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ABSTRACT

Classifier-free guidance (CFG) has become the standard method for enhancing the
quality of conditional diffusion models. However, employing CFG requires either
training an unconditional model alongside the main diffusion model or modifying
the training procedure by periodically inserting a null condition. There is also
no clear extension of CFG to unconditional models. In this paper, we revisit
the core principles of CFG and introduce a new method, independent condition
guidance (ICG), which provides the benefits of CFG without the need for any
special training procedures. Our approach streamlines the training process of
conditional diffusion models and can also be applied during inference on any pre-
trained conditional model. Additionally, by leveraging the time-step information
encoded in all diffusion networks, we propose an extension of CFG, called time-
step guidance (TSG), which can be applied to any diffusion model, including
unconditional ones. Our guidance techniques are easy to implement and have the
same sampling cost as CFG. Through extensive experiments, we demonstrate that
ICG matches the performance of standard CFG across various conditional diffusion
models. Moreover, we show that TSG improves generation quality in a manner
similar to CFG, without relying on any conditional information.

1 INTRODUCTION

Diffusion models have recently emerged as the main methodology behind many successful generative
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al., 2022;
Song & Ermon, 2019; Song et al., 2021b). At the core of such models lies a diffusion process that
gradually adds noise to the data until the corrupted points are indistinguishable from pure noise.
During inference, a denoiser trained to reverse this process is used to gradually refine pure-noise
samples until they resemble the clean data. While the theory suggests that standard sampling from
diffusion models should yield high-quality images, this does not generally hold in practice, and
guidance methods are often required to increase the quality of generations, albeit at the expense of
diversity (Dhariwal & Nichol, 2021; Ho & Salimans, 2022). Classifier guidance (Dhariwal & Nichol,
2021) introduced this quality-boosting concept by utilizing the gradient of a classifier trained on noisy
images to increase the class-likelihood of generated samples. Later, classifier-free guidance (CFG)
(Ho & Salimans, 2022) was proposed, allowing diffusion models to simulate the same behavior as
classifier guidance without using an explicit classifier. Since then, CFG has been applied to other
conditional generation tasks, such as text-to-image synthesis (Nichol et al., 2022) and text-to-3D
generation (Poole et al., 2023).

In addition to CFG’s trading diversity for quality, it has the following two practical limitations.
First, it requires a dedicated, pre-defined training process on an auxiliary task in order to learn the
unconditional score function. This typically involves training a separate unconditional model or,
more commonly, randomly dropping the conditioning vector and replacing it with a null vector
during training. This approach reduces training efficiency, as the model now needs to be trained on
two different tasks. Moreover, replacing the condition may not be straightforward when multiple
conditioning signals—such as text, images, and audio—are used simultaneously or when the null
vector (often the zero vector) carries specific meaning. We demonstrate that this dedicated auxiliary
training process is unnecessary. A second limitation is that there has been no clear way to extend
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the benefits of classifier-free guidance beyond conditional models to unconditional generation. We
introduce a method that closes this gap.

We revisit the principles behind classifier-free guidance and show both theoretically and empirically
that similar quality-boosting behavior can be achieved without the need for additional auxiliary
training of an unconditional model. The main idea is that by using a conditioning vector independent
of the input data, the conditional score function becomes equivalent to the unconditional score. This
insight leads us to propose independent condition guidance (ICG), a method that replicates the
behavior of CFG at inference time without requiring auxiliary training of an unconditional model,
i.e., without needing explicit access to the unconditional score function. In Section 6.1, we show that
the auxiliary training of the unconditional model in CFG can be detrimental to training efficiency,
and similar or better performance can be achieved by training only a purely conditional model and
using ICG instead.

Inspired by the above, we also introduce a novel technique to extend classifier-free guidance to a more
general setting that includes unconditional generation. We argue that by using a perturbed version
of the time-step embedding in diffusion models, one can create a guidance signal similar to CFG to
improve the quality of generations. This method, which we call time-step guidance (TSG), aims to
improve the accuracy of denoising at each sampling step by leveraging the time-step information
learned by the diffusion model to steer sampling trajectories toward better noise-removal paths.

ICG and TSG are easy to implement, do not require additional fine-tuning of the underlying diffusion
models, and have the same sampling cost as CFG. Through extensive experiments, we empirically
verify that: 1) ICG offers performance similar to CFG and can be readily applied to models that are
not trained with the CFG objective in mind, such as EDM (Karras et al., 2022); and 2) TSG improves
output quality in a manner similar to CFG for both conditional and unconditional generation.

The core contributions of our work are as follows: (i) We revisit the principles of classifier-free
guidance and offer an efficient, theoretically motivated method to employ CFG without requiring any
auxiliary training of an unconditional model, greatly simplifying the training process of conditional
diffusion models and improving training efficiency relative to the standard approach. (ii) We offer an
extension of CFG that is generally applicable to all diffusion models, whether conditional or uncondi-
tional. (iii) We demonstrate empirically that our guidance techniques achieve the quality-boosting
benefits of CFG across various setups and network architectures.

2 RELATED WORK

Score-based diffusion models (Song & Ermon, 2019; Song et al., 2021b; Sohl-Dickstein et al., 2015;
Ho et al., 2020) learn the data distribution by reversing a forward diffusion process that progressively
transforms the data into Gaussian noise. These models have quickly surpassed the fidelity and
diversity of previous generative modeling methods (Nichol & Dhariwal, 2021; Dhariwal & Nichol,
2021), achieving state-of-the-art results in various domains, including unconditional image generation
(Dhariwal & Nichol, 2021; Karras et al., 2022), text-to-image generation (Ramesh et al., 2022;
Saharia et al., 2022b; Balaji et al., 2022; Rombach et al., 2022; Podell et al., 2023; Yu et al., 2022),
video generation (Blattmann et al., 2023b;a; Gupta et al., 2023), image-to-image translation (Saharia
et al., 2022a; Liu et al., 2023), motion synthesis (Tevet et al., 2023; Tseng et al., 2023), and audio
generation (Chen et al., 2021; Kong et al., 2021; Huang et al., 2023).

