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Figure 1. Video outpainting results on two different resolutions. In both case, the area outside the red box is outpainted. Our method

achieves results of better quality and more temporally stable, compared to recent works such as Dehan [13], M3DDM [14] and MOTIA [48].

Abstract

Extending the field of view of video content beyond its

original version has many applications: immersive viewing

experience with VR devices, reformatting 4:3 legacy con-

tent to today’s viewing conditions with wide screens, or

simply extending vertically captured phone videos. Many

existing works focus on synthesizing the video using gen-

erative models only. Despite promising results, this strat-

egy seems at the moment limited in terms of quality. In this

work, we address this problem using two key ideas: 3D sup-

ported outpainting for the static regions of the images, and

leveraging pre-trained video diffusion model to ensure re-

alistic and temporally coherent results, particularly for the

dynamic parts. In the first stage, we iterate between im-

age outpainting and updating the 3D scene representation -

we use 3D Gaussian Splatting. Then we consider dynamic

objects independently per frame and inpaint missing pixels.

Finally, we propose a denoising scheme that allows to main-

tain known reliable regions and update the dynamic parts to

obtain temporally realistic results. We achieve state-of-the-

art video outpainting. This is validated quantitatively and

through a user study. We are also able to extend the field of

view largely beyond the limits reached by existing methods.

1. Introduction

Expanding video frames beyond their original field of view

(FoV), known as Video Outpainting, is a technique with

broad applications in modern media. One example is 4:3

legacy content re-targeting where video outpainting can be

used to fill modern widescreen devices seamlessly while

avoiding any unnatural stretching. A more forward-looking

application is movie viewing with virtual reality (VR) head-

sets. Video outpainting can enhance the immersion by em-

bedding the viewer in the scene, eliminating distractions

from unrelated backgrounds. However, these applications

require extremely high-quality results, which is particularly

challenging since the synthesized images must integrate

harmoniously with the original content and maintain strong

temporal coherence across frames.

Although a wide variety of methods have been pro-

posed, using a patch-based approach [1, 2, 12, 46], optical

flow [13] or Generative Adversarial Networks (GAN) [24,

53], most recent methods have clearly identified Diffu-

sion Models [14, 48] as the most promising direction.

M3DDM [14] trains a 3D diffusion model on large-scale

data for video outpainting with a mask modeling approach.



In contrast, MOTIA [48] proposes to fine-tune a pre-trained

video diffusion model [19] on each test video to capture

data-specific motion and content patterns. However, both

of these methods have limitations. First, the temporal con-

sistency of the outpainted regions is still unsatisfactory. We

can observe duplications, distortions or objects appearing

and disappearing. Second, relying entirely on video diffu-

sion models has a strong impact in terms of memory and

limits the methods to low resolution and small field of view

extension. Some of these issues can be observed in Fig-

ure 1. Both M3DDM [14] and MOTIA [48] have strong

visual artifacts and only the latter could be used to outpaint

the video to a larger field of view.

To address these issues we propose two core ideas: 3D-

supported outpainting for static regions and conditional

video synthesis with a pre-trained video diffusion model to

ensure realistic, temporally coherent results for dynamic ar-

eas. Following these key ideas, we decompose the video

into static and dynamic regions and break down the video

outpainting task into three stages. First, for static regions,

we rely on 3D Gaussians [23] as a supporting 3D repre-

sentation, and we alternate between outpainting key frames

and updating the 3D representation. Second, for dynamic

objects, we implement an object-wise inpainting. Here,

among other things, we leverage object-tracking masks in

each frame to define inpainting regions and use a fine-

tuned diffusion model to inpaint. Lastly, using the resulting

frames as a starting point, we synthesize temporally consis-

tent results for all frames using a pre-trained video diffusion

model [7].

Figure 1 demonstrates the effectiveness of our method.

We achieve better results than prior methods both in terms

of video quality and temporal consistency. This is con-

firmed by both quantitative and qualitative experiments.

