
LookingGlass: Generative Anamorphoses via Laplacian Pyramid Warping

Supplementary Material

A. Laplacian Pyramid Warping

In this section, we provide additional details about Sec. 4.2.

In Section A.1 and A.2, we illustrate the forward and inverse

warping with the example of the conic mirror, and cover

some implementation subtleties for the inverse operation.

Section A.3 explains how we properly blend pyramid levels

in the case of partial views. Lastly, we provide pseudo-code

for Laplacian Pyramid Warping in Section A.4.

(b)	identity	UV (c)	mirror	view	UV (d)	LOD	levels(a)	view	setting

Figure 10. Conic mirror view. Rendering the scene (a) with a

top down camera yields the UV map (c) for the conic mirror case.

Using Eq. (9), the associated level-of-detail map (d) is computed.

A.1. Forward Warping

We consider the conic mirror example and its corresponding

warping function (Fig. 10). The forward warping operation

was explained in Sec. 4.2. Figure 11.b) illustrates the result

of applying forward warping to an image. In Figure 14.b),

we visualize the pyramid levels in the identity view, high-

lighting in white the pixels used in the forward warping. For

instance, pixels closer to the cone’s center are mapped to an

outer ring in the identity view. Because the view function is

locally more compressed for these pixels, they are sampled

from a higher level of the pyramid (i.e., lower resolution).

(b)	𝐲 = 𝜋(𝔾 𝐱 )(a)	input	𝐱 (c)		𝐱′ = 𝜋!"(𝐲)

Figure 11. Warp example. Given an image (a), we warp it to the

conic mirror view (b), and warp back to the original view (c). Our

multi-scale approach warps values to different frequency bands

based on the local compression of the view function π.

A.2. Inverse Warping

Figure 11.c) shows the result of warping the transformed

image back to the identity view: pixels closer to the cen-

w/o nearest imputation (value	=	-1) w/	nearest	imputation (ours)

Figure 12. Imputation. We use nearest neighbor imputation for

pixels in P(x) that has no colors (i.e. did not receive gradients).

We consider images with values in [-1, 1].

ter of the cone in the warped view naturally map back to a

lower frequency band in the identity view, occupying larger

regions at the boundary in the reconstructed image. Rigor-

ously speaking, the output of the inverse warping is a Lapla-

cian pyramid (see Fig. 14.g), not an image.

Implementation details. We provide a more detailed il-

lustration of the inverse operation in Figure 16. The subfig-

ures show:

a) Starting from a dummy pyramid P(x0), we perform a

Laplacian-to-Gaussian pyramid conversion to get G(x0)
(i.e. reparameterization). Forward warping is then ap-

plied to obtain a warped dummy image ỹ.

b) An L2 loss is computed between ỹ and y, the image we

wish to warp back. The gradients populate each level of

the dummy pyramid, yielding P(x). The reparameteri-

zation ensures that gradients from each level flows to all

levels above it.

c) Lastly, we extract the final Laplacian pyramid L(x) from

P(x) following

L(x) = M(x)⊙ (P∗(x)−U(D(κ(P∗(x))))) , (11)

where M is a pyramid of binary masks indicating pixels

that have gradients, P∗ is the result of imputing missing

values in P with nearest color (more details below).

Imputation. It is important to impute the pixels that re-

ceived no gradients with meaningful colors. Otherwise, if

left black, the pyramid computation will pick up these dis-

continuities at the mask boundaries as high-frequency de-

tails, leading to incorrect values in those regions. We opt

for a simple nearest neighbor imputation that fills pixels

that have no gradients with the nearest pixel value. Fig-

ure 12 illustrates the difference between no imputation (de-

fault value 0) and our nearest imputation.



Comparison with baselines. In Figure 13, we compare

our Laplacian-based inverse warping with standard warp-

ing using nearest or bilinear interpolation. Because the view

function has extreme compression around the cone center,

this translates to missing values on the outer ring when

warping back with nearest or bilinear, as some pixels in the

identity view are not sampled during forward warping due

to the compression. We showed in Fig. 6 that this can lead

to artifacts in the generated image.

It is worth noting that another way to avoid missing val-

ues could be to do a forward warping with the inverse UV

map. However, the inverse map is usually not trivial to com-

pute. Additional problems arise when the mapping is not

bijective or has discontinuities, which can be quite tricky to

solve in a robust way. In contrast, our method automatically

handles these cases, and only requires the forward UV map,

which is easily obtainable through simple rendering of the

desired view.

