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Fig. 1. We present a tracking-based video interpolation method that can take sparse user-specified point tracks as input to improve the interpolation

quality and express user’s artistic intents. Our method first generates results without any additional inputs and then can be optionally modified to improve

interpolation quality. © 2025 Disney

Temporal video frame interpolation has been an active area of research in

recent years, with a primary focus on motion estimation, compensation,

and synthesis of the final frame. While recent methods have shown good

quality results in many cases, they can still fail in challenging scenarios.

Moreover, they typically produce fixed outputs with no means of control,

further limiting their application in film production pipelines. In this work,

we address the less explored problem of user-assisted frame interpolation

to improve quality and enable control over the appearance and motion

of interpolated frames. To this end, we introduce a tracking-based video

frame interpolation method that utilizes sparse point tracks, first estimated

and interpolated with existing point tracking methods and then optionally

refined by the user. Additionally, we propose a mechanism for controlling the

levels of hallucination in interpolated frames through inference-time model

weight adaptation, allowing a continuous trade-off between hallucination

and blurriness.
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Even without any user input, our model achieves state-of-the-art results

in challenging test cases. By using points tracked over the whole sequence,

we can use better motion trajectory interpolation methods, such as cubic

splines, to more accurately represent the true motion and achieve significant

improvements in results. Our experiments demonstrate that refining tracks

and their trajectories through user interactions significantly improves the

quality of interpolated frames.
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1 Introduction

Video frame interpolation (VFI) is a commonly used image post-

processing technique with a wide range of applications, such as

frame rate adjustment [Castagno et al. 1996], novel-view synthe-

sis [Kalantari et al. 2016], and the generation of artistic slow-motion

effects [Jiang et al. 2018].
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While the advances made in recent years [Jin et al. 2023; Li et al.

2023; Niklaus and Liu 2020; Zhou et al. 2023] have greatly improved

the quality of interpolated frames, finding correspondences in scenes

with large or complex displacements between the keyframes and

compensating for the motion remains a challenging problem, limit-

ing practical use cases. Additionally, as an ill-posed problem, VFI

typically generates a single variant out of many plausible intermedi-

ate frames, which may differ from the user expectations. Yet, so far

little research has been done in adding control over the interpolated

outputs.

On the other hand, significant progress has been made in esti-

mating sparse point correspondences [Luo et al. 2023; Zhang et al.

2024a] and tracking points through a video [Doersch et al. 2023;

Karaev et al. 2025; Neoral et al. 2024; Tumanyan et al. 2025; Wang

et al. 2023]. Despite this progress, such point tracks have not yet

been utilized to improve frame interpolation. Furthermore, frame

interpolationmethods are typically trained on real-world videos con-

taining various kinds of motion. However, a simple motion model is

typically assumed during training, leading to misalignment between

the interpolated output and the reference.

In this work, we make the connection between point tracking,

and non-linear motion estimation to present a novel tracking-based

frame interpolation method, designed around enabling using user

control over interpolation outputs. The method uses sparse point

tracks as an input, obtains dense flows from keyframes to the tar-

get frame, and inverts and refines them into optical flows that are

used to synthesize the final frame. The tracks can first be estimated

fully automatically with an off-the-shelf tracking algorithm and

optionally refined through a user interaction, e.g., to specify cor-

respondences that were missed by the point tracker or to control

their trajectories between the keyframes. By training the model

with tracks that are estimated from full sequences, including the

target frame, we enable it to reconstruct the true motion and avoid

temporal misalignment between the model’s prediction and the

ground truth [Briedis et al. 2021; Kiefhaber et al. 2024; Zhong et al.

2025]. As an additional means of control, we propose an extension

to our model to enable test-time trade off between hallucination

and blurriness, similar to a low-rank adaptation (LoRA) [Hu et al.

2022b] of the model weights.

Although we focus on adding controllability through point tracks,

our base model already achieves competitive performance on the

challenging DAVIS dataset. Especially in subjective ratings, our base

model excels even when compared to concurrent work. When lever-

aging point tracks, we can show significant interpolation quality

improvements.