Since the development of the DDPM model (Ho et al., 2020), many advancements have been proposed
including improved network architectures (Hoogeboom et al., 2023; Karras et al., 2023; Peebles &
Xie, 2022; Dhariwal & Nichol, 2021), sampling algorithms (Song et al., 2021a; Karras et al., 2022;
Liu et al., 2022; Lu et al., 2022a; Salimans & Ho, 2022), and training methods (Nichol & Dhariwal,
2021; Karras et al., 2022; Song et al., 2021b; Salimans & Ho, 2022; Rombach et al., 2022). Despite
these recent advances, diffusion guidance, including classifier and classifier-free guidance (Dhariwal
& Nichol, 2021; Ho & Salimans, 2022), still plays an essential role in improving the quality of
generations as well as increasing the alignment between the condition and the output image (Nichol
et al., 2022).

SAG (Hong et al., 2022) and PAG (Ahn et al., 2024) have recently been proposed to increase the
quality of UNet-based diffusion models by modifying the predictions of the self-attention layers. Our
method is complementary to these approaches, as one can combine ICG updates with the update
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signal from the perturbed attention modules (Hong et al., 2022). In addition, we make no assumptions
about the network architecture.

Another line of work includes guiding the generation of the diffusion model with a differentiable loss
function or an off-the-shelf classifier (Song et al., 2023; Chung et al., 2022; Yu et al., 2023; Bansal
et al., 2023; He et al., 2023). These methods are primarily focused on solving inverse problems,
typically with unconditional models, while we are instead concerned with achieving the benefits
of CFG in conditional models without any additional training requirements. With TSG, we also
generalize our approach to extend CFG-like benefits to unconditional models.

Perturbing the condition vector is employed in CADS (Sadat et al., 2024) to increase the diversity
of generations. CADS differs from ICG in focusing on the conditional branch to improve diversity,
while ICG is concerned with the unconditional branch to simulate CFG. Since CADS is designed to
enhance the diversity of CFG, it can be used alongside ICG to improve the diversity of output at high
guidance scales (see Appendix C).

3 BACKGROUND

This section provides an overview of diffusion models. Let x ∼ pdata(x) be a data point, t ∈ [0, 1] be
the time step, and zt = x+ σ(t)ϵ be the forward process of the diffusion model that adds noise to
the data. Here σ(t) is the noise schedule and determines how much information is destroyed at each
time step t, with σ(0) = 0 and σ(1) = σmax. Karras et al. (2022) showed that this forward process
corresponds to the ordinary differential equation (ODE)

dzt = −σ̇(t)σ(t)∇zt log pt(zt)dt (1)

or, equivalently, a stochastic differential equation (SDE) given by

dzt = −σ̇(t)σ(t)∇zt log pt(zt) dt− β(t)σ(t)2 ∇zt log pt(zt) dt+
√
2β(t)σ(t) dωt. (2)

Here dωt is the standard Wiener process, and pt(zt) is the time-dependent distribution of noisy
samples, with p0 = pdata and p1 = N

(
000, σ2

maxIII
)
. Assuming that we have access to the time-

dependent score function ∇zt
log pt(zt), we can sample from the data distribution pdata by solving

the ODE or SDE backward in time (from t = 1 to t = 0). The unknown score function ∇zt log pt(zt)
is estimated via a neural denoiser Dθ(zt, t) that is trained to predict the clean samples x from the
corresponding noisy samples zt. The framework allows for conditional generation by training a
denoiser Dθ(zt, t,y) that accepts additional input signals y, such as class labels or text prompts.

Training objective Given a noisy sample zt at time step t, the denoiser Dθ(zt, t,y) with parameters
θ can be trained with the standard MSE loss (also called denoising score matching loss)

argmin
θ

Et

[
∥Dθ(zt, t,y)− x∥2

]
. (3)

The denoiser approximates the time-dependent conditional score function ∇zt
log pt(zt|y) via

∇zt
log pt(zt|y) ≈

Dθ(zt, t,y)− zt
σ(t)2

. (4)

Classifier-free guidance (CFG) CFG is an inference method for improving the quality of generated
outputs by mixing the predictions of a conditional and an unconditional model (Ho & Salimans,
2022). Specifically, given a null condition ynull = ∅ corresponding to the unconditional case, CFG
modifies the output of the denoiser at each sampling step according to

D̂θ(zt, t,y) = Dθ(zt, t,ynull) + wCFG(Dθ(zt, t,y)−Dθ(zt, t,ynull)), (5)

where wCFG = 1 corresponds to the non-guided case. The unconditional model Dθ(zt, t,ynull)
is trained by randomly assigning the null condition ynull = ∅ to the input of the denoiser with
probability p, where we normally have p ∈ [0.1, 0.2]. One can also train a separate denoiser to
estimate the unconditional score in Equation (5) (Karras et al., 2023). Similar to the truncation
method in GANs (Brock et al., 2019), CFG increases the quality of individual images at the expense
of less diversity (Murphy, 2023).
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4 REVISITING CLASSIFIER-FREE GUIDANCE

We now show how a conditional model can be used to simulate the behavior of classifier-free guidance,
without needing any auxiliary training to learn the unconditional score function. The analysis in this
section is inspired by Sadat et al. (2024).

First, note that at each time step t, classifier-free guidance implicitly uses the conditional score
∇zt log pt(zt|y) and the unconditional score ∇zt log pt(zt) to guide the sampling process. From
Bayes’ theorem, we can write pt(zt|y) = pt(y|zt)pt(zt)

pt(y)
, which gives us

∇zt
log pt(zt|y) = ∇zt

log pt(zt) +∇zt
log pt(y|zt). (6)

Next, assume that we replace the condition y with a random vector ŷ ∼ q(ŷ) that is independent of
the input zt. In this case, the “classifier” pt(ŷ|zt) is equal to q(ŷ), which gives us

∇zt
log pt(zt| ŷ) ≈ ∇zt

log pt(zt) +∇zt
log q(ŷ) = ∇zt

log pt(zt). (7)

This suggests that we can estimate the unconditional score purely based on the conditional model
by replacing the condition y with an independent vector ŷ. We argue as a result that there is no
need to train a separate model Dθ(zt, t,ynull) to apply classifier-free guidance, as we can use the
conditional model itself to predict the score of the unconditional distribution as long as we pick an
input condition that is independent of zt. We call this method independent condition guidance (ICG)
for the rest of the paper.

