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Abstract

Video frame interpolation (VFI) is an ill-posed problem,
and a wide variety of methods have been proposed, rang-
ing from more traditional computer vision strategies to the
most recent developments with neural network models. Al-
though there are many methods to interpolate video frames,
quality assessment regarding the resulting artifacts from
these methods remains dependent on off-the-shelf meth-
ods. Although these methods can make accurate quality
predictions for many visual artifacts such as compression,
blurring, and banding, their performance is mediocre for
VFI artifacts due to the unique spatio-temporal qualities
of such artifacts. To address this, we aim to leverage se-
mantic feature extraction capabilities of the pre-trained vi-
sual backbone of CLIP. Specifically, we adapt its multi-
scale approach to our feature extraction network and com-
bine it with the spatio-temporal attention mechanism of the
Video Swin Transformer. This allows our model to detect
interpolation-related artifacts across frames and predict the
relevant differential mean opinion score. Our model outper-
forms existing state-of-the-art quality metrics for assessing
the quality of interpolated frames in both full-reference (FR)
and no-reference (NR) settings.

1. Introduction
VFI methods aim to generate new frames from the ex-

isting frames of a video, which are then utilized to up- or
down-sample the video. Although there are numerous algo-
rithms to generate these new frames, the aesthetic quality of
the resulting interpolated frames can vary substantially.

To address the problem of quality assessment of gen-
erated frames, there exist a multitude of general purpose
video and image quality metrics. Examples of more conven-
tional approaches include PSNR (Peak Signal to Noise Ra-
tio) and SSIM (Structural Similarity Index Measure) [39],
which compare pixel values or low-level visual patterns to
perform quality assessment.

In addition to traditional methods, deep learning-based

quality metrics perform well on general image [3, 9, 10, 13,
16, 18, 33, 34, 39] and video [42, 43] quality assessment.
However, their performance on VFI-related distortions is
limited [6] since they are not specifically designed for these
distortions.

Our work aims to address this shortcoming, taking inspi-
ration from LPVPS proposed by Hou et al. [14]. LPVPS
extracts features from all levels of a convolutional neu-
ral network in a multi-scale manner with modified SwinIR
(Swin Image Restoration) transformers [17]. The trans-
formers then build spatio-temporal features using the out-
puts from different levels of the CNN. The temporally con-
scious approach of LPVPS inspired this work, as VFI gener-
ates unique artifacts not only in the spatial domain but also
in the temporal domain.

Another critical component of this work is the zero-
shot image classification capabilities of CLIP (Contrastive
Language-Image Pre-training) [29]. Previous works have
demonstrated its capabilities in general-purpose image [38,
50] and video [41, 43] quality assessment, where CLIP has
been used to classify video frames or still images as high
quality or low quality, and its predictions are in line with
human judgments. In this work, the pre-trained visual back-
bone of CLIP is utilized, and the resulting semantic features
are fed into modified Video Swin Transformers [19, 20],
which are then fine-tuned on datasets [6,14] where the dom-
inant distortions are VFI related.

The main contributions of this paper are as follows:

• A novel quality metric combining CLIP’s multi-scale
feature extraction with Video Swin Transformer for im-
proved video frame interpolation assessment.

• Captures both spatial and temporal features across mul-
tiple scales to effectively detect VFI artifacts in both FR
and NR settings.

2. Related Work
This work utilizes the visual backbone of CLIP [29] as

the main feature extractor. We cover CLIP’s image clas-
sification and prior work on general quality metrics using



CLIP. Since our focus is on VFI artifacts, we discuss met-
rics tailored for such artifacts. We then describe VFI-related
datasets, including BVI-VFI [6] and VFIPS [14]. Finally,
we detail the state-of-the-art models on these datasets.

2.1. CLIP backbone

CLIP is an image classification framework that uses a
visual backbone for extracting features from input images
and a text backbone for extracting features from prompts.
It computes cosine similarity between these features to de-
termine the probability that each prompt matches the image
content. CLIP is employed in this work, as its main purpose
is zero-shot image classification. The zero-shot approach
makes it easy to adapt to downstream vision tasks without
fine-tuning, which makes it possible to deploy CLIP within
a larger model with frozen weights to keep the number of
learnable parameters on a manageable level.

2.2. General image and video quality assessment

Assessing the quality of VFI artifacts is a distinct prob-
lem due to its spatio-temporal nature. Therefore, examining
the existing general-purpose image and video quality met-
rics (VQM) is necessary, as some sub-problems within this
domain may already be investigated by prior works.