(b)	bilinear(a)	nearest (c) Laplacian	(ours)

Figure 13. Backward warping baseline comparison. In regions

where the view function is compressing, standard interpolation

like nearest (a) or bilinear interpolation (b) creates holes, while

our Laplacian Pyramid Warping ensures smooth results (c).

A.3. Pyramid Blending

As explained in Sec. 4.2, special care needs to be taken

when blending the pyramids.

Blending with partial views. In standard Laplacian Pyra-

mid Blending, the blended pyramid is obtained by averag-

ing each level of the input pyramids. Given two pyramids

L
0,L1, the level k of the blended pyramid L is given by:

Lk =
1

2

(

L
0

k
+ L

1

k

)

. (12)

In our case, Laplacian pyramids come from inverse

warping of views, and might look like Fig. 11.c), with miss-

ing values. In this case, the average should only be com-

puted over defined pixels. Assuming each level Lk is asso-

ciated with a binary mask Mk, the blending is:
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In practice, we map missing values to torch.nan, and

use torch.nanmean() to perform averaging.

(a)	input	image	as	Gaussian	Pyramid	𝔾(𝐱)

(b)	forward	warping:	pixels	fetched	from	𝔾 𝐱 during	warping	(highlighted)

(c)	backward	warping:	intermediate	pyramid	obtained	with	backpropagation	𝔾(𝐱)

(d)	backward	warping:	propagated	pyramid	ℙ(𝐱)

(e)	backward	warping:	computed	binary	mask	𝕄(𝐱)

(f)	backward	warping:	pyramid	with	missing	values	imputed	using	nearest	value	ℙ∗(𝐱)

(g)	backward	warping:	final	Laplacian	pyramid	returned	by	backward	warping	𝕃(𝐱)

Figure 14. Intermediate pyramids. We visualize some interme-

diate pyramids that appear in forward (a, b) and backward warping

(c-g). Refer to the text and Fig. 16 for more context.

Detail-preserving averaging. Another issue with averag-

ing in general is that it reduces variance and washes out

details. While this is already improved with the Laplacian

pyramid, averaging still leads to the loss of sharp details.

Given two pixel values x, y ∈ [−1, 1], we define a normal

averaging avg and a value-weighted averaging vavg:

avg(x, y) =
1

2
(x+ y), vavg(x, y) =

|x|x+ |y|y

|x|+ |y|
(14)

The value-weighted average will give more weights to

extreme pixel values, hence preserving better the value

range. In the results shown, we linearly interpolate between

the two types of averaging through a parameter α ∈ [0, 1]:

z = avg(x, y) + α(vavg(x, y)− avg(x, y)). (15)

Figure 15 shows the effect of α for two examples with

the cylinder mirror. When standard averaging is used (α =
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Figure 15. Effects of parameter α. The parameter affects how

views are merged together at each level of the pyramid. α = 0 cor-

responds to standard average, while α = 1 gives more weights to

pixels with extreme values, preserving the details in all the views.

0), the image looks blurrier. However, when value-weighted

average is used (α = 1), all details from both views are

preserved, creating very saturated, over-sharpened results.

In most of our results, we opt for α ∈ [0.25, 0.5].

A.4. Pseudocode

We provide a pseudo-code for our novel Laplacian Pyramid

warping. Some notes:

• l.8: compute lod level returns the LOD level map

as a (H,W ) tensor using Equation (9);

• l.29: pyrStack takes a pyramid, upsamples all levels

to highest resolution, and stacks them along a dimension;

• l.73: impute with nearest fills missing values with

nearest ones in the image given the mask.