In reality, the scores in Equation (7) are approximated by finite-capacity parametric models on
dependent data drawn from pt(zt,y).1 In this case, Dθ(zt, t, ŷ) will not necessarily exactly equal
Dθ(zt, t,ynull) since independent ŷ and zt are technically out of distribution relative to what the
model was trained on. We have not found this to be an issue in practice, and further, the expected
error in the unconditional score estimate can be made arbitrarily small through both the capacity of
Dθ and the choice of q(ŷ). We provide an analysis in the appendix.

Implementation details In practice, we experiment with two options for the independent condition.
First, ŷ can be drawn from a Gaussian distribution with a suitable standard deviation so that ŷ matches
the scale of the actual conditioning vector y. Second, a random condition from the conditioning
space, such as a random class label or random clip tokens, can be chosen as the independent ŷ. We
show in Section 7 that both methods perform similarly. However, there may be a slight preference for
the random condition over Gaussian noise, as it stays closer to the conditioning distribution that the
diffusion model was trained on.

5 TIME-STEP GUIDANCE

Inspired by ICG, we next offer an extension of classifier-free guidance that can be used with any
model, including unconditional networks. We begin our analysis with class-conditional models and
subsequently extend it to a more general setting.

In the class-conditional case, the embedding vector of the class is typically added to the embedding
vector of the time step t to compute the input condition of the diffusion network. Hence, in practice,
CFG essentially uses the outputs of the diffusion network for two different input embeddings and
takes their difference as the update direction. Thus, we might directly utilize the time-step embedding
of each diffusion model as a means to define a similar guidance signal. This leads to a novel method
that we refer to as time-step guidance (TSG), which, like CFG, increases the quality of generations
but, unlike CFG, is applicable even to unconditional models.

In this method, we compute the model outputs for the clean time-step embedding and a perturbed
embedding and use their difference to guide the sampling. More specifically, at each time step t, we
update the output via

D̂θ(zt, t) = Dθ(zt, t̃) + wTSG
(
Dθ(zt, t)−Dθ(zt, t̃)

)
, (8)

where t̃ is the perturbed version of t. The intuition behind TSG is that at each time step t, altering the
time-step embedding of the network leads to denoised outputs with either insufficient or excessive

1However, at the highest noise scales, pt(zt,y) ≈ pt(zt)p(y).
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noise removal (see Figure 10 in the appendix). Consequently, these outputs can be exploited to
prevent the network from going toward undesirable predictions, thus increasing the accuracy of
the score predictions at each time step. As we show below, TSG is related to stochastic Langevin
dynamics in terms of the first-order approximation, and hence, is expected to improve generation
quality.

Connection to Langevin dynamics Let t̃ = t +∆t, where ∆t is a small perturbation. Using a
Taylor expansion, we get Dθ(zt, t̃) = Dθ(zt, t) +

∂Dθ(zt,t)
∂t ∆t. Hence, D̂θ(zt, t̃) = Dθ(zt, t) +

(1− wTSG)
∂Dθ(zt,t)

∂t ∆t. Based on Equation (4), the score function is equal to

∇zt
log p̂t(zt) = ∇zt

log pt(zt) +
1− wTSG

σ(t)2
∂Dθ(zt, t)

∂t
∆t. (9)

Now, if we follow the Euler sampling step for solving Equation (1), i.e. we define the update rule
as zt−1 = zt + ηt ∇zt

log p̂t(zt), then the modified sampling step after time-step guidance will be
equal to

zt−1 = zt + ηt ∇zt log pt(zt) + ηt
1− wTSG

σ(t)2
∂Dθ(zt, t)

∂t
∆t. (10)

Assuming that ∆t is a Gaussian random variable with zero mean, the update rule resembles a
Langevin dynamics step, where the noise strength is determined based on the network behavior as
represented by ∂Dθ(zt,t)

∂t . As Langevin dynamics is known to increase the quality of sampling from
a given distribution by compensating for the errors happening at each sampling step, we argue that
TSG also behaves similarly in terms of first-order approximation.

Implementation details In practice, we implement TSG by perturbing the time-step embedding
with zero-mean Gaussian noise according to t̃emb = temb + stαn where n ∼ N (000, III) and stα

determines the noise scale at each time step t. We choose s and α such that the scale of the noise
portion becomes comparable to the scale of the time-step embedding temb. Empirically, we also find
that it is sometimes beneficial to apply the perturbed embeddings only to a portion of layers in the
diffusion network, e.g., using t̃emb for the first 10 layers and temb for the rest of layers. We provide
ablations on these hyperparameters in Section 7.

6 EXPERIMENTS

In this section, we rigorously evaluate ICG and demonstrate its ability to simulate the behavior of
CFG across several conditional models. Additionally, we show that TSG improves the quality of both
conditional and unconditional generations compared to the non-guided sampling baseline.

Setup All experiments are conducted via pre-trained checkpoints provided by official implementa-
tions. We use the recommended sampler that comes with each model, such as the EDM sampler for
EDM networks (Karras et al., 2022), DPM++ (Lu et al., 2022b) for Stable Diffusion (Rombach et al.,
2022), and DDPM (Ho et al., 2020) for DiT-XL/2 (Peebles & Xie, 2022).