For FR-VQM, FAST [44] proposes a model based on
the motion trajectories of pre-determined keypoints. A spa-
tial quality score is computed using the optical flows of the
selected points. RandkDVQA [8] proposes a method that
uses a two-stage, ranking-based training strategy to enhance
model generalization and performance, leveraging a large-
scale training dataset without human-labeled ground truth.
FUNQUE [37] proposed a method that uses a wavelet-
domain transform and applies a contrast sensitivity function
for FR video quality assessment (VQA).

LIQE [50] is an NR image quality metric using CLIP’s
zero-shot capabilities. It extracts scene type, dominant dis-
tortion, and perceived quality from the input image to make
a blind quality assessment. SF-IQA [47] integrates image
quality and image-text similarity using a Swin Transformer
for feature extraction and a CLIP model for semantic simi-
larity, merged through a score fusion module.

FAST-VQA [40], DOVER [42], and MaxVQA [43] are
NR VQA models. These models were developed cumula-
tively, each model building upon the previous. FAST-VQA,
along with its subsequent iterations, leverages spatial and
temporal fragments from an input video to predict mean
opinion scores. This is achieved by sampling fragments
from an input frame instead of cropping or resizing the im-
age to avoid introducing additional distortions. Spatial frag-
ments are sampled from the same grid coordinates for ev-
ery couple of frames, ensuring temporal fragmentation as
well. DOVER augments this approach by adding a sepa-
rate aesthetic input evaluation. The FAST-VQA backbone

is preserved as the technical branch, which evaluates more
technical distortions such as blur and compression artifacts.
The aesthetic branch takes semantics and composition into
account, focusing mainly on content for quality assessment.
Then, MaxVQA builds on this by offloading aesthetic eval-
uation to CLIP and technical evaluation to DOVER.

2.3. Quality metrics for video frame interpolation

The unique spatio-temporal nature of VFI artifacts may
reduce the general-purpose VQA model performance and
may not necessarily indicate their performance on such
datasets. This is evident when evaluating generic metrics
on VFI datasets such as VFIPS [14] and BVI-VFI [6]. We
review the best performing models on the BVI-VFI dataset,
ST-GREED [25] and FRQM [49]; and the best perform-
ing model on the VFIPS dataset, LPVPS [14] to understand
what enables accurate human judgment prediction for frame
interpolation artifacts.

FRQM [49] is a conventional FR-VQM, designed to cap-
ture frame rate-related artifacts. The proposed method us-
ing temporal wavelet decomposition, subband comparison,
and spatiotemporal pooling, FRQM estimates the relative
quality of low frame rate videos compared to higher frame
rate references.

ST-GREED [25] is a learning-based FR-VQM that eval-
uates frame rate effects using spatial and temporal general-
ized entropic differences, which are then mapped to qual-
ity scores via Support Vector Regressor (SVR) trained on
the LIVE-YT-HFR [25] dataset. LPVPS [14] is a learning-
based FR-VQA model that consists of a five-level pyra-
mid network for feature extraction. The extracted features
from each level are forwarded to the spatio-temporal mod-
ule. In the spatio-temporal module, features from the refer-
ence video and distorted video are merged. This is accom-
plished by computing the difference per frame between all
reference and distorted features and concatenating the re-
sulting difference with reference and distorted features in
the channel dimension. Finally, LPVPS employs a SwinIR
transformer [17] at every level of the pyramid network to
capture temporal features. The resulting features of all lev-
els are then averaged to produce the final prediction.

3. Method
As illustrated in Fig. 1, our work is built around a mod-

ified pre-trained CLIP visual backbone [29] for spatial fea-
ture extraction. We modify the visual backbone so that it
extracts features not only from the final layer of the back-
bone network, but also features from four other layers at
different scales. This multi-scale approach is inspired by
the feature extraction network of LPVPS [14], which helps
it to yield good performance on VFI-related artifacts.

The extracted features are then fed into the multi-scale
spatio-temporal module. There, we merge features from



Figure 1. Full-reference (FR) architecture of our model.

the reference video and the distorted video, and use Video
Swin Transformers [19, 20] to compute cross-frame atten-
tion. The resulting spatio-temporal features of each level
are used to compute the final DMOS. We explain the pro-
cesses for each module in detail below.