1

2 def _get_grid(warp, maxLOD):

3 """

4 Takes in numpy array warp of shape (1, 3, 1024, 1024)

5 """

6 # compute lod and normalize to (-1, 1)

7 mapping = 1024 * warp[:, :2]

8 lod = _compute_lod_level(mapping, maxLOD=maxLOD)

9 lod = 2 * lod / maxLOD - 1.0 # (h, w)

10 lod = lod.unsqueeze(0).unsqueeze(-1)

11

12 # normalize uv to (-1, 1)

13 grid = torch.tensor(warp[:, :2]).permute(0, 2, 3, 1)

14 mask = torch.all(grid == 0.0, dim=-1, keepdim=True)

15 mask = mask.expand(-1, -1, -1, 2)

16 grid[mask] = torch.nan # replace undefined with NaN

17 grid = 2 * grid - 1

18

19 # combine into a 3D coordinate grid (lod, u, v)

20 grid = torch.cat([lod, grid], -1).unsqueeze(1)

21 return grid # (1, 1, dim, dim, 3)

22

23

24 def view(lp, warp, leveln):

25 # get 3d coordinate grid

26 grid = _get_grid(warp, maxLOD=leveln-1)

27

28 # sample values

29 layers = pyrStack(lp, dim=-1)

30 new_im = F.grid_sample(

31 layers,

32 grid,

33 mode='nearest',

34 padding_mode="zeros",

35 align_corners=True,

36 ).squeeze(2)

37

38 # replace by NaN where image is 0

39 new_im[new_im == 0.0] = torch.nan

40 new_im = torch.nanmean(new_im, 0).half()

41 return new_im

42

43

44 def inverse_view(im, warp, leveln):

45 c, h, w = im.shape

46 grid = _get_grid(warp, maxLOD=leveln - 1)

47 with torch.enable_grad():

48 # create an empty pyramid

49 opt_var = torch.zeros(1, c + 1, h, w)

50 opt_var = LaplacianPyramid(opt_var, leveln)

51 for lvl in opt_var:

52 lvl.requires_grad_()

53

54 # convert to Gaussian pyramid

55 opt_gp = Laplacian2Gaussian(opt_var)

56 target = torch.cat([im, torch.ones_like(im[:1])])

57 layers = pyrStack(opt_gp, -1).float()

58 warped = F.grid_sample(

59 layers,

60 grid,

61 mode='nearest',

62 padding_mode="zeros",

63 align_corners=True,

64 ).squeeze(2)

65 loss = 0.5 * ((warped - target) ** 2).sum()

66 loss.backward()

67 result = [-l.grad.detach() for l in opt_var]

68 result = [(r[:, :c] / r[:, -1:]) for r in result]

69

70 # extract laplacian pyramid

71 for k in range(leveln - 1):

72 mask = torch.isnan(result[k])

73 imputed = impute_with_nearest(result[k], ˜mask)

74 result[k] = imputed - pyrUp(pyrDown(imputed))

75 result[k][mask] = torch.nan

76

77 return result

78
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Figure 16. Detailed look at inverse warping. We provide an illustration to Equation (10), explaining how to obtain the final Laplacian

pyramid using back-propagation, as mentioned in the main paper.

B. Additional Ablations

We provide more qualitative ablations to show the effects of

Laplacian warping, view prioritization, and time travel.

B.1. Prioritizing a Single View

In Section 4.3, we proposed to let the last x% of the de-

noising process only denoise a single one of the views. Fig-

ure 17 shows the effect of varying values of x for an exam-

ple with 90◦ rotation. As the ratio increases, details from

the first view (“a snowy mountain village”) dominate over

the second view (“a horse”). This is a useful parameter to

control the trade-off between views.
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Figure 17. Prioritizing a single view. We show the effect of prior-

itizing the first view (“a snowy mountain village”) over the second

(“a horse”) in the example of 90◦ rotation.
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Figure 18. Time travel. We show the effect of time traveling for

the flip example (“a giraffe head” / “a penguin”) with two differ-

ent sampled seeds. Time traveling is only applied for timesteps

between 20% and 80%, by repeating each step N times.

B.2. Time travel

We show in Figure 18 that time traveling is an effective

strategy for improving image consistency and blending be-

tween views. Without time traveling (N = 1), the pen-

guin and the giraffe head seem like two independent enti-

ties overlayed on top of each other in the image. As the

repeating number N increases, the two views align better,

resulting in a sharper image with more coherent details.

Obviously, runtime scales linearly with the repeating

number. In Burgert et al. [4], image quality and blend-



ing quality are entangled, and improving with the number

of optimization steps. Here, time traveling is only responsi-

ble for blending quality, but is independent of the generated

image quality. We believe this provides a more intuitive

control parameter than the number of optimization steps.