Furthermore, by using GPU-efficient Gaussian Splatting for

static region outpainting and avoiding fine-tuning of the

video diffusion model, we can go from an input 480 × 480
video (FoV= 31◦) to an output resolution of 2560 × 720
(FoV= 120◦) with a GPU memory usage of less than 16GB

for the entire pipeline.

In summary, our contributions are as follows:

• a novel video outpainting method that combines a 3D rep-

resentation with a pre-trained video diffusion model;

• an optimization strategy with an additional loss to enable

seamless integration of the outpainting with the original

static content;

• demonstrating that a pre-trained video diffusion model

can function as a temporal filter, making discontinuous

frames temporally coherent and simplifying the inpaint-

ing task for the dynamic parts.

• State-of-the-art results for video outpainting

2. Related Work

Immersive Scene Generation. To create immersive ex-

periences for users in VR applications, several methods are

proposed to generate realistic 3D or 4D scenes that allow for

arbitrary viewpoint exploration. LucidDreamer [10] and the

following works [16, 35, 43, 54, 55] lift a single image to

3D space, project it from different viewpoints, and inpaint

them using diffusion models to create a 3D scene. How-

ever, directly applying their method to consecutive video

frames would cause severe geometric distortion between

frames due to the simple depth alignment and optimization

techniques. Dreamscene360 [63] and 4D4KGen [30] cre-

ate panoramic 3D and 4D scenes separately from a text-

generated panoramic image. VividDream [27] generates

multi-view videos from a single image and reconstructs a

4D scene with 4D Gaussians. These methods are primar-

ily designed for static or simply animated images and can-

not handle videos with complex camera and object motion.

Methods such as [9, 28, 29, 49, 50] reconstruct 4D scenes

from casual videos, but they are unable to complete regions

beyond what is captured in the video.

Image completion. Image completion [6, 39], including

image inpainting and outpainting, is a task that restores

missing part of an image, and it serves as a basis for video

outpainting. Traditional methods [6, 18, 21] use low-level

features from the incomplete image to propagate informa-

tion in known regions to fill missing areas. Early deep

learning based methods [32, 42, 44] introduced end-to-end

frameworks that learned mappings from corrupted to com-

plete images. Recent methods have increasingly leveraged

generative models, including GAN [17, 56, 57, 62], and

Diffusion Models [4, 11, 22, 34, 40, 41]. Reference-based

image completion methods utilize reference images as gen-

eration conditions [52] or fine-tune models on a set of ref-

erence images [45] to produce completions that are more

faithful to the references. However, even fine-tuned on all

input video frames, frame-by-frame completion introduces

substantial temporal inconsistency in video outpainting.

Video Outpainting. In the field of video completion,

video outpainting is challenging but less explored. Early

patch-based methods [1, 2] select the nearest patch from the

spatio-temporal domain of the video to expand each frame.

Lee et al. [26] employ 3D information to warp neighbor-

ing frames to the current frame. Dehan et al. [13] utilize

estimated optical flow to warp the background from adja-

cent frames and use an image completion network to fill

any remaining uncompleted areas. While Zhang et al. [61]

target video in-painting motion module and structure guid-

ance. M3DDM [14] extends the image diffusion model

framework to 3D and trains it on extensive video data for

the outpainting task. A global frame is introduced as a con-

ditioning input to improve global information perception.

MOTIA [48] proposes a method that fine-tunes a pre-trained
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Figure 2. Overview of the proposed method. Starting from the input video sequence, dynamic objects are separated from the static parts

of the image, and a static scene reconstruction is made using Gaussian Splatting (GS). In the first stage of our method, the static part is

outpainted by iterating between image outpainting, depth prediction and updating the GS model. After this stage, we identify parts of

the dynamic object that may require inpainting. Here, an image diffusion model is finetuned on the input frames and used for inpainting

each frame independently, which may result in temporal inconsistencies as seen of the car windows. In the last step, a pre-trained video

diffusion model is used to fix temporal inconsistencies. Details about each step are provided in the text.

video diffusion model on test samples to learn the intrinsic

patterns of a video. In general, diffusion-based approaches

rely on priors learned by temporal modules to maintain con-

tinuity in the outpainted regions, which is not sufficient. We

demonstrate that a pipeline integrating constraints from a

3D representation achieves results of much higher quality.