3.1. Full-reference (FR) metric setup

3.1.1 CLIP features

In the current release of CLIP, there are numerous pre-
trained visual backbones available. One of these pre-trained
backbones is the modified ResNet-50 [12]. Although it is
not the highest performing visual backbone in the CLIP pa-
per [29], it should be noted that these benchmarks are for
image classification, which is the original purpose of CLIP.
However, in [38], Wang et al. demonstrates that CLIP with
ResNet-50 backbone produces the highest performance on
quality assessment benchmarks. Thus, we also choose to
employ ResNet-50 backbone for CLIP in our model. In
its normal use case, CLIP is a language-supervised model,
meaning that one of the strengths of the pre-trained release
of CLIP we use in our feature extraction network is zero and
few-shot performance. For this reason, unlike LPVPS, we
keep the weights of our feature extraction network frozen
during the training process.

To take advantage of the success of the multi-scale ap-
proach of LPVPS [14], we further modify CLIP-ResNet-50
to capture multiscale spatial features so that it extracts fea-
tures from five layers from different depths of ResNet-50.

Specifically, we extract features from 12 consecutive
frames by inputting each frame individually into our feature

extraction network, as expressed in Eq. (1),

F{ref — dist},l = fCLIP,l
(
I{ref — dist}

)
(1)

where Fref,l and Fdist,l indicate the extracted reference and
distorted video features from the corresponding level l of
the CLIP feature extraction network. Iref and Idist denote
the reference and distorted videos, respectively. fCLIP,l(·)
refers to the operation at the corresponding level l of the
CLIP extraction network, which is a mapping in the form

fCLIP,l : RB×12×3×224×224 7→ RB×12×i×j×j ,

where B denotes the input batch size, i ∈
[1024, 1024, 512, 256, 64], and j ∈ [7, 14, 28, 56, 112]. We
keep the weights of the extraction network frozen. Note
that this process is repeated for both the distorted and
reference frames.

After extracting the features from the distorted and ref-
erence frames, we fuse the distorted frame features Fdist,l
and the reference frames features Fdist,l accordingly in each
level. First, we normalize our extracted features Fdist,l
and Fref,l across frames to further highlight temporal fea-
tures. Then we compute the element-wise absolute differ-
ence Fdiff,l between the reference and distorted frames fea-
tures. This can be represented as the following in Eq. (2),

Fdiff,l = abs(fnorm(Fref,l)− fnorm(Fdist,l)) (2)

In Eq. (2), Fref,l and Fdist,l represent the CLIP features
extracted from the reference and distorted videos, respec-
tively. fnorm(·) is the normalization operation across frames,
abs(·) is the element-wise absolute difference operator, and



Fdiff,l is the element-wise absolute difference of the normal-
ized reference and distorted features.

The resulting difference tensor is then concatenated with
the reference features Fref,l and the distorted features Fdist,l
in the channel dimension. These operations can be repre-
sented as

Fcat,l = fcat(fnorm(Fref,l),Fdiff,l, fnorm(Fdist,l)), (3)

where fcat(·) represents the concatenation operation for the
extracted features along the channel dimension, resulting
in a shape RB×12×3i×j×j . Note that these operations are
repeated for every level of the feature extraction network.
The extracted features are input into the Video Swin Trans-
former [19, 20] to calculate spatio-temporal features.

3.1.2 Multi-scale spatio-temporal module

The extracted features from the CLIP-ResNet-50 of the ref-
erence and distorted frames are inputted into the Video Swin
Transformers after each level of the feature extraction net-
work individually. Video Swin Transformers compute at-
tention inside sliding windows across three dimensions that
are height, width, and video frames. This is in stark con-
trast to LPVPS, where temporal features from input frames
are concatenated in the channel dimension, and sliding win-
dows are only applied across the height and width, forgoing
the sliding-window self-attention computation in the tem-
poral dimension. Our method of computing attention en-
sures that temporal features are also represented in our la-
tent features in addition to the spatial features. We denote
this operation as

FVSwin,l = fVSwin,l(Fcat,l), (4)

where, fVSwin,l(·) represents the operation of the Video
Swin Transformers on concatenated features Fcat,l on every
level l. The output features from individual levels of the
Video Swin Transformer have the shape RB×12×32×j×j ,
and are then concatenated in the channel dimensions and
passed through a 1 × 1 convolution layer, which fuses fea-
tures from all channels to a singular channel, and all ele-
ments of the final single channel tensor are averaged. This
is repeated at every level and can be represented as the fol-
lowing in Eq. (5),

Ffinal,l = femb(freshape(FVSwin,l)) (5)

where, femb,l(·) represents the 1 × 1 convolution opera-
tion to reduce the number of channels and freshape(·) repre-
sents the reshaping operation to shape RB×384×j×j , which
merges the frame and channel dimensions of the tensor, ef-
fectively merging the spatial and temporal features. As the
last step, the final DMOS is calculated by adding the av-
erage of the features of shape RB×j×j from all levels as

shown in Eq. (6),

dmos =

L∑
l=0

1

N

N∑
m,n=0

F(m,n)
final,l (6)

where, m and n denote the row and column indices for en-
tries of the final features, Ffinal,l in each level l. N represents
the total number of entries at the level l of the tensor Ffinal,l.

