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1. Computational Complexity

Table 1 compares the computational complexity of our

method compared to M3DDM [2] and MOTIA [10]. We

report the maximum GPU memory usage and the total run-

time for both training and inference stage when outpainting

the video from 284 × 480 to 854 × 480 as Small FoV(0.66

mask ratio, 3× expansion) and from 480×480 to 2560×720

as Large FoV (8× expansion). To ensure fair comparison,

we use a single 40GB V100 GPU for all methods.

The result shows that our method requires significantly

less GPU memory than other approaches, particularly for

large FoV outpainting, where M3DDM [2] encounters out-

of-memory (OOM) and MOTIA [10] requires fine-tuning

on a 40GB GPU but still fails to achieve satisfactory re-

sults. The majority time consumption of our method lies

in the pre-processing stage, especially in estimating cam-

era poses for video frames. For fine-tuning and inference,

our method requires approximately 500 seconds more than

MOTIA [10]. While M3DDM [2] requires the least time

since it does not involve test-sample fine-tuning, it is worth

noting that it underwent extensive training on a large-scale

dataset beforehand (2.5 weeks on 24 A100 GPUs).

2. More Implementation Details

Static Region Reconstruction and Outpainting. In the

first and last GS training rounds, GS point densification

begins after 1000 iterations. In the intermediate training

rounds that alternate with image outpainting, densification

starts at 350 iteration. The learning rates for all GS param-

eters (position, opacity, color, rotation, scaling, etc.) remain

unchanged from the original GS [3] settings. The coeffi-

cients for SSIM loss LSSIM, depth lossLdepth and superpixel

depth loss L
Sp
depth are set at 0.2, 0.1, and 0.1, respectively.

After outpainting each keyframe, the outpainted image is

blended with the input image and added in the training set.

The blending process employs a multi-band compositing

strategy from [5] to ensure smooth transitions between the

outpainted and original regions.

input SAM2 mask epipolar error final mask

Figure 1. Steps for obtaining the masks for the dynamic regions:

We use SAM [7] panoptic segmentation, then the epipolar error is

used in a voting scheme to identify dynamic segments and obtain

the final mask.

Initial Object Inpainting. During the fine-tuning of

SDXL [6, 9] on the input sequence, the learning rates for

the text encoder and the UNet are 4e−5 and 2e−4 respec-

tively. The maximum training step is set to 2000, but in

most cases, results after 800 steps are able to provide a good

enough starting point for final video synthesis.

Mask Strategy. Mask accuracy is crucial for the static re-

gion outpainting step in our method, including the dynamic

mask for reconstruction and the outpainting mask. Using

accurate dynamic masks helps to reduce the artifacts during

reconstruction. A straightforward approach to obtain these

masks is to manually mask the region of interest in the first

frame and use an object tracking model [8, 11] to track it

across subsequent frames. Liu et al. [4] proposed an auto-

matic way that estimates the epipolar error to identify the

dynamic regions. However, this approach is sensitive to the

threshold selection, which can result in incorrect or incom-

plete mask. A more effective approach involves using the

Segment Anything Model 2 (SAM 2) [7] for panoptic seg-

mentation of all video frames and then determine the dy-

namic regions by voting on the epipolar error within each

segment, as shown in Fig. 1.

Accurate outpainting mask ensures coherence between

the outpainted and original regions while preventing holes
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Fine Tuning

(Sequence

specific)

- -
15.80 GB,

2068 s

36.78 GB,

4996 s

Pre-process 5.36GB, 3140s

Static region Outpainting
4.59 GB,

433 s

9.30 GB,

1765 s

Object-specific Inpainting 11.30 GB, 2258 s

Inference
17.95 GB,

431 s
OOM 7.15 GB, 155 s Guided Video Synthesis 10.81 GB, 110 s

In Toal
17.95 GB,

431 s
OOM

15.80 GB,

2223s

36.78 GB,

5151s

11.30 GB,

6384 s

11.30 GB,

7716 s

Table 1. Computation complexity of different methods in terms of peak GPU memory usage (GB) and running time (s). We use 2 different

setting: (a) Small FoV 3× expansion which corresponds to 284× 480 → 854× 480, and (b) Large FoV 8× expansion which corresponds

to 480× 480 → 2560× 720.

in outpainting. Previous approach [1] renders the opacity

from the GS model and defines the mask using a threshold

on each pixel’s opacity value. However, the artifacts intro-

duced in GS training often lead to poor mask quality. To

address this, we create an additional isotropic 3D Gaussian

ball for each GS model point, splat them onto the image

plane, and mask out the pixels that are not covered. This

approach ensures a more accurate boundary between the

existing region and the region to be outpainted, enabling

consistent and seamless outpainting, as shown in Fig. 3.

3. Visual Results for Ablation Studies

Figure 2 shows the visual results of the ablation study in the

main paper. In Fig. 2 (a), we show the results of frame-by-

frame outpainting using the fine-tuned image model [6, 9]

on the input video frames. While the outpainted regions

are visually plausible and faithful to the orignal content, the

temporal consistency is not guaranteed. Fig. 2 (b) shows

the guided video synthesis results built upon results from

(a). The temporal consistency is improved, as observed in

the flowerpot on the left side of the frames, showcasing

the potential of the guided video synthesis process. How-

ever, its effectiveness is limited by the quality of the start-

ing point. In Fig. 2 (c) and (d), the consistency of the static

background is ensured by our GS supported outpainting.

However, the object appearance varies over time without

the object-specific inpainting or the guided video synthesis

in our pipeline. Fig. 2 (e) demonstrates that our complete

model achieves the best results.

4. More Details on User Study

Figure 4 shows the interface designed for our user study. In

the study, participants were presented with the input video,

followed by the outpainting results generated by three meth-

ods (M3DDM[2], MOTIA [10], and ours) displayed in ran-

dom order.
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Figure 2. Qualitative ablation results on different modules in our method. We draw the dynamic object bounding box (in green) when this

concept is used. (a). Outpainting with fine-tuned Image Model; (b). (a) + Guided Video Synthesis; (c). Our model without guided video

synthesis; (d). Our model without the initialization from object inpainting; (e). Our complete model.

GS renconstructed isotropic GS rendered outpainting mask outpainted result

Figure 3. Obtaining the outpainting mask for the static scene outpainting and reconstruction step.



Figure 4. Screenshot of our user study interface.
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