3. Method

Given a sequence of video frames {Ii ∈ R
h×w×c}Ni=1

, our

goal is to expand each frame beyond its original field of

view to {Ĩi ∈ R
H×W×c}Ni=1

, while maintaining both intra-

frame and cross-frame consistency. Although the problem

is more challenging than image outpainting, due to the tem-

poral consistency requirements, the presence of multiple

frames offers additional observations that can be leveraged.

More specifically, it is possible to build a 3D representation

of the scene using 3D Gaussians.

As illustrated in Figure 2, our proposed method can be

divided into 3 distinct stages. In the first stage, we focus

on the static parts of the scene and alternate between im-

age outpainting and updating the 3D scene representation.

In the second stage, we focus on the dynamic objects in

the scene. Here, we fine-tune an image diffusion model on

the available images and use it to inpaint the missing parts

of the object in each frame. At this point, all the frames

are outpainted, but temporal inconsistencies remain. These

frames serve as a starting point for a video synthesis scheme

leveraging pre-trained stable video diffusion to synthesize a

temporally consistent video sequence. Next, we detail each

of these main steps.

3.1. Pre­processing and Static Scene Outpainting

From the static parts of the video, it is possible to estimate

a 3D reconstruction of the scene and use the different views

across time to provide information about the regions to out-

paint. In the first step, we identify the dynamic parts of the

scene. A wide variety of methods can be employed here, but

we simply rely on object segmentation and, in particular,

object tracking models [33]. Figure 2 shows an example of

the binary segmentation masks. These masks are expanded

to avoid including incorrectly labeled pixels into the back-

ground. We also compute a 2D bounding box around the

object to help keep track of the object size in case it par-

tially or completely leaves the field of view. The static parts

are all the pixels that are not part of any dynamic object.

Static Scene Reconstruction. We propose to use Gaus-

sian Splatting (GS) [23] to reconstruct the static part of the

video. This approach allows regions visible in other frames

to be rendered into the current frame. For the input video

frames {Ii}Ni=1
, we first estimate the corresponding cam-

era poses {pi}Ni=1
and intrinsic parameters {Ki}Ni=1

using

an off-the-shelf camera pose estimator [60]. We compute

a depth map for each frame using parallax and project the

background pixels into 3D space, yielding an initial point-

cloud for GS training. The training process is supervised by

the image reconstruction loss and the depth loss. The image

reconstruction loss is the combination of the L1 loss and
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Figure 3. Effect of the loss terms on the GS fine-tuning. Starting from the rasterization of the 3D Gaussians for the first key-frame k = 1,

we use image outpainting to obtain Î
static
k . This image is subdivided into super-pixels as illustrated here. During the optimization to update

the GS model, we use a combination of losses. We can see that all are needed to avoid discontinuities and obtain a realistic smooth depth

map. After this update, the process is repeated with the next key-frame using the updated 3D Gaussians.

the structural similarity loss (SSIM). The depth loss acts as

a regularization and uses Pearson Correlation [64] between

the rendered depth and the depth estimated from a monoc-

ular depth estimation model [37]. Apart from the dynamic

object masking, this is similar to the optimization proposed

by Zhu et al. [64].

Single Image Outpainting. Starting from the GS model

GSstatic representing the static parts of the scene, we uni-

formly sample k ∈ {1, . . . ,K} key frames. Our objective is

to outpaint them one by one, while we progressively update

the GS model. Here we first detail outpainting for a single

image. Considering frame Istatic
k , we adjust its field of view

to obtain new intrinsic parameters K̂k, and render GSstatic

based on the new parameters to get the image Îstatic
k . The

mask m̂static
k for outpainting is defined by checking whether

each pixel is covered by the projection of Gaussian points.