Evaluation We use Fréchet Inception Distance (FID) (Heusel et al., 2017) as the main metric to
measure both quality and diversity due to its alignment with human judgment. As FID is known to
be sensitive to small implementation details, we ensure that models under comparison follow the
same evaluation setup. For completeness, we also report precision (Kynkäänniemi et al., 2019) as
a standalone quality metric and recall (Kynkäänniemi et al., 2019) as a diversity metric whenever
possible. FDDINOv2 (Stein et al., 2024) is also reported for the EDM2 model (Karras et al., 2023).

6.1 COMPARISON BETWEEN ICG AND CFG

Qualitative results The qualitative comparisons between ICG and CFG are given in Figure 1 for
Stable Diffusion (Rombach et al., 2022) and DiT-XL/2 (Peebles & Xie, 2022) models. Figure 2
also shows a comparison between the EDM2 model (Karras et al., 2023) guided with a separate
unconditional module vs ICG. We observe that both ICG and CFG improve image quality, and the
outputs of ICG and CFG are almost identical. This empirical evidence agrees with our theoretical
justification provided in Section 4.
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w/o guidance CFG ICG (Ours)

(a) Stable Diffusion

w/o guidance CFG ICG (Ours)

(b) DiT-XL/2

Figure 1: Comparison between CFG and ICG for (a) Stable Diffusion (Rombach et al., 2022) and (b)
DiT-XL/2 (Peebles & Xie, 2022). Both CFG and ICG significantly improve the image quality of the
baseline. Also note the similarity between the outputs of CFG and ICG, confirming our theoretical
analysis in Section 4.

w/o guidance CFG ICG (Ours)

Figure 2: Comparison between the EDM2 model (Karras et al., 2023) guided with another uncondi-
tional module and ICG. We observe that using ICG leads to similar generations as CFG, and both
methods significantly improve output quality compared to sampling without guidance.

Quantitative results We now show that ICG and CFG both result in similar performance metrics
across several conditional models. As shown in Table 1, compared to CFG, ICG achieves better or
similar performance across all metrics.2 In Table 2, we also compare the effect of ICG on EDM
(Karras et al., 2022) and EDM2 (Karras et al., 2023) models that were not trained with the CFG
objective. The table shows that ICG performs similarly to guiding the generations with a separate
unconditional module.

Effect of removing the CFG objective from training In this experiment, we demonstrate that the
training component allocated to the CFG objective (i.e., label dropping) is unnecessary, and better
results are obtained by training a purely conditional model and guiding the generations at inference
with ICG. Using a DiT model for class-conditional ImageNet generation, Figure 3 shows that the
purely conditional model consistently outperforms standard training with label dropping (p = 0.1)
across all checkpoints. Consequently, training resources can be reallocated to the conditional part,
leading to either faster convergence (by approximately 30%) or a better model (with around a 20%
reduction in FID) with the same number of training iterations.

2For MDM (Tevet et al., 2023), recall is not available, and R-precision is reported similar to the paper.
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Table 1: Quantitative comparison between CFG and ICG. ICG is able to achieve similar metrics to
standard CFG by extracting the unconditional score from the conditional model itself.

Model Architecture Guidance FID ↓ Precision ↑ Recall ↑

Stable Diffusion (Rombach et al., 2022) UNet CFG 20.13 0.69 0.54
ICG (Ours) 20.05 0.69 0.53

DiT-XL/2 (Peebles & Xie, 2022) Transformer CFG 5.56 0.81 0.66
ICG (Ours) 5.50 0.83 0.65

Pose-to-Image (Sadat et al., 2024) UNet CFG 14.61 0.93 0.02
ICG (Ours) 13.46 0.94 0.03

MDM (Tevet et al., 2023) Transformer CFG 0.65 0.73 -
ICG (Ours) 0.47 0.71 -

Table 2: Quantitative comparison between CFG and ICG for EDM networks. Although these models
are not trained with the CFG objective, guiding their generations using a separate unconditional
module results in similar outcomes to using ICG.

Model Dataset Guidance FID ↓ FDDINOv2 ↓

EDM2-XS (Karras et al., 2023) Imagenet CFG 3.36 79.94
ICG (Ours) 3.35 79.54

EDM (Karras et al., 2022) CIFAR-10 CFG 1.87 -
ICG (Ours) 1.87 -
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Figure 3: Comparison of CFG and ICG during training of a DiT model on ImageNet. Compared to
standard CFG with label dropping, using ICG with a purely conditional model achieves better FID
across all checkpoints. This indicates that the iterations spent on the CFG objective could be better
allocated to training the conditional score, ultimately leading to a better model.

Varying the Guidance Scale Next, we demonstrate that by varying the guidance scale of ICG,
we can increase the quality of outputs in a manner similar to standard CFG. As shown in Figure 4,
increasing the guidance scale improves precision but reduces recall. The FID plots also form a
U-shaped curve, consistent with what we expect from standard CFG.

Results for ControlNet We also show that ICG can be used for improving the quality of image-
conditioned models as well. We use ControlNet (Zhang & Agrawala, 2023) as an example in this
section since it is not trained with the CFG objective on the image condition input. That is, it only
applies CFG to the text component of the condition. Our results are given in Figure 5. We see that
without any text prompt, ICG significantly improves the quality of generations over the base sampling.

6.2 EFFECTIVENESS OF TIME-STEP GUIDANCE

Lastly, we show the effectiveness of time-step guidance in improving generation quality without
relying on any information about the conditioning signal. The qualitative results are given in Figure 6.
We can see that TSG increases the image quality of both conditional and unconditional sampling.
Table 3 also presents the quantitative evaluation of TSG for both conditional and unconditional
generation. Similar to CFG, using TSG significantly improves FID by trading diversity with quality.
Finally, Figure 7 shows how TSG behaves as we increase the guidance scale. We observe that similar
to CFG, TSG also has a U-shaped plot for the FID as the guidance scale increases.
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Figure 4: Behavior of ICG as the guidance scale increases. Similar to CFG, ICG trades diversity
(lower recall) for quality (higher precision) at higher guidance scales.
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Figure 5: Image-conditioned generation with ControlNet (without prompt). ICG significantly
increases the quality of generations by applying guidance to the image condition.
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w/o guidance TSG (Ours)

(a) DiT-XL/2 unconditional

w/o guidance TSG (Ours)

(b) Stable Diffusion unconditional

w/o guidance TSG (Ours)

(c) DiT-XL/2 conditional

w/o guidance TSG (Ours)

(d) Stable Diffusion conditional

Figure 6: Effectiveness of TSG to improve the quality of both unconditional and conditional genera-
tion across two different models: DiT-XL/2 (Peebles & Xie, 2022) for class-conditional generation,
and Stable Diffusion (Rombach et al., 2022) for text-conditional generation.