Naturally, better blending still yields better overall qual-

ity, which explains the lower FID in Table 2. However, it

seems to come at the cost of slightly worse prompt align-

ment. We hypothetize that blending better means making

more compromise between views, which in turn makes it

harder to match the prompts as well.

Baseline + LPW	(𝛼 = 0) + LPW	(𝛼 = 0.25) +	Time	Travel	(N=5) +	Prioritize	20%

Figure 19. Baseline ablation. We consider the cone mirror ex-

ample with two views (“a tropical jungle forest”/“a raccoon”.

We show successively the effect of Laplacian Pyramid Warping

(LPW), value-weighted average (α), time traveling, and single-

view prioritization.

B.3. Comparison with Baseline

Lastly, we show in Figure 19 the effects of these different

features. Laplacian Pyramid Warping addresses the arti-

facts at the edge of the ring, visible in the baseline. Value-

weighted average recovers sharp details lost in standard av-

eraging. Time traveling ensures a smoother blending, while

single-view prioritization adds back the final details in the

identity view without destroying the second view.

C. Quantitative Evaluation Details

We provide additional details regarding the quantitative

evaluation in this section.

Dataset generation. Similar to Geng et al. [18], we use a

custom list of 50 prompt pairs in the form of [<style>,

<prompt1>, <prompt2>] for our quantitative evalua-

tion. These are a mix between prompt pairs from Visual

Anagrams’ paper [18], and from querying ChatGPT. For

each method, we generate 10 samples per prompt pair. This

results in 500 pairs of images, i.e. 1k images per method.

For FID/KID computation, we generated a reference dataset

comprised of 3.2k images from SD3 and 3.2k images from

SD3.5 following the same prompts (only single view).

Comparing with prior work. For Visual Anagrams [18],

we used the original codebase from Geng et al.: https:

//github.com/dangeng/visual_anagrams. Re-

sults are generated with DeepFloyd IF [1] in two stages, and

subsequently up-sampled to 1024× 1024 using Stable Dif-

fusion x4 Upscaler, as provided by the code.

For Burgert et al. [4], we used the available code-

base at (https://github.com/RyannDaGreat/

Diffusion-Illusions) and added a function to ro-

tate the inner circle of an image by 135◦. Each image is

generated with 1000 optimization steps using Stable Diffu-

sion v1.4, the default model from their codebase.

Lastly, we set the hyperparameters of our pipeline to

replicate the original implementation of Tancik [37] and

SyncTweedies [23]. The results are generated with Stable

Diffusion 3.5 Medium, as in our method.

Runtime. We generate our results with Stable Diffusion

3.5 Medium on a Nvidia GeForce RTX 4090 GPU. With 30

steps of inference and time traveling between 20% and 80%
repeating 2 times, we can generate an image pair in ∼ 80s.

Geng et al. [18] Tancik et al. [37] SyncTweedies [23] Burgert et al. [4] Ours SD 3.5

18.6s 17.2s 18.8s 176.0s 79.4s

Table 3. Inference time comparison.

D. Using Other Latent Models

Most of our results were generated using Stable Diffusion

3.5. However, we also experimented with other models such

as SD2.1 and SDXL.

Here, we show a simple experiment with two identity

views associated with two distinct prompts. This way, we

abstract out the VAE, as well as other problems that come

from warping. The results are shown in Figure 20 for two

pairs of prompts. Interestingly, even in such a simple set-

ting, not all models behave the same: SD2.1 tend to gener-

ate images with poor quality, while SD3+ attempts to blend

the two concepts by compositing them as much as possible.

Curiously, SDXL seems to blend the concepts semantically:

“a snowy mountain village” and “a horse” give horses in a

village, while “people at a campfire” and “an old man” pro-

duce “old men at a campfire”.

https://github.com/dangeng/visual_anagrams
https://github.com/dangeng/visual_anagrams
https://github.com/RyannDaGreat/Diffusion-Illusions
https://github.com/RyannDaGreat/Diffusion-Illusions


While intriguing, this is not ideal for ambiguous images,

as the goal is more to blend spatially the different views.

Further investigation is needed to explain the discrepancy

between SDXL and SD3+, possibly due to the switch from

diffusion to flow matching or from U-Net to a transformer

backbone. A deeper study is left for future work.

(a)	SD2.1	(CFG=7.5) (b)	SDXL	(CFG=10.0) (c)	SD3	(CFG=10.0) (d)	SD3.5	(CFG=4.5)
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Figure 20. Comparing different models for two-view setting.