Any image outpainting method can be used at this level, but

we find that the Stable Diffusion XL (SDXL) image out-

painting model [38] performs well for our task. This can be

summarized as:

Istatic
k = φGSstatic

(K̂k,pk) (1)

Îstatic
k = φSDXL(I

static
k , m̂static

k ) (2)

Updating the GS model. To ensure the consistency of the

outpainting across frames, we update the GS model each

time we outpaint a key-frame. Denote by K ′ the number

of key-frames that have been outpainted so far. First, we

estimate the depth for the newly outpainted image using

a single image depth model [37]. Then we initialize new

Gaussian points for the outpainted pixel and fine-tune the

GS model with this additional data. We use an image re-

construction loss

Lrecon =

K′

∑

k=1

λ1L1(Î
static
k , φGS(K̂k, pk)) (3)

+ λ2LSSIM(Îstatic
k , φGS(K̂k, pk))

between the rasterization from the model φGS(K̂k, pk) and

the outpainting result. We also use 2 depth based losses, the

first one on the full depth map:

Ldepth =

K′

∑

k=1

Cov(D(Îstatic
k ), DGS(K̂k, pk))

√

Var(D(Îstatic
k ))Var(DGS(K̂k, pk))

(4)

where D(Îstatic
k ) is the depth predicted by the single image

depth model [37], and DGS(K̂k, pk) is the depth from GS

model that we optimize. For every image, we extract S

super-pixels, and use the second depth loss at this level:

L
Sp
depth =

K′

∑

k=1

S
∑

s=1

Covs(D(Îstatic
k ), DGS(K̂k, pk))

√

Vars(D(Îstatic
k ))Vars(DGS(K̂k, pk))

(5)

Figure 3 demonstrate this process and shows the impor-

tance of the different loss terms for the GS update. Starting

from the rasterization of the initial GS model, we can see

that the 3D model does not cover the new field of view. The

frame is outpainted and superpixels are illustrated in yellow.

Using only the reconstruction loss Lrecon leads to strong dis-

continuities between the original GS model and the new

outpainted areas. Adding the depth loss Ldepth helps, but the

bottom part of the image still has important discontinuities

that would be revealed when projecting to other frames (i.e

other views). Using all the proposed loss terms provides the

best results, and the process can now be iterated by adding

new views.

3.2. Initial Inpainting for the Dynamic Object(s)

After the static scene outpainting, we can render any frame

with φGS(K̂i, pi). As illustrated in Figure 2, we miss part of

the object when it is partially outside the filed of view. We

need to inpaint this missing part. We use the 2D tracking

bounding box to identify the areas that require inpainting

for each frame of the video.

For this inpainting problem we use a similar strategy as

ReaFill [45]. An image diffusion model is fine-tuned for the

inpainting task on the input frames (in our case SDXL). It

is then applied independently on each frame. Thanks to the

fine-tuning, the resulting inpainting is very similar across

frames. However temporal inconsistencies remain as it is
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Figure 4. Details of the video latent denoising strategy. Starting

from the independently outpainted frames Ĩi∈1,...,N , we obtained

the corresponding latents in the forward process (x̃i∈1,...,N ). In

the denoising process we blend known latent with denoising la-

tents according to the mask m. The mask and the time step tend

respectively control which region of the frames get updated by the

video diffusion model and how large the changes are.

clearly visible on the inpainting results in Figure 2. Next

we describe how a Video Diffusion Model [7, 8] is used to

fix all these temporal artifacts.

3.3. Guided Video Synthesis

If we consider the original input sequences of frames

Ii∈1,...,N , after the previous stages we obtain fully out-

painted frames Ĩi∈1,...,N . Static regions are consistent

thanks to the supporting GS model, while the dynamic ob-

jects are independently inpainted for each frame. Starting

from this data, our objective is to synthesize a realistic se-

quence of frames I∗i∈1,...,N . Not only the temporal incon-

sistencies on the dynamic objects need to be fixed, but the

entire outpainted regions need to appear realistic. Indeed,

real-world videos often contain subtle background move-

ments, such as leaves swaying in the wind or water rippling.

We leverage pre-trained video diffusion models for this

video synthesis. The idea is that video diffusion mod-

els are trained for generating real video sequences, with

consistent content and realistic motion. We propose using

the previously generate frames in a denoising scheme that

modifies the different frame areas based on the expected

inconsistency level. On the dynamic objects, we expect

more changes (as the inpainting is independent), while less

change should be allowed on the rest of the image as it is

supported by the 3D consistent GS model.