Table 3: Quantitative comparison between the baseline sampling of the diffusion models and sampling
with TSG. TSG significantly boosts quality (lower FID) across various setups.

Model Architecture Type Guidance FID ↓ Precision ↑ Recall ↑

Stable Diffusion (Rombach et al., 2022) UNet
Unconditional ✗ 69.38 0.42 0.49

TSG (Ours) 56.65 0.54 0.54

Text-conditional ✗ 36.63 0.48 0.64
TSG (Ours) 22.17 0.62 0.59

DiT-XL/2 (Peebles & Xie, 2022) Transformer
Unconditional ✗ 48.67 0.48 0.59

TSG (Ours) 29.03 0.69 0.55

Class-conditional ✗ 15.49 0.64 0.74
TSG (Ours) 6.39 0.82 0.65
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Figure 7: Behavior of TSG as the guidance scale increases for DiT-XL/2. Similar to CFG, TSG also
significantly improves FID by trading diversity (recall) with quality (precision).

Table 4: Compatibility of ICG and TSG

ICG TSG FID ↓ Precision ↑ Recall ↑
✗ ✗ 15.49 0.64 0.74
✓ ✗ 6.47 0.77 0.69
✗ ✓ 9.55 0.70 0.71
✓ ✓ 5.76 0.82 0.65

Combining TSG and ICG We also demonstrate that
ICG and TSG can be complementary to each other when
combined at the proper scale. The quantitative results
of this experiment are presented in Table 4 with a visual
example given in Figure 8. The table indicates that the
combination of ICG and TSG outperforms each method
in isolation in terms of FID, and all guided sampling algo-
rithms significantly outperform the non-guided baseline.
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w/o guidance ICG ICG + TSG

Figure 8: Visual example of combining ICG and TSG. The combination yields better visual genera-
tions compared to the baseline and using ICG alone.

Table 6: Ablation study examining various design elements in TSG.

(a) Influence of the noise scale s

s FID ↓ Precision ↑ Recall ↑

1.0 10.23 0.69 0.35
2.0 6.85 0.80 0.69
2.5 7.94 0.80 0.69

(b) Influence of α

α FID ↓ Precision ↑ Recall ↑

0.75 7.22 0.82 0.62
1.0 6.39 0.84 0.65
1.25 6.47 0.78 0.66

(c) Maximum layer index

Index FID ↓ Precision ↑ Recall ↑

5 7.84 0.75 0.69
10 6.85 0.79 0.65
15 7.65 0.82 0.65

7 ABLATION STUDIES

We next present the ablation studies on the effect of random conditioning in ICG and the hyperparam-
eters in TSG. All ablations are conducted using the DiT-XL/2 model (Peebles & Xie, 2022).

Table 5: Ablation on the choice of inde-
pendent condition in ICG.

ICG method FID ↓ Precision ↑ Recall ↑
Gaussian noise 5.50 0.83 0.65
Random condition 5.55 0.83 0.65

The choice of random condition in ICG We first
show that both Gaussian noise and random conditions
can be used for estimating the unconditional part in ICG.
The quantitative results are given in Table 5. The table
shows that both methods are viable options for simulating
classifier-free guidance without training.

Impact of hyperparameters in time-step guidance This ablation study explores the effect of
hyperparameters in TSG. The results are presented in Table 6. We observe that as we introduce
more perturbation into the time-step embedding of the model, in the form of higher noise scale s
(Table 6a), lower power α (Table 6b), or higher layer index (Table 6c), precision improves while recall
decreases. This suggests that the amount of perturbation should be balanced for a good trade-off
between diversity and quality. We also empirically observed that adding too much noise to the
time-step embedding hurts image quality.

8 DISCUSSION AND CONCLUSION

In this paper, we revisited the core aspects of classifier-free guidance and showed that by replacing
the conditional vector in a trained conditional diffusion model with an independent condition, we
can efficiently estimate the score of the unconditional distribution. We then introduced independent
condition guidance (ICG), a novel method that simulates the same behavior as CFG without the
need to learn an unconditional model during training. Inspired by this, we also proposed time-step
guidance (TSG) and demonstrated that the time-step information learned by the diffusion model can
be leveraged to enhance the quality of generations, even for unconditional models. Our experiments
indicate that ICG performs similarly to standard CFG and alleviates the need to consider the CFG
objective during training. Thus, ICG streamlines the training of conditional models and improves
training efficiency. Additionally, we verified that TSG also improves generation quality in a manner
similar to CFG, without relying on any conditional information. As with CFG, challenges remain
in accelerating the proposed methods to narrow the gap between the cost of guided and unguided
sampling (i.e., eliminating the need to query the diffusion model twice per sampling step); we view
this topic as a promising avenue for further research.
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ETHICS STATEMENT

As generative modeling advances, the creation and spread of fabricated or inaccurate data become
easier. Thus, while improvements in AI-generated content can boost productivity and creativity, it is
crucial to consider the associated risks and ethical implications. For a more detailed discussion on
the ethics and creativity in computer vision, we refer readers to Rostamzadeh et al. (2021).