We consider the case of two identity views, associated with two

distinct prompts. While most models blend the two concepts spa-

tially, SDXL seems to blend them semantically.

E. User Study

As mentioned in Section 5.5, we conducted a user study

over 27 participants to compare human preferences between

our proposed method and existing prior work.

Study structure. The study consists of three sections,

each corresponding to a different type of anamorphosis:

cylindrical mirror, conic mirror, and Niceron’s lens. Each

section begins with an example image and video demon-

strating how the illusion works. Participants are then shown

10 different samples generated from 10 pairs of prompts.

These prompts remain the same across all three sections to

avoid bias. Additionally, the order in which the methods are

presented is randomized for each sample. To ensure a fair

comparison, we first display the results in high resolution

before asking users to rank them (see Fig. 21).

Ranking criteria. Participants are asked to provide a

ranking of the five methods from 1 (best) to 5 (worst). At

the beginning of the study, they are instructed to evaluate

the images based on the following criteria:

• Match both text prompts: When viewed directly (resp.

through a mirror or lens), the image should correspond to

the first (resp. second) prompt.

• Maintain the specified style: The image should adhere

to the given style prompt (e.g. painting, photograph).

• Be high-quality: The final image should be sharp, de-

tailed, and visually appealing.

F. Failed Experiments

Relative negative prompting. In Visual Anagrams [18],

the authors note that including other views in the negative

prompt does not improve substantially the visual quality.

Moreover, prompt conflicts can arise. For example, the

prompts “an oil painting of a village” and “an oil painting

of a horse” both share the style descriptor “an oil painting

of”, which should not be included in the negative prompt.

Similarly, prompts like “a cat” and “a dog” share features

such as fur. If these shared features appear in both the nega-

tive and positive prompts, it can lead to suboptimal results.

We experimented with a variant of this, which we dub

relative negative prompting. The idea is to put in the neg-

ative prompt only the relative direction between the posi-

tive prompt (from the current view) and the negative prompt

(from the other view). Thus, we subtract the positive prompt

embedding from the negative one. Our experiments showed

that this removes the need to manually select which part to

keep for the negative prompt. In the example of the shared

style, our difference vector cancels it out automatically, and

the model is thus still able to generate the correct style.

However, similar to Geng et al. [18], we did not observe

substantial improvement using this method.

G. Choosing Prompts & Failure Cases

The quality of the generation relies on choosing a good style

and pair of prompts. Here are some tips we found for gen-

erating good anamorphoses:

1. a place or location (e.g. jungle, desert, library etc.) gives

a lot of freedom to the composition and generally works

well for the identity view;

2. the second view is generally seen through some mirror

or a lens, which is smaller than the main image. For this

view, easily recognizable subjects like animals or faces

are good prompts in most cases;

3. artistic styles are more prone to produce good results

than photorealistic styles;



Start of the section: 

example image pair 

and video showing 

the illusion type

Image sample pairs 

from five methods in 

high resolution for 

better viewing

Users are asked to 

rank the five samples 

based on text-

prompt adherence, 

style matching, and 

overall visual quality

Figure 21. Sample from the user study.

4. styles with no colors (e.g. sketches, ink, marble sculp-

ture) will generate better results when the two prompts

have very different color palettes.

Our method is still prone to fail in certain cases. For

example, the model can still cheat and put all the views in

the image without properly blending them (see Figure 22).

Figure 22. Failure case. Similar to Geng et al., our method can

cheat and put both views in the image without properly mixing

them. In this example, the shark from the cylinder mirror view can

be seen in the sky behind the wind turbines.

H. Concurrent Work

After our initial submission, a preprint titled “Illusion3D:

3D Multiview Illusion with 2D Diffusion Priors” [16] ap-

peared on arXiv, addressing a similar problem. While their

code is not available at the time of writing, we identified a

few key differences between our method and theirs.

First, Illusion3D builds on optimization-based ap-

proaches like Burgert et al. [4], whereas our method im-

proves upon feedforward techniques [18, 37], generating

images in a single inference pass. Their approach re-

places Score Distillation Sampling (SDS) [4] with Varia-

tional Score Distillation (VSD), which requires training a

LoRA module during optimization. Due to the inherent

limitations of score distillation methods, we believe our ap-

proach produces higher-quality images while supporting a

broader range of styles, from artistic to photorealistic, as

demonstrated in Section I.