To summarize, our main contributions are:

• designing the first frame interpolation architecture that can

leverage a set of sparse point tracks for motion estimation,

enabling non-linear interpolation during training and infer-

ence;

• introducing controllability regarding motion and appearance

to help artists address potential imperfections and achieving

their artistic intent;

• achieving state-of-the-art frame interpolation results on chal-

lenging sequences.

2 Related Work

Classically, frame interpolation has relied on optical flow and image

warping [Baker et al. 2011]. Most of the modern learning-based

methods build on top of their differential counterparts or estimate

the motion implicitly with phase-based [Meyer et al. 2018, 2015],

kernel-based [Lee et al. 2020; Niklaus et al. 2017a,b] or direction
prediction [Choi et al. 2020] methods. We refer to the survey by

Dong et al. [2023] for a more complete list of prior work.

Some of the motion-based methods use a pre-trained optical flow

estimator [Sun et al. 2018; Teed and Deng 2020] to forward-splat

the keyframe features or flow to the target frame [Bao et al. 2019;

Hu et al. 2022a; Niklaus et al. 2023; Niklaus and Liu 2018, 2020], or

additionally jointly learn the forward motion [Jin et al. 2023]. Other

methods predict the motion from the target frame to the keyframes

directly to backward-warp them [Huang et al. 2022; Kong et al.

2022; Reda et al. 2022] or combine with forward warping [Danier

et al. 2022; Park et al. 2020; Sim et al. 2021]. Our method falls most

closely in the last category but instead uses sparse tracks to handle

the forward motion while the backward motion is updated in a

dense manner at a fixed resolution instead of using coarse-to-fine

processing.

More recent paradigms employ the transformer architecture [Lu

et al. 2022; Park et al. 2023; Plack et al. 2023; Zhang et al. 2023; Zhou

et al. 2023], diffusion models [Danier et al. 2024; Jain et al. 2024],

all-pair correlation volumes [Li et al. 2023; Liu et al. 2024], or state

space models [Zhang et al. 2024b]. Other works focus on perceptual

aspects [Wu et al. 2024], or improving optical flow reversal from

the keyframe flows [Guo et al. 2024; Jeong et al. 2024].

Most methods assume linear motion between the keyframes while

only a few estimate quadratic motion [Liu et al. 2020; Xu et al. 2019;

Zhang et al. 2020] or learn non-linear motion implicitly [Choi et al.

2021; Hu et al. 2024; Kalluri et al. 2023; Park et al. 2021]. While all

of these methods can learn a more plausible motion than the linear

one, they provide no control and still suffer from misalignment with

the reference. Kiefhaber et al. [2024] also address the issue with

non-linearities in the frame interpolation training and evaluation

data but propose to filter them build a benchmark with only linear

motion. Concurrently with our work, Zhong et al. [2025] address

training with non-linear data and introduce control over time curves

for different segments of an image. User controllability by utilizing

conditioned video diffusion models has also been explored [Tan-

veer et al. 2025; Wang et al. 2025b]. While large generative models

perform well at synthesizing new content, they incur very high

computational costs and limitations in high-resolution fine-grained

detail reconstruction.

The only other existing control for frame interpolation has been

proposed as a binary decision between models trained on color

or perceptual losses [Niklaus and Liu 2020; Plack et al. 2023; Reda

et al. 2022] with no intermediate options. For the task of image

upsampling, ESRGAN [Wang et al. 2018] provides control of the

appearance using weight interpolation but require interpolating two

full sets of weights before inference and does not allow training for

intermediate steps. Pan et al. [2023] present an optimization-based

method for controlling GAN-generated images using handle points

but is limited to images that can be represented in its latent space.
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Fig. 2. Method overview. The initial tracks are obtained using an off-the-shelf point tracker and optionally adjusted through user interaction, e.g. to specify

non-linear motion between the keyframes. These tracks are densified at keyframes to obtain approximate forward flows, which are forward-warped to create

the initial bilateral flows F0

𝑡→{0,1} . These flows are refined at the target timestep and used to warp keyframe feature pyramids to synthesize the final frame.