REPRODUCIBILITY STATEMENT

This work is based on the official implementations of the pretrained models referenced in the main
text. The exact algorithms for ICG and TSG are provided in Algorithms 1 and 2, with corresponding
pseudocode shown in Figures 11 and 12. Additional implementation details, including the specific
hyperparameters used to generate the results in this paper, are discussed in Appendix G.
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A ANALYSIS OF THE ERROR IN ESTIMATING THE UNCONDITIONAL SCORE

In this section, we provide another perspective on why training the conditional score is sufficient for
computing the unconditional score. For ease of exposition, assume that the model’s objective is to
directly learn the conditional score, sθ(z,y) ≈ ∇z log p(z|y), from paired data jointly drawn from
p(z,y). This can be achieved by directly using denoising score matching (Song et al., 2021b) or
by training a denoiser Dθ(z,y) and converting its outputs to the corresponding score function via
Equation (4). The question then boils down to whether the unconditional score, ∇z log p(z), can be
recovered from the conditional score.
Lemma A.1. The unconditional score, ∇z log p(z), is equal to the conditional expectation of the
conditional score, ∇z log p(z|y).

Proof. By direct calculation, we have that

∇z log p(z) =
∇z p(z)

p(z)
(11)

=
∇z

∫
p(y)p(z|y)dy
p(z)

(12)

=

∫
p(y)

p(z)
∇z p(z|y)dy (13)

=

∫
p(y)p(z|y)
p(z)p(z|y)

∇z p(z|y)dy (14)

=

∫
p(y|z)∇z log p(z|y)dy. (15)

The last term is the conditional expectation of the conditional score, proving the result.

This shows that under sufficient data and optimization, the unconditional score at each time step is
theoretically available from the conditional score through (conditional) marginalization. It is also
therefore the case that a condition drawn from p(y|z) will produce an unbiased estimate of the
unconditional score.

We propose drawing conditions randomly from a distribution q(y), which is not necessarily equal to
p(y|z). Below we characterize the approximation error incurred by this choice.
Theorem A.2. When the expectation is taken over the distribution q(y), we have

Eq(y)[∇z log p(z|y)] = ∇z log p(z)−∇zDKL(q(y)∥p(y|z)).
That is, the approximation error is bounded by the gradient of the KL divergence between q(y) and
p(y|z).

Proof. We can write
∇z log p(z|y) = ∇z log p(z,y)−∇z log p(y) = ∇z log p(z,y),

which in turn can be written as
∇z log p(z,y) = ∇z log p(z) +∇z log p(y|z).

Taking the expectation over q(y), we have
Eq(y)[∇z log p(z,y)] = ∇z log p(z) + Eq(y)[∇z log p(y|z)]

= ∇z log p(z) + Error.

Now consider the KL divergence between q(y) and p(y|z):

DKL(q(y)∥p(y|z)) =
∫

q(y)[log q(y)− log p(y|z)].

Taking the gradient with respect to z, we have

∇zDKL(q(y)∥p(y|z)) = −
∫

q(y)∇z log p(y|z)dy = −Eq(y)[∇z log p(y|z)],

which is the negative of the error term above, proving the result.
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B ANALYSIS OF THE ICG ESTIMATOR FOR MIXTURES OF GAUSSIANS

We now analyze the ICG estimator using a mixture of Gaussian distributions so that the ground
truth scores are analytically available. Assume we have the data distribution given by pdata(x) =
0.5N (x;µ0, III) + 0.5N (x;µ1, III). This gives us pdata(x|y = 0) := p0(x) = N (x;µ0, III) and
pdata(x|y = 1) := p1(x) = N (x;µ1, III). Given the forward process zt = x+σtϵ, we have p0(zt) =
N
(
zt;µ0, (1 + σ2

t )III
)

and p1(zt) = N
(
zt;µ1, (1 + σ2

t )III
)
. Let s(zt, y) be the conditional score

function ∇zt
log pt(zt|y) In this case, the conditional score functions are given by

s(zt, y = 0) =
µ0 − x

1 + σ2
t

, and s(zt, y = 1) =
µ1 − x

1 + σ2
t

. (16)

The unconditional score function is equal to

s(zt) =
0.5∇zt p0(zt) + 0.5∇zt p1(zt)

0.5p0(zt) + 0.5p1(zt)
(17)

=
∇zt

N
(
x;µ0, (1 + σ2

t )III
)
+∇zt

N
(
x;µ1, (1 + σ2

t )III
)

p0(zt) + p1(zt)
(18)

=
p0(zt)

p0(zt) + p1(zt)

µ0 − x

1 + σ2
t

+
p1(zt)

p0(zt) + p1(zt)

µ1 − x

1 + σ2
t

(19)

The CFG update direction is therefore given by

s(zt, y = 0)− s(zt) =
µ0 − x

1 + σ2
t

− p0(zt)

p0(zt) + p1(zt)

µ0 − x

1 + σ2
t

− p1(zt)

p0(zt) + p1(zt)

µ1 − x

1 + σ2
t

(20)

=
p1(zt)

p0(zt) + p1(zt)

µ0 − x

1 + σ2
t

− p1(zt)

p0(zt) + p1(zt)

µ1 − x

1 + σ2
t

(21)

=
p1(zt)

p0(zt) + p1(zt)

µ0 − µ1

1 + σ2
t

(22)

For ICG, assume that the random condition ŷ is sampled from q(ŷ). Therefore, the update rule given
by ICG is equal to

s(zt, y = 0)− s(zt, ŷ) =

{
0 ŷ = 0,
µ0−µ1

1+σ2
t

ŷ = 1.
(23)

This means that on expectation, the update direction of ICG is equal to

Eq(ŷ)[s(zt, y = 0)− s(zt, ŷ)] = q(ŷ = 1)
µ0 − µ1

1 + σ2
t

. (24)

This example shows that in theory, we can set q(ŷ = 1) = p1(zt)
p0(zt)+p1(zt)

, and the ICG estimator
becomes an unbiased estimate of the CFG update direction. In practice and for real-world models, we
noted that it is sufficient to set q(ŷ) to either a uniform distribution over the space of the conditions,
or equal to a Gaussian distribution with suitable standard deviation.