A key advantage of Illusion3D, however, is its ability

to generate full 3D structures, which our method does not

support. That said, our approach can still generate 2D tex-

tures for mapping onto 3D surfaces, similar to their sphere

or cube illusions. Lastly, we expect our method to have sig-

nificantly lower generation time and memory requirements

compared to Illusion3D.

I. Additional Results

In the next pages, we show additional qualitative results

for the three anamorphic views: cylinder mirror, conic mir-

ror, and Nicéron’s lens. Please refer to the supplementary

videos to see these anamorphoses in action. Table 4 shows

additional quantitative evaluations.



Method S ↑ S0.9 ↑ A ↑ A0.9 ↑ C ↑ C0.9 ↑ FID ↓ KID ↓

Vertical

Flip

Geng et al. [18] 0.325 0.362 0.306 0.340 0.695 0.786 149.24 0.057

Tancik SD 3.5 [37] 0.328 0.367 0.306 0.349 0.693 0.806 132.52 0.049

Burgert et al. [4] 0.303 0.347 0.281 0.324 0.679 0.778 219.84 0.115

SyncTweedies [23] 0.323 0.360 0.302 0.341 0.707 0.801 132.62 0.054

LookingGlass (ours) 0.320 0.358 0.297 0.338 0.680 0.779 124.67 0.049

135◦

Rotation

Geng et al. [18] 0.284 0.340 0.262 0.308 0.563 0.652 293.00 0.254

Tancik SD 3.5 [37] 0.203 0.225 0.194 0.216 0.498 0.509 439.35 0.545

Burgert et al. [4] 0.301 0.347 0.280 0.326 0.654 0.760 223.21 0.120

SyncTweedies [23] 0.308 0.354 0.283 0.335 0.647 0.753 166.03 0.083

LookingGlass (ours) 0.319 0.357 0.295 0.338 0.666 0.767 129.74 0.055

Cylindrical

Mirror

Geng et al. [18] 0.190 0.228 0.171 0.198 0.506 0.546 285.23 0.216

Tancik SD 3.5 [37] 0.189 0.225 0.171 0.198 0.505 0.547 284.97 0.215

Burgert et al. [4] 0.285 0.334 0.261 0.304 0.706 0.795 229.65 0.138

SyncTweedies [23] 0.285 0.348 0.241 0.284 0.673 0.763 138.69 0.082

LookingGlass (ours) 0.307 0.360 0.272 0.318 0.698 0.810 130.27 0.070

Table 4. Additional quantitative comparison. We additionally assess image-prompt alignment using CLIP similarity score S on all three

transformations evaluated in the main paper. While all methods achieve comparable results for the vertical flip, LookingGlass surpasses

previous approaches on more complex transformations, including anamorphoses.

a painting of… a table / waterfalls

a watercolor painting of… a ship / a village in the mountains

a watercolor painting of… a horse / a snowy mountain village

circle rotation 135° vertical flip

Figure 23. 2D transform results. Here are some generated results for the two 2D transforms: vertical flip, and 135◦ rotation (not supported

by Geng et al. [18]).



a cinematic rendering of

rolling hills in golden light / turtle

an oil painting of

sunlit canyon with straight cliffs / bull

an oil painting of

desert dunes at sunset / jellyfish

a clay sculpture of

cobblestone street / cheetah

a charcoal drawing of

flower garden with rows of tulips / fox

a paper collage of

mountain pass / lion

Figure 24. Cylinder mirror anamorphosis. In this figure and the two following ones, we show additional results for the cylinder mirror

example. Each example contains the identity view, the mirror view as predicted by the flow model, and a rendering of the actual physical

setting to validate our examples. Kindly refer to the supplementary videos to see these results in action.



