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Figure 7. Rate-distortion comparison measured by PSNR on the
Kodak dataset.

7. Additional Results

7.1. Qualitative Results

Additional visualizations are shown in Figs. 10-12.
Furthermore, to provide examples of our method’s abil-

ity to consistently produce realistic and plausible images,
we show examples of images compressed over a range of bi-
trates in Fig. 13. Here it can be seen that at high bitrates, the
reconstructions are accurate at a pixel level to the source im-
age. As bitrate decreases, the images maintain high realism
and semantic alignment and vary in low-level details (e.g.,
bush, rock, or brick textures), rather than blurring artifacts
traditionally seen in neural image compression.

7.2. Quantitative Results

In Fig. 7, we also include rate-distortion results measured in
PSNR. We emphasize that for generative compression tasks,
PSNR does not accurately reflect the true visual quality of
image reconstructions. We include these results here solely
for completeness.

7.3. Ablation of Quantization Schedule

While ablating the uniform diffusion model and universal
quantization in our method is straightforward, ablating the
quantization schedule is more arbitrary since we derive an
objectively correct formulation. However, it can be ablated
as follows.

The quantization schedule controls two parameters in

Figure 8. Ablation of our quantization schedule. The best per-
forming combination of ts and tr is shown, as well as the range of
all tested combinations (shaded).

our proposed pipeline: the SNR of ŷt and the number of
denoising steps t to perform with the diffusion model at the
receiver. The former can also be quantified as a function of
t (as ∆t is dependent on t; Eq. (7)); thus, we can consider
two independent ts, one at the sender side (ts), and one at
the receiver (tr). With our quantization schedule we find a
closed form solution for ts = tr. Therefore, to ablate the
quantization schedule, we can manually sweep over a range
of ts and tr and compute image quality metrics for all possi-
ble combinations. Specifically, we choose all combinations
of ts, tr → {1, 2, 5, 10, 20, 30, 40} except where ts = tr, as
this corresponds to using our quantization schedule.

Results are shown in Fig. 8. As in the other ablations, we
can see the quantization schedule has a significant impact
on image quality, particularly at low bitrates.

7.4. Alternate Entropy Models

Our proposed method uses a relatively simple, yet stan-
dard mean-scale hyperprior entropy model [7, 25]. We also
experimented with a newer, more complex entropy model
(specifically Entroformer [30]) used in the baseline method
of Relic et al. [31]. Quantitative results are shown in Fig. 9.
It can be seen that the more powerful entropy model pro-
vides substantial rate-distortion performance gains in the
higher bitrate range. However, it suffers in the lower rates.

Given the additional complexity of including this en-
tropy model in our proposal, as well as a significantly larger



GPU memory requirement which prevents evaluation on
high-resolution images, we elect to use the simpler mean-
scale hyperprior entropy model in this work.

8. Image Generation with Uniform Diffusion
Models

One concern when finetuning foundation diffusion models
is catastrophic forgetting, where the model loses its ability
to generate images. To validate our uniform diffusion model
retains its image generation capability, we compare gener-
ated images of our model with Stable Diffusion v2.1 (the
starting weights for our finetuning) using the same prompt,
shown in Fig. 14. We perform text to image generation with
DDIM sampling and generate images of 7682 resolution.
The seed used to sample the initial noise is the same within
each pair. Prompts were arbitrarily generated by asking
ChatGPT to write input prompts for Stable Diffusion with
an emphasis on generating photorealistic images.

9. Derivation of Quantization Schedule

In this section we provide a derivation of our quantization
schedule such that it matches the variance schedule of the
original diffusion model (Eq. (10)). As described in Sec. 4.1
and Eq. (9), this is done by matching the SNR of the par-
tially noisy data yt of the original diffusion process with ŷt

of our proposed forward process.