C COMPATIBILITY OF ICG WITH CADS

Table 7: Effectiveness of CADS on ICG.

Guidance FID ↓ Precision ↑ Recall ↑
ICG 20.56 0.89 0.32
+CADS 8.83 0.78 0.61

We show that ICG is compatible with CADS (Sadat et al.,
2024), and CADS can be used on top of ICG to increase the
diversity of generations. An example of applying CADS
to ICG is shown in Figure 9, and the quantitative results
are given in Table 7 for the DiT-XL/2 model. As ICG
behaves similarly to the standard CFG, applying CADS
increases diversity with minimal drop in quality.

D INTUITION BEHIND TSG

This section provides more intuition on time-step guidance. We demonstrate that if we perturb the
time step with a positive or negative constant (using t+ δ or t− δ) to guide the sampling, it results
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ICG +CADS ICG +CADS

Figure 9: Similar to CFG, ICG is compatible with CADS, and CADS can be used to increase the
diversity of ICG at higher guidance scales. Samples are generated from the DiT-XL/2 model.

t− δ t+ δ TSG

Figure 10: Intuition behind TSG: Using lower time steps for guidance causes excessive noise removal
(soft outputs), while higher time steps cause insufficient noise removal (noisy images). TSG employs
both directions to improve output quality.

Table 8: Comparison between TSG and other guidance methods. TSG achieves better quality
compared to SAG and PAG while requiring no specific assumption about the underlying architecture
of the diffusion model.

Guidance FID Precision Recall

Unguided 69.38 0.42 0.49
SAG (Hong et al., 2022) 59.34 0.48 0.53
PAG (Ahn et al., 2024) 62.85 0.42 0.51
TSG (ours) 56.65 0.54 0.54

in insufficient or excessive noise removal in final generations. As shown in Figure 10, using lower
time steps causes the model to perform excessive noise removal (soft outputs), while using higher
time steps forces the model to perform insufficient noise removal (noisy images). TSG uses both
directions to prevent the outputs from moving toward these undesirable paths, thereby increasing the
quality of the generations.

E COMPARISON BETWEEN TSG AND OTHER METHODS

In this section, we compare the performance of TSG with other guidance mechanisms that improve
the generation quality of diffusion models without relying on any condition. We use self-attention
guidance (SAG) (Hong et al., 2022), and perturbed-attention guidance (PAG) (Ahn et al., 2024) as
two representative methods in this category. The results are given in Table 8. We use Stable Diffusion
2.1 for this parameters and the default hyperparameters for all methods. We note that TSG is more
effective in improving the quality of generations, providing better FID compared to SAG and PAG.
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Table 9: Comparison between unguided sampling and TSG using different number of sampling steps.
TSG is able to achieve significantly better FID compared to both unguided baselines.

Guidance # Steps FID Precision Recall

Unguided 100 15.49 0.6382 0.7437
Unguided 200 12.94 0.6683 0.7387
TSG 100 6.39 0.8198 0.6489

F INCREASING THE NUMBER OF SAMPLING STEPS

Since TSG increases the number of sampling steps (similar to CFG), a natural question is whether the
same behavior can be achieved by simply increasing the number of sampling steps in the unguided
sampling baseline. Our results in Table 9 indicate that this approach performs significantly worse
than TSG, suggesting that, like CFG, TSG alters the sampling trajectories toward higher-quality
generations. Note that TSG achieves a significantly better FID compared to both unguided sampling
baselines. This aligns with findings from the CFG literature, where guided sampling outperforms
unguided baselines even with many sampling steps (e.g., 1000 steps) (Dhariwal & Nichol, 2021; Ho
& Salimans, 2022).

G IMPLEMENTATION DETAILS

The sampling details for ICG and TSG are provided in Algorithms 1 and 2. Both algorithms are
straightforward to implement and require minimal code changes compared to the base sampling. The
pseudocode for implementing ICG and TSG is also included in Figures 11 and 12. Additionally, the
hyperparameters used in our experiments are listed in Tables 10 and 11. The CADS experiment was
conducted with a linear schedule using τ1 = 0.5, τ2 = 0.9, and sCADS = 0.15. Lastly, please note
that we did not perform an exhaustive grid search on the parameters of TSG, and better configurations
are likely to exist for each model.

For the TSG noise schedule, we experimented with a constant and a power schedule, as shown in
Figure 12, and found that both work similarly. We recommend using the power schedule as it offers
more flexibility over the scale of the noise at each t. The constant schedule is technically a special
case of the power schedule, where the exponent is zero. We also found it useful to apply TSG only
at intervals during the sampling, i.e., for t ∈ [Tmin, Tmax], where Tmin and Tmax are hyperparameters.
Also, when limiting TSG to only a portion of layers in the diffusion model, we used the first N layers
of transformer-based architectures and the first N layers of the encoder and decoder in UNet-based
architectures. We chose to scale the amount of noise s based on the standard deviation of the time-step
embedding (see Figures 11 and 12) for more fine-grained control over the scale.

We primarily use the ADM evaluation script (Dhariwal & Nichol, 2021) for computing FID, precision,
and recall to ensure a fair comparison across experiments. For class-conditional models, the FID is
computed between 10,000 (for DiT-XL/2) or 50,000 (For EDM and EDM2) generated images and
the full training dataset. For text-to-image models, we use the evaluation subset of MS COCO 2017
(Lin et al., 2014) as the ground truth for captions and images.

H MORE VISUAL RESULTS

This section presents additional visual results for our guidance methods. More results on ICG are
provided in Figure 13, while additional results for TSG are shown in Figures 14 and 15. Consistent
with the main results of the paper, ICG produces similar outcomes to CFG, and TSG consistently
enhances the quality compared to the baseline. Figure 16 provides examples of the effectiveness
of TSG based on Stable Diffusion XL (SDXL) (Podell et al., 2023). Finally, Figure 17 shows
a qualitative comparison between unguided sampling and sampling with TSG for several latent
diffusion models from Rombach et al. (2022).
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Algorithm 1 Sampling with ICG

Require: wICG: ICG strength
Require: y: Input condition

1: Initial value: z1 ∼ N (0, III)
2: for t = T, . . . , 1 do

3: ◦ Pick a random ŷ independent of zt (Gaussian noise or from the conditioning space).