3.2. No-reference (NR) metric setup

To evaluate our model against existing NR metrics, our
model can be modified to function in an NR manner, as ex-
plained in the following sections.

3.2.1 Feature extraction network

Similarly to the FR approach, our feature extraction net-
work consists of a modified CLIP visual ResNet-50 back-
bone. In the FR setting, the ground-truth and distorted
videos are fed separately to the feature extraction network.
As there is no ground-truth video available for the NR set-
ting, multi-scale features from the distorted video are ex-
tracted uniquely and sent to the multi-scale spatio-temporal
module for spatio-temporal feature computation.

3.2.2 Multi-scale satio-temporal module

The lack of ground-truth video means that it is not possible
to compute the element-wise difference between ground-
truth and distorted video features. As a result, instead of
calculating the difference between ground truth and dis-
torted videos and concatenating the resulting features in the
channel dimension, this step is completely bypassed. Dis-
torted video features coming from the video extraction net-
work are fed directly into the Video Swin Transformer for
spatio-temporal attention computation. The remaining steps
for combining features across frames and MOS predictions
with features from all levels remain identical to the FR set-
ting.

4. Datasets
For training and testing, we selected datasets that pre-

dominantly feature VFI distortion. This study relies on two
primary datasets: VFIPS [14] and BVI-VFI [6]. VFIPS in-
cludes 12 frame sequences of a ground-truth video along-
side two distorted versions generated by VFI algorithms.
The scores reflect perceptual judgments indicating which
video has higher quality, akin to a binary classification task.
BVI-VFI comprises videos of 36 subjects at two resolutions
(12 videos at 960x540 and 24 videos at 1920x1080). Each
ground truth video has versions with three frame rates (30
FPS, 60 FPS, 120 FPS) and five different interpolation al-
gorithms, totaling 540 videos. DMOS and MOS values are



processed using the P.910 subject screening procedure [36]
to minimize participant bias.

5. Experiments and results
We utilize three different metrics to evaluate the perfor-

mance of our model: Pearson linear correlation coefficient
(PLCC), Spearman rank correlation coefficient (SRCC),
and Kendall rank correlation coefficient (KRCC).

The evaluation procedure for our work consists of six to-
tal experiments in three sets. The first set consists of two ex-
periments designed to compare our work with LPVPS [14],
which was the main inspiration for our work. Thus, these
first two experiments recreate the methodology used in [14],
where the reported results are the average of local PLCC,
SRCC and KRCC scores, namely Local scores. We calcu-
late these local scores by computing the PLCC, SRCC, and
KRCC per reference video and reporting the mean PLCC,
SRCC, and KRCC across reference videos.

The second set of experiments consists of two exper-
iments designed to benchmark our model against other
general-purpose VQA methods, as surveyed in the BVI-VFI
paper [6]. For this reason, we employ the methodology de-
tailed in [6], where the PLCC, SRCC, and KRCC scores are
calculated on all data points (540 distorted videos), namely
Global scores. These experiments compare videos across
different content types and therefore Global scores are more
indicative of the general performance of the metrics tested.

The DMOS values have been provided in the BVI-VFI
dataset since the FR setup. However, for the NR setup of the
metrics evaluation, we conduct the third set of experiments
that covers cross-validation on the BVI-VFI dataset using
MOS. This experiment benchmarks our model against other
NR models covered in [6].

5.1. Experiment setup

For experiments where we train the models on VFIPS,
the LPVPS results were produced by the publicly available
pre-trained LPVPS model. For experiments in which we
perform training on BVI-VFI, we train LPVPS from scratch
with the default training settings in its source paper [14]. It
is trained over 20 epochs, with the AdamW [22] optimizer.
We set the learning rate at 1 · 10−4 and β1 to 0.5. We set all
other hyperparameters to their default values.

For all experiments, we train our model for only 5 epochs
due to its fast convergence, using AdamW optimizer with a
learning rate of 5 · 10−5. Experiments are conducted on a
single NVIDIA GeForce RTX 4090 GPU with a batch size
of 8, the same for LPVPS and our model.