Recent point tracking methods [Doersch et al. 2023; Karaev et al.

2025; Neoral et al. 2024; Tumanyan et al. 2025; Wang et al. 2023]

have shown great improvement in sparse point tracking but often

are prohibitively expensive for dense tracking. Le Moing et al. [2024]

propose dense optical tracking (DOT), initializing coarse estimate

with sparse tracks and refining it with a customized version of the

flow estimation model RAFT [Teed and Deng 2020]. As part of our

method we solve a related problem of estimating dense flow to an

unknown target frame based on sparse point tracks.

3 Tracking-Based Frame Interpolation

The goal of our method is to reconstruct a frame 𝐼𝑡 between two

keyframes 𝐼{0,1} by utilizing sparse point tracks extracted from the

video or provided as a user input. An overview of the method is

shown in Figure 2.

First, we obtain and process points tracks between the input

frames. We then use them to compute coarse non-linear optical

flows from keyframes the target temporal position, followed by flow

reversal and refinement which applies multiple iterations of flow

update steps. Finally, we use the refined flows to backward-warp

the keyframes and synthesize the final frame.

3.1 Obtaining Point Tracks

At first, we obtain𝐿 point tracks, such that 𝑙-th track 𝑃𝑙 = {(x𝑙
𝑗
, 𝑣𝑙
𝑗
) | 𝑗 ∈

𝑁 } contains the position x of the same 3D point projected onto the

camera in each of the 𝑁 input frames and 𝑣 ∈ {0, 1} denotes its
visibility. In this work, we consider that the tracks can be obtained

automatically using an off-the-shelf method, or refined and provided

manually through a user input. For most of our experiments, we

automatically extract point tracks using the CoTracker2 [Karaev

et al. 2025] method.

To obtain automatically extracted tracks’ positions at the target

time step 𝑡 , we linearly interpolate the position of each track. In

case the track visibility changes between the two key-frames I{0,1} ,
it is unknown at which intermediate timestep it became occluded.

To reflect this, the visibility 𝑣 for the interpolated track position is

set to the minimum of both key point, i.e. it is marked as visible

only if it is visible in both closest keyframes. Note that as a point

can be tracked through the whole video, any discrete higher order

point interpolation methods, such as cubic splines, can be used.

Additionally, their position and visibility at the target frame can

be further adjusted via a user input. Please see the supplementary

video for an example how it can be done interactively.

As during training the target frame is known, we extract tracks

from all input frames to obtain a better estimation of their posi-

tion and visibility. It allows to spatially align the outputs with the

reference image resulting in a better training supervision signal.

3.2 Flow Densification

Having sparse correspondences from one of the keyframes 𝐼0 to the

intermediate target frame 𝐼𝑡 and the other keyframe 𝐼1, our goal is

to obtain dense flow F0→𝑡 that follows the given tracks. Figure 3

illustrates the improvements from our densification process. For

context, the reference optical flow computed from the ground truth

middle frame is shown.

Although naive, spatial nearest-neighbor interpolation of dis-

placements associated with the visible points is a good starting

point. More formally, we define this nearest flow field from 𝑖 to 𝑗 at

pixel y as

F̄𝑖→𝑗 [y] = 𝑃𝑙
∗
𝑗 − 𝑃𝑙

∗
𝑖 , 𝑙∗ = arg min

𝑙∈{1...𝐿 |𝑣𝑙
𝑖
}
| |𝑃𝑙𝑖 − y| |2 . (1)
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Nearest Densification Barycentric Densification Our Densification RAFT Flow Reference

Fig. 3. Track densification into F̂0→𝑡 . We show the output of the nearest-neighbor and barycentric interpolation approaches compared to our densification

method for obtaining the optical flow from a keyframe to the target frame. For reference, we show RAFT output which can not be obtained during inference

since the middle frame is unknown.

However, this densification is agnostic to the image content and

contains inaccuracies (see Figure 3), even when using more complex

approach such as barycentric interpolation.

