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Figure 1: We present Neural Facial Deformation Transfer (NFDT); a method to transfer facial expressions in high fidelity from a template
character (A), to unseen target characters (B), humanoid creatures (C), and even across varying mesh topologies (D).

Abstract
We address the practical problem of generating facial blendshapes and reference animations for a new 3D character in pro-
duction environments where blendshape expressions and reference animations are readily available on a pre-defined template
character. We propose Neural Facial Deformation Transfer (NFDT); a data-driven approach to transfer facial expressions from
such a template character to new target characters given only the target’s neutral shape. To accomplish this, we first present
a simple data generation strategy to automatically create a large training dataset consisting of pairs of template and target
character shapes in the same expression. We then leverage this dataset through a decoder-only transformer that transfers facial
expressions from the template character to a target character in high fidelity. Through quantitative evaluations and a user study,
we demonstrate that NFDT surpasses the previous state-of-the-art in facial expression transfer. NFDT provides good results
across varying mesh topologies, generalizes to humanoid creatures, and can save time and cost in facial animation workflows.

CCS Concepts
• Computing methodologies → Shape modeling; Animation;

1. Introduction

Highly skilled animation artists invest a great amount of time and
effort to create believable facial animations for both animated films
and high end visual effects in live-action films. A common first
step in the facial animation workflow for a new character is the
creation of expression blendshapes, and reference animations that
establish the range of motion of the character. In production envi-
ronments where artists work on one project after another, sculpting
facial blendshapes and creating reference animations from scratch
for each character can be a repetitive and time consuming endeav-
our. So to help with this task across projects, artists usually have ac-
cess to a library of common expression blendshapes and reference
animations that are defined on a template character. This library of
facial shapes and animations is built and continuously refined over
time, and is used to bootstrap the facial animation workflow for
a new character. When an artist sets forth animating a new char-

acter, they can start by quickly transferring over blendshapes and
reference animations from the template character library to the rest
(neutral) shape of the new character, and proceed to refine them
from there. In this work, we present a simple, and practical data-
driven approach to address the transfer of facial expressions from a
template character to a new 3D target character that is defined only
by its neutral shape.

2. Related Work

Previous work to transfer facial expressions from one character
to another can be categorized into geometric and data-driven ap-
proaches. Geometric approaches like Deformation Transfer [SP04]
compute local deformations between a rest and a deformed tem-
plate shape and transfer those to a new character in the rest shape.
Another example of a geometric approach is example based facial
rigging (EBFR) [LWP10] where blendshapes for a new character
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are optimised for, given a template blendshape basis and exemplar
expression shapes of the new character. The primary challenge with
geometric approaches is that they struggle to capture the unique
style in which individuals perform similar expressions by activat-
ing their facial muscles in different ways. Data-driven approaches
for facial expression transfer on the other hand, can capture these
idiosyncrasies by learning a disentangled representation of iden-
tity and expression from a large collection of 3D shapes using su-
pervised or unsupervised learning [QSA∗23, AGK∗22, WLL∗23,
YZC∗24]. Most of these data-driven approaches, however, repre-
sent facial expressions using low-dimensional blendweights that
cannot explain subtle facial expressions faithfully.

3. Method

Our approach called Neural Facial Deformation Transfer (NFDT)
marries these two paradigms with a data-driven approach to defor-
mation transfer wherein the expression to be transferred to a target
character is provided directly as an expression shape of the template
character. Importantly, NFDT operates without a rig inversion step
(or an encoder) that bounds the template expression to a predefined
basis. As a result our method can transfer arbitrary facial expres-
sions from a template character, which may be obtained through
conventional blendshape based animation, manual sculpting or any
other means. NFDT therefore has the low setup cost, and flexibil-
ity benefits of geometric methods like Deformation Transfer, while
adapting to subject specific idiosyncrasies due to it’s data-driven
nature.

At a high level, NFDT requires two inputs (see Fig. 3) i) a de-
formed template shape performing some facial expression ii) a tar-
get shape in the neutral expression, and produces as output the de-
formed target shape in the same expression as the template charac-
ter. We learn this expression transfer through supervised learning,
and require pairs of corresponding shapes of the template and tar-
get characters in the same expression for training. In our work, we
will first describe a strategy to automatically create such a train-
ing dataset from pre-existing 3D databases with registered scans
of real human subjects (Section 3.1). Then we present our decoder-
only transformer network (Section 3.2) that leverages the generated
dataset for facial deformation transfer of unseen subjects, without
reducing the expression to a low dimension latent space.