For experiments in which we train the model on the BVI-
VFI dataset, we perform a cross-validation on the BVI-VFI
dataset. We used 80% of the 36 source videos in the BVI-
VFI dataset for training, while we use the remaining 20%
for testing. We reshuffle the dataset splitting process 20

Table 1. Average performance of the model benchmarked against
LPVPS when training on the VFIPS and evaluating on the BVI-
VFI dataset.

VFIPS validation BVI-VFI

Model 2AFC PLCC SRCC KRCC

LPVPS 0.81 0.70 0.63 0.55
Ours 0.82 0.78 0.68 0.58

times. To maintain reproducibility, we save all 20 splits and
reuse them for all experiments in which the model is trained
on the BVI-VFI dataset. On average, every subject appears
in the training set 15.56 times with a standard deviation of
1.95 compared to an average of 4.44 times in the test set
with a standard deviation of 1.95. This is in line with the
expected number of occurrences of 16 times in the train-
ing set and 4 times in the test set, meaning that there is no
significant imbalance in the training and testing datasets.

5.2. Benchmarks on local scores

5.2.1 Trained on VFIPS and tested on BVI-VFI

To evaluate the cross-dataset performance, we train our
model on the VFIPS dataset and evaluate it on the BVI-
VFI dataset. As mentioned in the previous section, the lo-
cal PLCC, SRCC and KRCC scores are computed over the
five different distorted versions of each ground truth, and
the average local score is reported. As shown in Tab. 1,
our model outperforms LPVPS in all available metrics. For
completeness, we also report 2AFC scores on the VFIPS
validation dataset. Tab. 2 present visual examples of the
BVI-VFI dataset accompanied by human rankings for each
distorted video. Our predictions demonstrate greater con-
sistency with human evaluations compared to LPVPS.

5.2.2 BVI-VFI dataset cross-validation

As mentioned in Sec. 4, the VFIPS dataset is a binary clas-
sification dataset, with no MOS or DMOS provided. Since
the BVI-VFI dataset, which is used for evaluation in this
work, provides DMOS, this experiment will perform cross-
validation on the BVI-VFI dataset to observe how the two
models compare in the presence of actual quality scores.
Therefore, 20-fold cross-validation splits of the BVI-VFI
dataset are used as training and test sets for this experiment,
as described in Sec. 5.1.

Similar to the previous experiment, the reported results
are average local PLCC, SRCC, and KRCC scores. Since
there are 20 splits, the final reported result is the mean and
standard deviation of the average local PLCC, SRCC and
KRCC of each split. The results of the experiment can be
observed in Tab. 3. Compared to the results of Tab. 1, these
results indicate an increase in performance for both models



Table 2. Quality ranking predictions by our model and LPVPS versus human for BVI joggers 3840x2160 30fps and LIVEHFR 3Runners-
960x540 30fps videos. The leftmost image is the pristine ground truth image.

Average DVF [21] QVI [46] Repeat ST-MFNet [5]

Human 3rd 5th 2nd 4th 1st
LPVPS 3rd 5th 1st 4th 2nd

Ours 3rd 5th 2nd 4th 1st

Average DVF QVI Repeat ST-MFNet

Human 3rd 5th 1st 4th 2nd
LPVPS 4th 5th 2nd 3rd 1st

Ours 3rd 5th 1st 4th 2nd

when trained on DMOS values. Although our model out-
performs LPVPS in all available metrics, its performance
remains comparable to LPVPS, under the Local score eval-
uation method.

Table 3. Average performance of the model benchmarked against
LPVPS when cross-validating on the BVI-VFI dataset.

Model PLCC SRCC KRCC

LPVPS 0.78 (0.08) 0.72 (0.09) 0.63 (0.09)
Ours 0.80 (0.06) 0.73 (0.06) 0.63 (0.05)

5.3. Benchmarks on global scores

In previous experiments, our main focus was on com-
paring our model with LPVPS [14]. The first set of experi-
ments covered in the previous section demonstrated that our
model outperforms LPVPS. This set of experiments aims to
demonstrate the performance of our model on Global PLCC
and SRCC scores by comparing them with readily available
results in [6], including conventional and deep learning-
based metrics, these are PSNR, GMSD [48], FAST [44],
SpEED [1], C3DVQA [45], FRQM [49], FovVideoVDP
[26], ST-GREED [25] and FloLPIPS [4].