More specifically, if we consider a latent video diffusion

model, a sequence of input frames Ii is encoded into the

corresponding sequence of latent values xi. The forward

process can be applied to the sequence of frames Ĩi∈1,...,N

to obtain known latents

x̃t−1 ∼ N (
√
ᾱtx̃0,

√
1− ᾱt1). (6)

For simplicity, we dropped the frame index i.

We use the reverse process to synthesize the final video

sequence. At each time step, we denoise previous latents

using the latent video diffusion model with parameters θ, to

obtain temporary latents

x
tmp
t−1

∼ N (µθ(x
∗

t , t),Σθ(x
∗

t , t)) (7)

To obtain the final latents for this time step, we blend in the

known latents according to

x∗

t−1
= (1− m)⊙ x̃t−1 + m ⊙ x

tmp
t−1

(8)

where the binary mask m is defined as

m =

{

m
dynamic

if t ≥ tend

m
dynamic

+m
static

if t < tend

(9)

The mask, mdynamic, corresponds to the dynamic objects

in the scene, and the mask mstatic corresponds to the static

parts in the outpainted regions. This scheme is similar to

ideas already explored in the context of image diffusion

models [3, 34], but applied to video diffusion models. If

we observe the changes in Figure 2, we can see that the

pre-trained video diffusion model can function as a tempo-

ral filter, making discontinuous frames temporally coherent.

This simplifies the inpainting task since we do not rely on

expensive training of the video model and simply use it at

inference time.

4. Experiments

4.1. Implementation details

Static Scene. In pre-processing, we estimate the camera

poses of the source video [31, 60]. Our GS training process

consists of 1 +K + 1 rounds in total, where K is the num-

ber of key frames we sample from the video. In the first

training round, we train the GS model only on the static

part of the video for 3000 iterations. Then we iterate be-

tween outpainting the K key frames and K rounds of GS

training to update the outpainted regions into the GS model.

To avoid overfitting, we employ a sliding window training

strategy: following outpainting of the i-th frame, we train

only on frames within the window [i− 5, i+5] for 500 iter-

ations. This window shifts progressively as outpainting and

training continues. After outpainting all K key frames, we

conduct a final round of training for refinement on all out-

painted and original background frames for 1000 iterations.

All training and outpainting can be completed on a single

4090 GPU.

Initial Object Inpainting. Before initial inpainting on the

missing regions of dynamic objects, we fine-tune the SDXL

model on the masked source video. The approach is similar

to the one proposed by Tang et al. [45]. Masks are randomly
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Figure 5. Qualitative Comparison with State-of-the-art methods on the DAVIS dataset [36]. The area outside of the red lines (only

shown for the first frame) is outpainted. We show the results for 3 frames from the each video sequence. Compared to MOTIA [48] and

M3DDM[14], our results are of better quality and temporally stable. Please pay attention to the changes of the outpainted area between the

frames of the same sequence.

generated for each input frame, with random distributed po-

sitions and mask ratios varying from 0.2 to 0.8. For each

object, a prompt "a photo of [v]" is applied. Dur-

ing fine-tuning, a Low-Rank Adaption (LoRA) [20] with

rank 8 is trained for both the text-encoder and UNet with

a batch size of 4 and gradient accumulation steps of 4 for

2000 steps.

Video Diffusion Model. We use a pretrained image-to-

video model [7] to complete object motion. The number of

denoising steps is set to 25, with the level of noise added

to the reconstructed frames generally set to 0.8 in our ex-

periments. We apply a resampling strategy similar to Re-

paint [34] five times after each denoising step to improve

the quality and stability of the objects. For videos where

the object fully appears in the middle or last frame, we em-

ploy the Time-Reversal strategy from [15], conditioning the

generation on additional frames to better retain the object

identity.

