooming and panning, so the participant
can examine smaller areas of each image if preferred. Zoom and pan levels are
reset for each new comparison.

Fig. 9: Per-image Monte Carlo Elo ratings from the user study. Higher is better. The
box extends to the first and third quartiles and the whiskers 1.5⇥ IQR further.

kodim01 kodim05 kodim07 kodim09 kodim08 kodim17 kodim19 kodim22 kodim23 kodim24

Ours 0.0852 0.154 0.101 0.0744 0.163 0.0927 0.0907 0.0984 0.0606 0.110
HFD 0.0940 0.161 0.111 0.0765 0.167 0.0966 0.0918 0.0992 0.0644 0.113
CDC 0.276 0.365 0.229 0.166 0.297 0.237 0.207 0.252 0.160 0.290
ILLM 0.0983 0.240 0.147 0.118 0.243 0.140 0.146 0.146 0.0644 0.187

Table 1: Filenames and corresponding bitrate of each method for all images used in
the user study. Bitrate is expressed in bits per pixel.

E Further Analysis on Timestep Prediction

Here we present additional evidence that our method is able to predict the ideal
number of denoising timesteps over all bitrates (see Sec. 4).
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Fig. 10: Screenshot of the user interface of our subjective user study.

We perform an experiment in which we use our method to compress an
image at multiple bitrates and manually sweep over a range of denoising diffusion
timesteps (similar to the naive latent diffusion implementation in Sec. 3 of the
main text, but only over the timestep parameter). We record rate-distortion
metrics for each quantization level and timestep pair. Fig. 11 shows the results
of this experiment on images from the Kodak dataset, where for all bitrates our
method predicts the number of denoising diffusion steps which results in the
lowest distortion.

F Video

We include a short video detailing an overview of our approach and additional
visual comparisons in the supplementary material.
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Fig. 11: Rate-distortion curve of our method with manually chosen denoising diffusion
steps. The color gradient of the dots represents the number of denoising steps. Our
predicted optimal number of steps is shown in red.
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Fig. 12: Additional visual comparisons (kodim01). Images are labeled with
Method@bpp (% bpp compared to Ours).
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Fig. 13: Additional visual comparisons (kodim02). Images are labeled with
Method@bpp (% bpp compared to Ours).
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Fig. 14: Additional visual comparisons (kodim05). Images are labeled with
Method@bpp (% bpp compared to Ours).
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Fig. 15: Additional visual comparisons (kodim07). Images are labeled with
Method@bpp (% bpp compared to Ours).
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Fig. 16: Additional visual comparisons (kodim13). Images are labeled with
Method@bpp (% bpp compared to Ours).



28 L. Relic et al.

Fig. 17: Additional visual comparisons (kodim19). Images are labeled with
Method@bpp (% bpp compared to Ours).
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Fig. 18: Additional visual comparisons (kodim24). Images are labeled with
Method@bpp (% bpp compared to Ours).
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Original Ours @ 0.0852 bpp

HFD @ 0.0940 bpp CDC @ 0.276 bpp

ELIC @ 0.0968 bpp BPG @ 0.103 bpp

Fig. 19: Qualitative comparison of our method, HFD [25], CDC [46], ELIC [21], and
BPG [1] on kodim01. Best viewed digitally.
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Original Ours @ 0.0927 bpp

HFD @ 0.0966 bpp CDC @ 0.237 bpp

ELIC @ 0.0951 bpp BPG @ 0.103 bpp

Fig. 20: Qualitative comparison of our method, HFD [25], CDC [46], ELIC [21], and
BPG [1] on kodim17. Best viewed digitally.
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Original Ours @ 0.0907 bpp

HFD @ 0.0918 bpp CDC @ 0.207 bpp

ELIC @ 0.0937 bpp BPG @ 0.104 bpp

Fig. 21: Qualitative comparison of our method, HFD [25], CDC [46], ELIC [21], and
BPG [1] on kodim19. Best viewed digitally.
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Original Ours @ 0.0606 bpp

HFD @ 0.0644 bpp CDC @ 0.160 bpp

ELIC @ 0.0647 bpp BPG @ 0.0641 bpp

Fig. 22: Qualitative comparison of our method, HFD [25], CDC [46], ELIC [21], and
BPG [1] on kodim23. Best viewed digitally.
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Original Ours @ 0.110 bpp

HFD @ 0.114 bpp CDC @ 0.290 bpp

ELIC @ 0.110 bpp BPG @ 0.121 bpp

Fig. 23: Qualitative comparison of our method, HFD [25], CDC [46], ELIC [21], and
BPG [1] on kodim24. Best viewed digitally.
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