In this experiment, we follow the same evaluation
method as utilized in [6]. We cross-validate our model on
the BVI-VFI dataset, as specified in Sec. 5.1, and report
the median global PLCC and SRCC scores along with their
standard deviations. The results in Tab. 4 demonstrate that,
barring its performance over non-DL based interpolation
methods such as frame averaging and frame repeating, our
model consistently ranks as the best or second best model
in every category. Regarding overall performance, it is the
best model with consistently high PLCC and SRCC scores

and low standard deviation, indicating robust performance.

5.4. No-reference (NR) evaluation with MOS

As mentioned in Sec. 3.2, our model is also capable of
running in an NR setting. To demonstrate the NR qual-
ity assessment capabilities, we perform cross-validation on
the BVI-VFI dataset to train our model on MOS values,
as described in Sec. 5.1. We compare the NR version
of our model with other NR models tested in [6], includ-
ing BRISQUE [32], ChipQA [7], VIDEVAL [35], deep-
IQA NR [2], NIQE [28], VIIDEO [27], FastVQA [40],
VBLIINDS [31], TLVQM [15], and FAVER [51]. The met-
rics reported are the median values of PLCC and SRCC
across the test splits for each model, along with their stan-
dard deviations.

Except in the non-DL category, our model consistently
performs the best among NR models, with a significant in-
crease in performance, as shown in Tab. 5. It should be
noted that it exhibits performance comparable to the FR
models in Tab. 4, indicating that our architecture benefits
from the zero-shot capabilities of CLIP.

5.5. Ablation studies

5.5.1 Feature extraction network

We investigate the impact of using the pre-trained CLIP
model as our feature extraction network. Consequently, we
replace our CLIP visual backbone with a five-level pyramid
convolutional network, which serves as the feature extrac-
tor network in LPVPS. Since we train this network from
scratch, we train our model for 20 epochs and keep the rest
of the training parameters identical.



Table 4. Cross validation tests over all the DMOS values in BVI-VFI dataset. Best and second best models are marked accordingly.

30fps 60fps 120fps non-DL DL Overall
Model PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

0.60 0.50 0.69 0.74 0.77 0.72 0.50 0.47 0.79 0.77 0.66 0.71FAST (0.13) (0.12) (0.17) (0.08) (0.19) (0.14) (0.12) (0.12) (0.07) (0.06) (0.08) (0.07)

PSNR 0.60 0.51 0.66 0.69 0.63 0.63 0.54 0.46 0.72 0.71 0.62 0.65
(0.11) (0.11) (0.10) (0.10) (0.13) (0.14) (0.12) (0.13) (0.09) (0.07) (0.07) (0.08)
0.57 0.45 0.64 0.66 0.63 0.60 0.84 0.81 0.45 0.49 0.50 0.58FRQM (0.12) (0.13) (0.10) (0.11) (0.14) (0.15) (0.06) (0.07) (0.07) (0.06) (0.06) (0.06)

FovVideoVDP 0.55 0.46 0.62 0.66 0.59 0.60 0.63 0.57 0.64 0.66 0.59 0.64
(0.12) (0.11) (0.10) (0.09) (0.14) (0.16) (0.10) (0.12) (0.07) (0.06) (0.06) (0.06)
0.57 0.47 0.62 0.59 0.69 0.60 0.53 0.47 0.67 0.66 0.61 0.61FloLPIPS (0.11) (0.12) (0.11) (0.11) (0.13) (0.13) (0.12) (0.11) (0.08) (0.07) (0.08) (0.07)

GMSD 0.61 0.51 0.64 0.67 0.63 0.63 0.52 0.42 0.72 0.69 0.61 0.64
(0.11) (0.12) (0.10) (0.11) (0.12) (0.14) (0.11) (0.14) (0.09) (0.07) (0.08) (0.08)
0.43 0.28 0.51 0.57 0.50 0.64 0.46 0.40 0.56 0.59 0.48 0.55C3DVQA (0.17) (0.14) (0.21) (0.11) (0.25) (0.13) (0.18) (0.12) (0.14) (0.09) (0.10) (0.08)

SpEED 0.39 0.50 0.51 0.68 0.49 0.64 0.31 0.45 0.61 0.69 0.49 0.65
(0.19) (0.12) (0.21) (0.09) (0.19) (0.14) (0.15) (0.11) (0.17) (0.06) (0.25) (0.07)
0.60 0.53 0.72 0.71 0.71 0.61 0.46 0.41 0.77 0.70 0.66 0.64ST-GREED (0.12) (0.14) (0.12) (0.12) (0.15) (0.17) (0.11) (0.12) (0.09) (0.10) (0.11) (0.10)