4.2. Experiment Setup

Competitors. We compare our method with the following

methods. (1) Dehan et al. [13] separate foreground and

background components. They use estimated optical flow

to warp the background, with missing regions filled in using

an image completion network. (2) M3DDM [14] proposes

a masked 3D Diffusion Model architecture, which is trained

on WebVid [5] and a self-collected 5M e-commerce dataset

for video outpaint tasks. (3) MOTIA [48] is the current

state-of-the-art method for video outpainting. It is based

on the ControlNet [58] inpainting model and the temporal

module from AnimateDiff [19]. It trains a LoRA [20] for



each test sample to learn the intrinsic patterns.

Datasets. Following M3DDM [14] and MOTIA [48], we

evaluate our method on the DAVIS [36] and YouTube-

VOS [51] datasets. For the YouTube-VOS [51] dataset, due

to its large number of videos and the lack of clarity in prior

works on which videos were tested, we selected a high-

quality subset and evaluated all methods on it. Consistent

with prior works, we compare the horizontal outpainting re-

sults for each test video at mask ratios of 0.25 and 0.66.

Evaluation Metrics. The quality of outpainting is primar-

ily evaluated in terms of visual quality, realism, and tem-

poral consistency. For this purpose, we employ two well-

established metrics: Fréchet Video Distance (FVD) [47]

and flow warping error (Ewarp) [25]. FVD assesses the sim-

ilarity between the distribution of the outpainted video and

the original video, while flow warping error evaluates tem-

poral consistency by measuring the error when outpainted

frames are warped to adjacent frames using estimated opti-

cal flow. In addition, to align with previous works, we also

report Peak Signal to Noise Ratio (PSNR), Structural Sim-

ilarity Index Measure (SSIM), and Learned Perceptual Im-

age Patch Similarity (LPIPS) [59] between the outpainted

and ground-truth videos, although we consider these met-

rics limited in capturing the quality of outpainting. We fur-

ther conducted a user study to gather subjective evaluations

of outpainting quality, which we detail in Sec. 4.3.

4.3. Evaluation & Results

Qualitative Results. Fig. 5 and Fig. 6 illustrate the qual-

itative comparison of our method against other approaches

on the DAVIS and YouTube-VOS datasets. M3DDM [14]

frequently suffers from generation failures and produces

blurred content, as shown in the first samples of Fig. 5

and Fig. 6. MOTIA [48], while fine-tuning on each test

sample to capture input-specific patterns, often generates

repetitive objects and background patterns. More impor-

tantly, both methods struggle to accurately capture contex-

tual information across frames, resulting in inconsistency

when outpainting elements seen in adjacent frames. In con-

trast, our method overcomes these issues, achieving bet-

ter cross-frame consistency. Furthermore, our approach’s

object-specific completion approach prevents objects from

duplicating or disappearing beyond the frame.

Generalization and multiple objects. Our strategy, dif-

ferentiating between static and dynamic elements, can nat-

urally extend to multiple dynamic objects by decomposing

the frame into object layers based on their depth. Each

object is processed separately using our pipeline and then

seamlessly blended to produce the final result. Figure 7

shows that our method still performs best on such complex

scenarios.
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Figure 6. Qualitative Comparison with State-of-the-art methods

on Youtube-VOS dataset [51]. The area outside of the red lines

(only shown for the first frame) is outpainted. We show the re-

sults for 3 frames from the each video sequence. Compared to De-

han [13], MOTIA [48] and M3DDM[14], our results are of better

quality and temporally stable. Please pay attention to the changes

of the outpainted area between the frames of the same sequence.
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Figure 7. Qualitative Comparison with State-of-the-art meth-

ods on challenging scenarios (multiple dynamic objects, complex

static regions, etc.).

Quantitative Results. Tab. 1 presents a quantitative com-

parison of our method with other approaches. Our method

outperforms the current state-of-the-art in both FVD and

Ewarp, achieving improvements of 18.8% and 11.7% on the

DAVIS dataset and 26.9% and 33.3% on the YouTube-VOS

dataset, respectively. We also achieve the highest PSNR and

SSIM scores on both datasets. For LPIPS, while our method

is the second behind the number reported in MOTIA [48] on

the DAVIS dataset, it surpasses the score obtained from us-

ing their public implementation and provided model.