an ink wash drawing of

straight ski tracks

an ink wash drawing of

iguana
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cobblestone street
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aquarium tunnel
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fox

a fresco painting of

mirror-like frozen pond
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bat

a clay sculpture of

flower meadow at sunrise

a clay sculpture of

iguana

a comic book panel of

sunlit rocky outcrop

a comic book panel of

turtle

a lithograph of

frozen waterfall

a lithograph of

cougar

an oil painting of

highland moor with stone walls

an oil painting of

hedgehog

a hyperrealistic sculpture of

windy desert

a hyperrealistic sculpture of

walrus



an ink wash drawing of

straight ski tracks

an ink wash drawing of

iguana

a watercolor painting of

snow-covered green trees

a watercolor painting of

hedgehog

a watercolor painting of

desert plateau

a watercolor painting of

seal

a LEGO model of

cobblestone street

a LEGO model of

cheetah

a photorealistic painting

of desert oasis

a photorealistic painting

of bat

a clay sculpture of

aquarium tunnel

a clay sculpture of

polar bear

a fresco painting of

aquarium tunnel

a fresco painting of

knight’s helmet

a LEGO model of

medieval castle gate

a LEGO model of

ant

a charcoal drawing of

sunlit rocky outcrop

a charcoal drawing of

seal

a charcoal drawing of

sunlit rocky outcrop

a charcoal drawing of

seal

an oil painting of sunlit

canyon with straight cliffs

an oil painting of

bull

an oil painting of straight

levee dividing water

an oil painting of

otter

an oil painting of

desert dunes at sunset

an oil painting of

jellyfish

a diorama of

dense tropical rainforest

a diorama of

panther

a clay sculpture of

cobblestone street

a clay sculpture of

cheetah

an ink wash drawing of

horizon of a wheat field

an ink wash drawing of

frog

a low-poly model of

sunlit rocky outcrop

a low-poly model of

fox

a charcoal drawing of

sunlit canyon with cliffs

a charcoal drawing of

panther

a charcoal drawing of

sunlit canyon with cliffs

a charcoal drawing of

panther

a clay sculpture of

flower meadow at sunrise

a clay sculpture of

iguana

a charcoal drawing of

flower garden with tulips

a charcoal drawing of

fox

a line drawing of

desert dunes at sunset

a line drawing of

horse

a cubist interpretation of

desert canyon floor

a cubist interpretation of

eagle

a paper collage of

mountain pass

a paper collage of

lion

a lithograph of

frozen waterfall

a lithograph of

cougar

a bronze statue of

mangrove forest

a bronze statue of

cougar

a metal engraving of

rooftops of a dense city

a metal engraving of

fox

a metal engraving of

rooftops of a dense city

a metal engraving of

fox

oil painting of highland

moor with stone walls

oil painting of

hedgehog

a hyperrealistic sculpture

of windy desert

a hyperrealistic sculpture

of walrus



a clay sculpture of

aquarium tunnel / polar bear

a pixel art version of

flower petals close-up / canoe

a stained glass depiction of

straight coastline / lion

a 3D rendering of

straight ski tracks / polar bear

a cinematic rendering of

icy cave with stalactites / parrot

a pointillism painting of

straight canal lined with trees / butterfly

Figure 27. Conic mirror anamorphosis. In this figure and the two following ones, we show additional results for the conic mirror

example. Each example contains the identity view, the mirror view as predicted by the flow model, and a rendering of the actual physical

setting from the top to validate our examples. Kindly refer to the supplementary videos to see these results in action.