3.1. Training Data Generation

Our training dataset should contain template and target character
shape pairs in the same facial expression. To build such a dataset,
we propose to transfer facial expressions captured from real (tar-
get) subjects to a pre-defined and fixed template character. While
this problem may seem similar to facial expression transfer at first,
transferring expressions from varying real target characters to a
fixed template character allows for two practical advantages. First
we can leverage pre-existing registered 3D facial databases with
static and dynamic expressions of hundreds of subjects [CBGB20]
for training. Secondly, we can leave the choice of template char-
acter to the user’s discretion. In practice, this allows users to set
this template character to the one for which blendshape expressions
and reference animations are already available in a production en-
vironment. This also allows us to leverage the template character’s

blendshapes as its identity prior while creating the dataset as we
will see. For easy identification, we depict the fixed template char-
acter as gray colored meshes, and the target character as blue col-
ored meshes as seen in Fig. 2 across all our results.

Let T0 be the neutral template character shape, and let S0 and
SP be the neutral and deformed shapes of a target character. As
we assume access to the template character’s blendshapes, we also
build a patch blendshape model of the template character follow-
ing [CCGB22]. Further we assume that the template and target
characters share the same number of vertices and connectivity. We
can therefore compute the per-vertex expression displacements be-
tween SP and S0 and transfer them to the template character T0
following standard delta transfer to get an initial estimate of tem-
plate character T̃P in same expression.

T̃P = T0 +(SP −S0) (1)

As the result of this initial delta transfer is prone to geometric
artifacts and identity changes, we project the estimated shape T̃P
onto the patch blendshape model of the template character. Con-
cretely, we solve for patch blendweights w∗

k,i using a regularized
patch blendshape solver [CCGB22] with 3D position constraints to
match the result of the delta transfer T̃P as closely as possible while
staying true to the template character’s identity. This patch blend-
shape solver enforces geometric consistency between neighbouring
skin patches and additionally imposes anatomical constraints to re-
sult in plausible facial shapes, which makes it possible to use its
results as ground truth for our method.

T ∗
Pk = kT0 +

N−1

∑
i=1

w∗
k,i(k

Ti − kT0) (2)

Here k is the patch index of a patch blendshape model with N
shapes. Repeating this for all k patches gives us the final deformed
template patch T ∗

P performing the same expression as SP. We
do this for every expression of all subjects in the 3D database
[CBGB20] to result in the final training dataset for NFDT.

3.2. Network Architecture

To learn from the generated dataset, we design a topology agnos-
tic, decoder-only transformer network to transfer expressions from
a deformed template shape to the rest shape of a target character.
As illustrated in Fig. 3, we adapt the Shape Transformer [CZG∗22]
for this purpose and provide corresponding vertices from the de-
formed template shape T ∗

P and the neutral target shape S0 as input
tokens to the shape transformer. Both input tokens are treated as
displacements from the neutral template shape T0 to keep the net-
work inputs small, and are individual processed by a template and
target MLP respectively. At the other end, the output MLP pre-
dicts expression displacements for the given target character with
respect to the given neutral target shape. The network is trained
using a L2 loss on the predicted deformed target shape, using the
adam optimizer for 200 epochs. We note that other geometry back-
bones [SACO22, AGK∗22] could be readily used here in place of
the Shape Transformer.
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(a) Our two step dataset generation consists of delta transfer step to get an initial estimate of
the deformed template character T̃P, followed by a patch blendshape solver to result in the final
deformed template shape T ∗

P .
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(b) Expressions transferred to the template character
following our approach for both static and dynamic ex-
pressions from a 3D face dataset [CBGB20].

Figure 2: (a) Our dataset generation procedure (b) Examples of template/target expression pairs generated by our method.
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Figure 3: Our architecture consists of pointwise template/target
MLPs that serve as learned position encoding on the input posi-
tions. We use 4 shape transformer blocks with a feature dimension
of 256. The pointwise output MLP maps the tokens back to 3D dis-
placements, which are applied on top of the neutral shape to result
in the final deformed target shape. At inference time, our network
can run on a single Nvidia 3090Ti GPU at around 15 FPS.