Ablation Study We conducted ablation studies for the

different components of our method. Quantitative evalua-



DAVIS YouTube-VOS

PSNR❫ SSIM❫ LPIPS❴ FVD❴ Ewarp❴ PSNR❫ SSIM❫ LPIPS❴ FVD❴ Ewarp❴

Dehan [13] 17.96 0.627 0.233 363.1 0.030 18.34 0.761 0.287 353.6 0.043

M3DDM [14] 20.26 0.708 0.204 300.0 0.017 18.33 0.725 0.424 283.1 0.024

MOTIA (model) [48] 18.25 0.699 0.282 294.8 0.021 18.54 0.790 0.250 156.4 0.027

MOTIA (paper) [48] 20.36 0.758 0.160 286.3 - - - - - -

Ours 22.62 0.806 0.200 232.5 0.015 19.88 0.832 0.236 114.2 0.016

Table 1. Quantitative Comparison with State-of-the-art methods on DAVIS dataset [36] and YouTube-VOS [51]. Our method achieves

the best performance overall. In the case of MOTIA [48], we have 2 rows as we report the evaluation using the model and code available

online(model) and the numbers from the original paper (paper). See the text for details.

PSNR❫ SSIM❫ LPIPS❴ FVD❴ Ewarp❴

(a) 18.15 0.694 0.248 448.8 0.032

(b) 18.05 0.716 0.274 323.2 0.022

(c) 20.68 0.772 0.218 293.3 0.020

(d) 20.05 0.776 0.223 319.8 0.017

(e) 22.62 0.806 0.200 232.5 0.015

Table 2. Quantitative ablation results. (a). Outpainting with fine-

tuned Image Model; (b). (a) + Guided Video Synthesis; (c). Our

model without guided video synthesis; (d). Our model without the

initialization from object inpainting; (e). Our complete model.

tion is shown in Table 2, while the visual results are pro-

vided in supplementary material. When only using single

image outpainting (SDXL fine-tuned on content [45]), the

images achieve good realism but lack temporal continuity.

When applying video diffusion guided synthesis to these

outpainted frames directly, the temporal consistency within

the outpainted areas improves individually. However, co-

herence between the outpainted regions and the original

video content remains weak. This issue is difficult to re-

solve solely with Video Diffusion Model priors. When us-

ing the static region outpainting (assisted with GS) and ei-

ther the image inpainting or video diffusion alone are ap-

plied for object completion, the objects suffer from signifi-

cant temporal variations in appearance. Using all the com-

ponents achieves the best results.

User Study. Given the subjective nature of evaluating out-

painting quality, we conducted a user study to compare our

method with competing approaches. Users were asked to

evaluate each method across several dimensions, includ-

ing realism (such as whether the outpainted results look

natural and harmonious), temporal consistency (including

background consistency, object motion consistency, etc.),

and overall visual quality (including color fidelity, smooth-

ness of boundaries, blurriness etc.). The results, shown in

Fig. 8, indicate that our method was clearly preferred by

users compared to others, achieving more than 80% of the

votes in all dimensions. Further details of the user study can

Figure 8. The result of the user study includes 619 votes from 37

participants. Our method is preferred by more than 80% of the

votes in all dimensions.
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Figure 9. Challenges with dynamic objects moving in and out of

the original frame: Our current solution of tracking and extrapo-

lating the trajectory of the bounding box can be improved.

be found in the supplementary materials.

5. Discussions

Building on Gaussian Splatting and a Video Diffusion

Model, we propose a new state-of-the-art method for video

outpainting. Despite our strong results, some issues remain,

especially around objects moving in and out of the original

frame. An example is shown in Fig. 9. Currently tracking

and extrapolating the trajectory of the bounding box offers a

solution, but limitations in the single image inpainting neg-

atively impact the quality of the final result. Another area of

improvement is the outpainting involving multiple occluded

dynamic objects. Our current solution of inpainting each

object separately and blending them based on the estimated

depth is limited. Exploring the use of more advanced 4D

dynamic Gaussian representations jointly with video mod-

els offers a promising future direction towards higher and

higher quality video ouptainting.
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