a clay sculpture of

aquarium tunnel

a clay sculpture of

polar bear

a comic book panel of

medieval castle gate

a comic book panel of

octopus

a clay sculpture of

cobblestone street

a clay sculpture of

cheetah

a hyperrealistic sculpture of

straight ski tracks

a hyperrealistic sculpture of

motorcycle

a shadow puppet silhouette of

desert canyon floor

a shadow puppet silhouette of

otter

a fresco painting of

flower petals close-up

a fresco painting of

bull

a hyperrealistic sculpture of

icy cave with stalactites

a hyperrealistic sculpture of

fox

a wireframe rendering of

desert dunes at sunset

a wireframe rendering of

bull

a stained glass depiction of

aquarium tunnel

a stained glass depiction of

rabbit

a low-poly model of

straight coastline

a low-poly model of

wolf

a cinematic rendering of

flower meadow at sunrise

a cinematic rendering of

iguana

a black-and-white photo of

aquarium tunnel

a black-and-white photo of

reindeer

a 16-bit sprite of

flower petals close-up

a 16-bit sprite of

eagle

a cut-paper silhouette of

volcanic crater

a cut-paper silhouette of

macaw



a stained glass depiction

of spiral staircase

a stained glass depiction

of hermit crab

a chalkboard drawing of

open-pit mine

a chalkboard drawing of

bee

a diorama of

icebergs in the ocean

a diorama of

shark

a comic book panel of

sunlit rocky outcrop

a comic book panel of

turtle

a marble carving of

city skyline at night

a marble carving of

horse

a ceramic tile mural of

windy desert

a ceramic tile mural of

knight’s helmet

a stained glass depiction

of shipyard with cranes

a stained glass depiction

of lantern

a stained glass depiction

of shipyard with cranes

a stained glass depiction

of lantern

a low-poly model of

meandering river in valley

a low-poly model of

hermit crab

a diorama of

medieval castle gate

a diorama of

knight’s helmet

a 3D rendering of

volcanic crater

a 3D rendering of

polar bear

a 3D rendering of

volcanic crater

a 3D rendering of

polar bear

a steampunk illustration

of straight ski tracks

a steampunk illustration

of komodo dragon

low-poly model of beach,

shoreline & waves

low-poly model of

fountain statue

an oil painting of

icy cave with stalactites

an oil painting of

butterfly

a digital illustration of

aquarium tunnel

a digital illustration of

canoe

a minimalist illustration

of industrial pipeline

a minimalist illustration

of polar bear

a holographic image of

sunlit rocky outcrop

a holographic image of

jellyfish

a fresco painting of

flower petals close-up

a fresco painting of

gorilla

a minimalist illustration

of mountain pass

a minimalist illustration

of zebra

a low-poly model of

open-pit mine

a low-poly model of

octopus

a comic book panel of

icy cave with stalactites

a comic book panel of

wolf

a cinematic rendering of

ocean waves

a cinematic rendering of

horse

a marble carving of

desert oasis

a marble carving of

komodo dragon

a marble carving of

desert oasis

a marble carving of

komodo dragon

a surrealist painting of

mountain ridge

a surrealist painting of

octopus

a futuristic concept art of

bamboo forest

a futuristic concept art of

fox

a futuristic concept art of

bamboo forest

a futuristic concept art of

fox

a 16-bit sprite of

mountain pass

a 16-bit sprite of

gecko

a line drawing of

mirror-like frozen pond

a line drawing of

lizard



a 16-bit sprite of

desert oasis / dragon

a lithograph of

horizon of a wheat field / rabbit

a vintage poster of

dense tropical rainforest / deer

a hyperrealistic sculpture of

straight ski tracks / motorcycle

a hyperrealistic sculpture of

windy desert / walrus

a pencil sketch of

harbor pier / lion

Figure 30. Nicéron’s lens anamorphosis. In this figure and the two following ones, we show additional results for the lens example. Each

example contains the identity view, the lens view as predicted by the flow model, and a rendering of the actual image through the lens to

validate our examples. Kindly refer to the supplementary videos to see these results in action.
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horizon of a wheat field
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cougar
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a vintage poster of

deer

a hyperrealistic sculpture

of straight ski tracks

a hyperrealistic sculpture

of motorcycle

a low-poly model of

castle walls

a low-poly model of

canoe

a marble carving of

highland moor

a marble carving of

cougar

a lithograph of

bamboo forest

a lithograph of

elephant

a paper collage of

urban bridge over a river

a paper collage of

statue

a neon light artwork of

urban basketball court

a neon light artwork of

bicycle

a vintage poster of rows

of palm trees
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frog

an embroidered version

of grassy meadow

an embroidered version

of parrot

a digital illustration of

mountain ridge

a digital illustration of

panda

a cinematic rendering of

ocean waves

a cinematic rendering of

horse

a watercolor painting of

medieval castle gate

a watercolor painting of

hawk

a pixel art version of

forest, tall straight trees

a pixel art version of

camel

a photorealistic painting

of sunlit canyon, cliffs

a photorealistic painting

of fox

a 16-bit sprite of

city river with reflections

a 16-bit sprite of

cheetah

a ceramic tile mural of

rocky coastline

a ceramic tile mural of

turtle

a vintage poster of

medieval castle gate

a vintage poster of

rabbit

a minimalist illustration

of frozen waterfall

a minimalist illustration

of turtle

a pixel art version of

vineyard, straight trellises

a pixel art version of

otter

a lithograph of beach,

shoreline & waves

a lithograph of

sailboat

a vintage poster of

harbor with docked ships

a vintage poster of

hot air balloon
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