The standard Gaussian diffusion process is defined as:
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√
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Therefore, to match the SNR between Gaussian diffusion
and our proposed method:

SNR(ŷt) = SNR(yt) (17)
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10. Entropy Coding with Variable Width
Quantization Bins

Entropy coding our latent ẑ to bitstream requires a probabil-
ity model over the set of symbols to be encoded – this is pa-
rameterized by the entropy model. As discussed by Ballé et

al. [7, 8], in order for the entropy model to better match
the true distribution of transmitted symbols, the underlying
density model of the entropy model is convolved with a box
filter of unit width, which lends itself to easy computation
by evaluating the cumulative distribution (Eq. (29) in [8]):

pẑ(ẑ) =
(

p ∗ U(−1/2, 1/2)
)

(ẑ) (21)

= c(ẑ+ 1/2)− c(ẑ− 1/2) (22)

where p is the underlying density model and c is the cumu-
lative of p. Intuitively, to estimate the probability of some
discretized value ẑi we integrate the density model over the
range of unquantized values that result in ẑi after quantiza-
tion.

However, an often overlooked fact is that the width of
this box filter must equal the quantization bin width – using
integer quantization requires a unit width box filter. There-
fore, when quantizing with arbitrary bin width, as done in
this paper, we must implement an entropy model which es-
timates probabilities according to this width:

pẑ(ẑ) = c(ẑ+ ∆/2)− c(ẑ− ∆/2) (23)

This does not lend itself to an intuitive implementation
into current entropy modeling frameworks. However, we
find that this issue can be resolved, along with a simple im-
plementation of non-integer quantization, by scaling ẑ by
∆t before quantization and entropy coding and rescaling
back upon decoding:

ẑ =

⌊√
αty

∆t

− u

⌉

, ŷt = (ẑ+ u) ·∆t, (24)

where u ∼ U(−1/2, 1/2) and ∆t =
√

12(1− αt).

This is equivalent to Eq. (7) but allows the standard Eq. (22)
to be used for probability estimation. This requires ∆t to be
known by the reciever, however incurs no rate penalty as
∆t is derived from t which is already transmitted as side
information.



Figure 9. Additional rate-distortion comparisons including our method with an alternate entropy model.

11. Reproduction of Baselines

In the following paragraphs we detail specifics on how im-
age reconstructiond and quantitative metrics were obtained
for each baseline.

Relic et al. Reconstructions and quantitative metrics
were obtained through personal communication.

HFD. Reconstructions were obtained through personal
communication, also available at http://theis.io/
hifidiff//. Quantitative metrics are used as reported
in their paper.

MR. Quantitative metrics are used as reported in their
paper.

HiFiC. Pretrained models are available in Tensor-
flow Compression tfci as hific-hi, hific-mi, and
hific-lo.

CDC. We produce images on our evaluation datasets us-
ing the official code release at https://github.com/
buggyyang/CDC_compression (commit 742de7f).
We take the epsilon parameterized models trained with L1

loss and axuillary LPIPS perceptual loss with weighting pa-
rameter ρ = 0.9. During inference, we use 1000 sampling
steps.

VTM We use VTM 19.2, available at https:

/ / vcgit . hhi . fraunhofer . de / jvet /

VVCSoftware _ VTM/ - /releases / VTM - 19 . 2

and run with the following commands:

# Encode

EncoderAppStatic

-c encoder_intra_vtm.cfg

-i $INPUT

-q $QP

-o /dev/null

-b $OUTPUT

-wdt $WIDTH

-hgt $HEIGHT

-fr 1

-f 1

--InputChromaFormat=444

--InputBitDepth=8

--ConformanceWindowMode=1

--InputColourSpaceConvert=RGBtoGBR

--SNRInternalColourSpace=1

--OutputInternalColourScace=0

# Decode

DecoderAppStatic

-b $OUTPUT

-o $RECON

-d 8

--OutputColourSpaceConvert=GBRtoRGB

http://theis.io/hifidiff//
http://theis.io/hifidiff//
https://github.com/buggyyang/CDC_compression
https://github.com/buggyyang/CDC_compression
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/VTM-19.2
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/VTM-19.2
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/VTM-19.2


Original Ours@0.058(100%) Relic@0.066(113%) HFD@0.061(104%) VTM@0.067(114%)

Figure 10. Additional visual comparisons on kodim17 between our method and Relic et al. [31], HFD [19], and VTM [1]. Images are
labeled as [Method]@bpp and additionally shown as a percentage of our method. Here Relic et al. flattens textures, and HFD incorrectly
synthesizes content or oversharpens the image.