LPVPS 0.45 0.61 0.63 0.65 0.65 0.58 0.32 0.36 0.61 0.66 0.53 0.61
(0.12) (0.13) (0.11) (0.09) (0.14) (0.11) (0.12) (0.11) (0.11) (0.09) (0.11) (0.09)
0.67 0.63 0.76 0.76 0.75 0.67 0.31 0.34 0.77 0.76 0.73 0.72Ours (0.11) (0.10) (0.08) (0.07) (0.07) (0.12) (0.09) (0.10) (0.07) (0.07) (0.08) (0.07)

Table 5. Cross validation tests over all the MOS values in BVI-VFI dataset. Best and second best models are marked accordingly.

30fps 60fps 120fps non-DL DL Overall
Model PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

0.29 0.05 0.30 0.05 0.25 0.11 0.28 0.16 0.26 0.08 0.21 0.02BRISQUE (0.12) (0.19) (0.11) (0.19) (0.11) (0.20) (0.12) (0.13) (0.11) (0.15) (0.08) (0.12)

ChipQA 0.54 0.49 0.57 0.57 0.56 0.43 0.35 0.27 0.60 0.56 0.50 0.47
(0.13) (0.16) (0.14) (0.17) (0.15) (0.18) (0.12) (0.15) (0.14) (0.15) (0.12) (0.13)
0.58 0.55 0.55 0.51 0.61 0.53 0.51 0.47 0.56 0.51 0.49 0.45VIDEVAL (0.11) (0.15) (0.12) (0.13) (0.13) (0.20) (0.12) (0.13) (0.13) (0.14) (0.12) (0.13)

deepIQA NR 0.32 0.19 0.28 0.16 0.22 0.07 0.22 0.03 0.26 0.15 0.20 0.09
(0.12) (0.17) (0.10) (0.18) (0.10) (0.19) (0.10) (0.13) (0.10) (0.12) (0.08) (0.11)
0.30 0.02 0.30 0.05 0.28 0.03 0.32 0.19 0.27 0.02 0.22 0.04NIQE (0.12) (0.19) (0.11) (0.18) (0.09) (0.22) (0.11) (0.13) (0.09) (0.13) (0.08) (0.12)

VIIDEO 0.27 0.10 0.32 0.11 0.37 0.20 0.22 0.05 0.36 0.29 0.28 0.20
(0.14) (0.13) (0.15) (0.12) (0.14) (0.14) (0.08) (0.05) (0.11) (0.14) (0.10) (0.08)
0.36 0.11 0.33 0.28 0.38 0.26 0.43 0.38 0.27 0.17 0.28 0.24FastVQA (0.16) (0.17) (0.12) (0.15) (0.14) (0.18) (0.10) (0.10) (0.10) (0.12) (0.09) (0.11)

VBLIINDS 0.58 0.52 0.67 0.60 0.67 0.49 0.44 0.40 0.63 0.59 0.48 0.51
(0.11) (0.13) (0.12) (0.13) (0.14) (0.17) (0.11) (0.12) (0.11) (0.11) (0.11) (0.11)
0.49 0.40 0.54 0.49 0.67 0.53 0.47 0.42 0.63 0.59 0.52 0.48TLVQM (0.14) (0.18) (0.13) (0.15) (0.15) (0.19) (0.13) (0.14) (0.11) (0.12) (0.12) (0.12)

FAVER 0.50 0.44 0.50 0.41 0.54 0.39 0.66 0.62 0.58 0.52 0.52 0.49
(0.12) (0.15) (0.14) (0.16) (0.17) (0.17) (0.11) (0.13) (0.13) (0.14) (0.12) (0.13)
0.72 0.74 0.77 0.76 0.75 0.55 0.33 0.34 0.75 0.72 0.68 0.64Ours (no-ref) (0.06) (0.08) (0.07) (0.10) (0.08) (0.18) (0.08) (0.09) (0.06) (0.08) (0.05) (0.07)

5.5.2 Vision transformers

Another vital component of our model is the Video Swin
Transformers at every level of our multi-scale spatio-
temporal module. It replaces SwinIR [17] in LPVPS, as
its 3D windows evaluate image patches across multiple

frames, taking into account the features in the temporal
domain. This contrasts with SwinIR in LPVPS, where
multiple frames are concatenated before being inputted to
SwinIR to model the temporal features.



Table 6. Results of our ablation studies.