4. Results

We now demonstrate the usefulness of our method through various
results and practical applications in facial animation. We also refer
to our supplemental video for animation results.

Quantitative Evaluation. Recollect that our method only requires
the neutral shape of the target character to transfer expressions
from a deformed template shape. This is the same requirement
as for popular retargeting techniques like delta transfer and defor-
mation transfer [SP04]. In Fig. 4, we show comparisons of trans-
ferring static expressions from our template shape to a few un-
seen target characters using delta transfer and deformation trans-
fer. Our method provides results that are closest to actual target
character’s expressions. In Table 1, we also perform a quantita-
tive evaluation on 5 animations from test subjects, and compare
NFDT to two recent approaches in geometric [CCGB22] and data-
driven [CZG∗22] facial animation retargeting. Again our method
achieves the lowest error.

User Study. For the same set of results from Table 1, we also con-
ducted a user study to qualitatively gauge the performance of our
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Figure 4: Our method captures identity specific expression defor-
mations better than widely used methods like Delta Transfer and
the method of Sumner et al. [SP04]. Scale 0 mm 10 mm

Table 1: Reconstruction errors (in mm) for unseen animations

Method Mean Median Std. Dev.
Anatomical Model [CCGB22] 2.89 3.16 1.16
Shape Transformer [CZG∗22] 1.87 1.99 0.28
NFDT (Ours) 1.70 1.83 0.58

method. Participants were shown facial animations generated by
the three methods and were asked which of them was the most/least
similar to the ground truth target animation. Participants also an-
swered the same questions for a second time when only the tem-
plate character’s animation was shown instead of the ground truth.
The ordering of the samples was randomized for each question. A
total of 41 participants took part in our user study, whose results are
consolidated in Fig. 5. Most participants rated our method NFDT
to have results that are most similar to the ground truth animation.

Nonlinear Expression Interpolation. NFDT can capture subject
specific nonlinear expression deformations and therefore can be
used as a shape prior to augment linear blendshape animation. In
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Figure 5: A majority of the participants found that our method
NFDT was the most similar to ground truth/template animation.
Participants also largely rated the geometric approach [CCGB22]
as least similar to the ground truth/reference animation.

Figure 6: Even when the template expressions (top row) are created
via linear interpolation of expressions, NFDT can capture nonlin-
ear effects in target subject’s expression (bottom row), such as the
opening of the mouth. Results for two target characters are shown.

Fig. 6, we show two examples of transferring a linear interpolation
between two template expressions to different target characters.

Performance Generation. NFDT can be used to transfer refer-
ence blendshapes and ROM animations to unseen target subjects,
and even generalizes to humanoid creatures (see Fig. 1 and our sup-
plemental video).

Application on FLAME Topology. As NFDT is built using only
point-wise MLPs and Shape Transformer blocks, we can apply our
trained model to varying target mesh topologies at inference time,
without fine-tuning. In Fig. 7 we show facial expression transfers
in the FLAME mesh topology. This ability also allows us to lever-
age off-the-shelf algorithms to obtain a neutral target shape from a
single in-the-wild image, and then apply NFDT on the recovered
neutral target geometry to quickly setup blendshapes and reference
animations for real life characters (see Fig. 8).

5. Conclusion

We propose Neural Facial Deformation Transfer (NFDT), a method
to transfer facial expressions and animations from a template char-
acter to unseen target characters given only their neutral 3D shape.
In comparison to previous work, NFDT does not require a rig in-
version step to describe template expressions within a pre-defined
blendshape basis and can therefore faithfully represent arbitrary ex-
pression shapes produced by artists. Unlike standard Deformation
Transfer [SP04], NFDT can also capture target specific expression
deformations, and can operate on arbitrary topologies without re-
quiring a mapping between them. While occasionally resulting in
minor artifacts, NFDT has the potential to save cost and time in
animation workflows.

Figure 7: NFDT can be applied to varying mesh topologies at test
time without any fine-tuning, like that of the FLAME model.

Figure 8: By recovering the neutral shape of a target character
from a single RGB image using off-the-shelf methods, NFDT can be
used to generate target blendshapes and reference animations eas-
ily, and thereby saving time and cost in production environments.
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