Original Ours@0.053(100%) Relic@0.068(129%) HFD@0.053(100%) VTM@0.062(116%)

Figure 11. Additional visual comparisons on kodim22 between our method and Relic et al. [31], HFD [19], and VTM [1]. Images
are labeled as [Method]@bpp and additionally shown as a percentage of our method. Here Relic et al. introduces color artifacts and
oversaturation, and HFD is not as detailed.



Original Ours@0.072(100%) Relic@0.076(105%) HFD@0.072(100%) VTM@0.082(114%)

Figure 12. Additional visual comparisons on kodim07 between our method and Relic et al. [31], HFD [19], and VTM [1]. Images are
labeled as [Method]@bpp and additionally shown as a percentage of our method. Here Relic et al. and HFD do not correctly synthesize
fine details or textures.



Figure 13. Visual example of image reconstructions produced over a range of bitrates. At high bitrate, our method produces reconstructions
with high fidelity to the source image. As bitrate decreases, the images maintain a high realism and semantic alignment, tending towards
differences in the spatial alignment of content. Best viewed digitally.
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“A highly detailed close-up of a golden
retriever’s face, with soft fur textures, warm

brown eyes, and a natural outdoor background
blurred in a bokeh effect”

U
n
if
o
rm

“A neon-lit cyberpunk city at night, with
towering skyscrapers, flying cars, and a lone
figure in a glowing trench coat standing on a

rain-soaked rooftop, overlooking the vibrant chaos
below”

“A serene forest trail in autumn, covered in
fallen leaves in shades of orange and red, with
sunlight filtering through the trees and a soft

mist hanging in the air”

“A luxurious modern villa overlooking a pristine
beach, with large glass windows, an infinity pool
reflecting the golden sunset, and gentle waves

crashing on the white sand”

“A rustic wooden cabin nestled in the mountains,
with a light dusting of snow on the roof, smoke
rising from the chimney, and the first rays of
sunlight illuminating the frosty landscape”

G
a
u
ss
ia
n

“A calm lake surrounded by pine trees under a
starry night sky, with the Milky Way reflected

perfectly in the water and a cozy campfire glowing
on the shore”

U
n
if
o
rm

“A photorealistic urban street during a heavy
rainstorm, with water droplets splashing on the

pavement, glowing neon signs reflecting in
puddles, and people walking under colorful

umbrellas”

“A lone astronaut exploring a vibrant alien
jungle, surrounded by glowing plants, floating
rocks, and a massive alien creature watching

curiously from a distance”

“A surreal underwater world illuminated by
bioluminescent coral, with fantastical fish, a
sunken pirate ship, and a mermaid playing a

glowing harp”

“A trendy coffee shop interior with warm
lighting, steaming cups of cappuccino on wooden
tables, a barista working behind the counter, and

people chatting or working on laptops”

G
a
u
ss
ia
n

“A serene desert oasis with a small waterfall
cascading into a crystal-clear pool, surrounded by

palm trees, colorful desert flowers, and an
ancient ruin in the background glowing with mystic

runes”

U
n
if
o
rm

“A breathtaking tropical waterfall cascading into
a crystal-clear lagoon, surrounded by lush green
jungle, colorful flowers, and sunlight streaming

through the trees”

“A lively city park in springtime, with cherry
blossom trees in full bloom, families having

picnics, and a shimmering pond reflecting the
clear blue sky”

“A dense pine forest covered in fresh snow, with
soft sunlight streaming through the trees and

frost glittering on the branches”

“A vibrant still-life composition of fresh fruit
on a rustic wooden table, with ripe oranges,
grapes, apples, and a bunch of bananas,

illuminated by soft natural light from a nearby
window”

Figure 14. Image generation results between the standard Gaussian diffusion model versus our diffusion model finetuned for uniform noise.
The prompt under each pair was arbitrarily generated using ChatGPT.
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