VFIPS validation BVI-VFI

Model 2AFC PLCC SRCC KRCC

LPVPS 0.81 0.70 0.63 0.55
Ours w/ five-level pyramid 0.82 0.54 0.60 0.51
Ours w/ SwinIR 0.83 0.52 0.51 0.44
Ours w/ single layer CLIP 0.81 0.65 0.44 0.36
Ours w/ optical flow 0.82 0.75 0.61 0.52
Ours 0.82 0.78 0.68 0.58

5.5.3 Multi-scale CLIP features

Our model leverages high- and low-level semantic features
from multiple levels of CLIP. To verify the performance
contribution of our multi-scale architecture, we replace our
multi-scale features with features solely from the last level
of the CLIP visual backbone.

5.5.4 Optical flow

The experiments performed on the cross-validation of the
BVI-VFI dataset demonstrate that FAST [44] is the second-
best performing model after ours. FAST utilizes optical
flow to assess the aesthetic quality of consecutive frames.
Consequently, we also employ optical flow by implement-
ing SPyNet [30] in our feature extraction network. We sim-
ply concatenate optical flow features to our CLIP features
for every frame in our feature extraction network to evalu-
ate the impact of optical flow on our model’s overall perfor-
mance.

We trained the ablation study models on the VFIPS
dataset and evaluated them on the BVI-VFI dataset, the
results in Tab. 6 demonstrate the performance of the vari-
ants. Both the SwinIR model and the five-level pyramid
model are outperformed by our model. The multi-scale ap-
proach introduced in LPVPS yields a notable performance
increase, as our model with multi-scale CLIP yields approx-
imately 41% higher scores for PLCC, SRCC, and KRCC
compared to our model with a single-layer CLIP feature.
Finally, we observe that the inclusion of optical flow does
not improve performance within our architecture, as it per-
forms slightly worse than our model despite having a larger
feature extraction network.

5.6. Discussion

Based on the conducted experiments, it can be concluded
that our proposed model offers a significant performance
improvement over existing state-of-the-art FR-VQMs for
frame interpolation artifacts, over both same-subject and
cross-subject comparisons.

Similarly to its FR performance, the NR setup of our
model remains competitive, yielding a respectable perfor-
mance among state-of-the-art FR metrics. In addition to

surpassing all NR metrics, the NR setup of our model even
manages to outperform all FR metrics barring FAST [44] in
the overall category.

Notably, FRQM [49] performs the best in our weakest
category, the non-DL category, as shown in Table 4. Al-
though it is a conventional model, the optimal weighting
values for the subband combination module are obtained
through cross-validation on the BVI-HFR dataset [23, 24].
In this training process, the low frame rate input videos
are upsampled to match the frame rate of the reference
high frame rate videos using a nearest-neighbor interpola-
tion [11] algorithm, which is similar to frame repeating. Our
intuition is that this weight optimization process may be a
key reason why FRQM performs the best in the non-DL
category, while showing lower performance in the DL and
other categories on the BVI-VFI dataset.

The inference time of a single frame from the BVI-VFI
dataset is higher for our model (∼ 0.243 seconds) compared
to that of LPVPS (∼ 0.157 seconds), as CLIP feature ex-
traction is performed on the fly. Although the inference
time is higher, the pre-trained CLIP model is not further
fine-tuned and its zero-shot capabilities enable our model to
achieve the reported performance in fewer epochs compared
to LPVPS, necessitating only five epochs.

6. Conclusion and outlook
In this work, we introduce a novel model for the quality

assessment of videos with frame interpolation artifacts. In
both FR and NR settings, our proposed model outperforms
state-of-the-art VQA metrics while requiring few training
epochs. As another exemplar of CLIP’s applicability in
quality assessment tasks, our proposed network architecture
and training pipeline demonstrate that CLIP features can be
leveraged to extract semantic features across the temporal
domain in addition to the spatial domain.

Our experiments show that the performance of our
model remains dependent on the available training datasets.
Our training pipeline benefits from the availability of
MOS/DMOS values compared to the case where it only has
access to the relative quality ranking of input videos. The
reason for this performance differential and the effects of
readily available MOS/DMOS values would pose an inter-
esting topic for further research in the context of quality
assessment.

The future work would encompass the utilization of text
features from the CLIP model, as it also possesses a text
encoder that was not employed in this work. Although its
performance remains dependent on input prompts, future
research could focus on identifying the optimal prompts
for quality assessment of VFI. Another direction would
be to forgo this prompt engineering approach for learn-
able prompts, where the model weights and optimal prompt
could be learned in an alternating fashion.
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