4: ◦ Compute the ICG guided output at t:
D̂ICG(zt, t,y) = D(zt, t, ŷ) + wICG(D(zt, t,y)−D(zt, t, ŷ)).

5: ◦ Perform one sampling step (e.g. one step of DDPM):
zt−1 = diffusion_reverse(D̂ICG, zt, t).

6: end for
7: return z0

Algorithm 2 Sampling with TSG

Require: wTSG: TSG strength
Require: (s, α): TSG hyperparameters
Require: y: Input condition (optional)

1: Initial value: z1 ∼ N (0, III)
2: for t = T, . . . , 1 do

3: ◦ Perturb the time-step embedding temb to get t̂emb:
t̂emb = temb + stαn, where n ∼ N (000, III).

4: ◦ Compute the TSG guided output at t:
D̂TSG(zt, t,y) = D(zt, t̂emb,y) + wTSG(D(zt, temb,y)−D(zt, t̂emb,y)).

5: ◦ Perform one sampling step (e.g. one step of DDPM):
zt−1 = diffusion_reverse(D̂TSG, zt, t).

6: end for
7: return z0

Table 10: Hyperparameters used for the ICG experiments.

Model ICG mode ICG scale CFG scale

DiT-XL/2 Random class 1.4 1.5
Stable Diffusion Random text 3.0 4.0
Pose-to-Image Gaussian noise 3.0 4.0
MDM Gaussian noise 2.5 2.5

EDM Random class 1.05 1.1
EDM2 Random class 1.25 1.25

Table 11: Hyperparameters used for the TSG experiments.

Model Mode TSG function TSG scale TSG parameters

DiT-XL/2 Unconditional constant_schedule 5.0 T_MIN = 200, T_MAX = 800, s = 1.0
DiT-XL/2 Conditional power_schedule 2.5 T_MIN = 0, T_MAX = 1000, α = 1, s = 2

Stable Diffusion Unconditional constant_schedule 3.0 T_MIN = 100, T_MAX = 900, s = 1.25
Stable Diffusion Conditional power_schedule 4.0 T_MIN = 400, T_MAX = 1000, s = 3.0, α = 0.25
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1 def get_random_class():
2 """Random class labels."""

3 y_random = torch.randint(0, NUM_CLASSES, (BATCH_SIZE, ))

4 return y_random

5

6 def get_random_text():
7 """Random text tokens."""

8 random_idx = torch.randint(0, NUM_TOKENS, (BATCH_SIZE, MAX_LENGTH))

9 random_tokens = text_encoder(random_idx, attention_mask=None)[0]
10 return random_tokens

11

12 def get_gaussian_noise_embedding(embeddings):
13 """Random embedding based on Gaussian noise."""

14 noise_embedding = torch.randn_like(embeddings) * embeddings.std()

15 return noise_embedding

16

17 def get_gaussian_noise_image(image_cond):
18 """Random condition for image-conditional models."""

19 noise_embedding = torch.randn_like(image_cond) * SCALE

20 return noise_embedding

21

Figure 11: Implementation details for ICG. The figure presents pseudocode for implementing the
random class, random text, and Gaussian noise embedding for the unconditional component in ICG.

1 def get_constant_schedule(t_emb, t, std_scaling=True):
2 """Applies TSG for a portion of sampling (t in [T_MIN, T_MAX])."""

3 if t < T_MIN or t > T_MAX:

4 return t_emb

5

6 noise_scale = S

7 if std_scaling:

8 noise_scale = S * t_emb.std()

9 that_emb = t_emb + torch.randn_like(t_emb) * noise_scale

10 return that_emb

11

12

13 def get_power_schedule(t_emb, t, std_scaling=True):
14 """Applies TSG according to the power schedule."""

15 if t < T_MIN or t > T_MAX:

16 return t_emb

17 noise_scale = S * t ** (ALPHA)

18 if std_scaling:

19 noise_scale = noise_scale * t_emb.std()

20 that_emb = t_emb + torch.randn_like(t_emb) * noise_scale

21 return that_emb

22

Figure 12: Implementation details for TSG. We provide two scheduling techniques for perturbing the
time-step embedding. We empirically found that both methods perform similarly.
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CFG ICG (Ours)

(a) Stable Diffusion

CFG ICG (Ours)

(b) DiT-XL/2

Figure 13: More comparisons between ICG and CFG for (a) text-to-image generation with Stable
Diffusion (Rombach et al., 2022) and (b) class-conditional generation with DiT-XL/2 (Peebles & Xie,
2022).
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w/o guidance TSG (Ours)

(a) Stable Diffusion unconditional

w/o guidance TSG (Ours)

(b) Stable Diffusion conditional

Figure 14: More comparisons on the effectiveness of TSG for improving the quality of both uncondi-
tional and conditional generation for Stable Diffusion (Rombach et al., 2022).
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w/o guidance TSG (Ours)

(a) DiT-XL/2 unconditional

w/o guidance TSG (Ours)

(b) DiT-XL/2 conditional

Figure 15: More comparisons on the effectiveness of TSG for improving the quality of both uncondi-
tional and conditional generation for DiT-XL/2 (Peebles & Xie, 2022).
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Figure 16: Showcasing the effectiveness of TSG in improving the quality of generations compared to
sampling without guidance based on SDXL (Podell et al., 2023).
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w/o guidance

with TSG

(a) FFHQ dataset

w/o guidance

with TSG

(b) Bedroom dataset

w/o guidance

with TSG

(c) Church dataset

Figure 17: Visual comparison between unguided sampling and sampling with TSG for several
unconditional latent diffusion models from Rombach et al. (2022). We observe that TSG consistently
improves the quality of all models compared to the baseline sampling.
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