To improve on this initial result, we want to refine the initial

coarse flow estimation F̄0→1 by utilizing input frames 𝐼0 and 𝐼1.

While any refinement model can be used, for the purposes of our

experiments, we leverage DOT [Le Moing et al. 2024], which uses

the coarse flow as the initial starting point for a task-adjusted RAFT

optical flow model. While we cannot use DOT directly to obtain

F0→𝑡 , as 𝐼𝑡 is unknown, we employ it to obtain refined keyframe

flow F̃0→1 (and F̃1→0 analogously):

F̃0→1 = DOT(F̄0→1, 𝐼0, 𝐼1) . (2)

One can note that on one side, the motion of the tracked points

is more reliable, while on the other side the refined keyframe flow

better represents the pixel level neighborhood relationship in terms

of both content and motion. Our proposal is to leverage both for a

better densification. Specifically the similarity in terms of keyframe

motion is used to associate pixels and point, to query intermediate

flow values. More formally, we define it as:

F̂0→𝑡 [y] = 𝑃𝑙
∗
𝑡 − 𝑃𝑙

∗
0
, (3a)

𝑙∗ = arg min

𝑙∈N0

𝐾
(y)

| (𝑃𝑙
1
− 𝑃𝑙

0
) − F̃0→1 [y] | , (3b)

N𝑖
𝐾 (y) =

{
𝑘

��� 𝑘 ∈ argsort
𝑙∈{1...𝐿 |𝑣𝑙

𝑖
} | |𝑃

𝑙
𝑖 − y| |2

}
, (3c)

where N𝑖
𝐾
gives the 𝐾 = 16 spatially nearest visible neighbors.

A representation of the these different refinement stages is pro-

vided in Figure 4, where we see the transition from the initial set

of tracked points, the densification using nearest-neighbors, the

refinement of the key-frame flow using DOT, and its usage to query

motion vectors from the tracked point to create a better densification

for both the target (middle) and key frame.

3.3 Flow Refinement and Frame Synthesis

Having obtained trajectory-adjusted flows F̂𝑖→𝑡 from the keyframes

to the target timestep, we use them for the final frame synthesis. As

the densified outputs are still relatively coarse, we choose to refine

them by splatting them to the target timestep, applying iterative

flow update steps, and, finally, using backward warping to provide

keyframe information to the frame synthesis module.

DOT

Refiner

Sparse Keypoints

Coarse Keyframe

Flow

Nearest Interpolation

Refined FlowCoarse Target

Flow

Fig. 4. The different stages for the densification of tracked points, transi-

tioning from the initial set of tracked points to dense target and key frame

flows. We use key-frame flow from DOT to query motion vectors from the

tracked point to create a better result for both the target (middle) and key

frame. See the text (Section 3.2) for more details.

Flow Reversal. To obtain the initial flows F0

𝑡→𝑖
from the target

frame to keyframes, we reverse them with forward warpingW:

F0

𝑡→𝑖 = WF̂𝑖→𝑡
(−F̂𝑖→𝑡 , ), (4)

using exponential weights [Niklaus and Liu 2020]. As we cannot use

brightness constancy due to non-linear motion, we opt to use depth-

aware weighting [Bao et al. 2019] extracted with the monocular

Depth Anything V2 [Yang et al. 2024] model and further refined

with a small network together with the input features and flow

F̂𝑖→𝑡 .

Flow Refinement. We refine the initial flow fields F0

𝑡→{0,1} over

𝐾 = 4 iterations into the final flows F𝐾
𝑡→{0,1} , simultaneously solving

the interpolation and optical flow problems.

At first, we compute 5-level scale-agnostic feature pyramids [Reda

et al. 2022] of the input frames. In every iteration, we backward-

warp the bottom 3 levels of scale (
1/4, 1/8, 1/16) with the current flow

estimates F𝑘
𝑡→{0,1} and update flows along a hidden state h𝑘 that is

initialized as a learnable vector, repeated across the spatial dimen-

sions.

For the update step, we choose to adopt recurrent update block,

re-purposed for multi-level processing [Wang et al. 2025a]. This

achieved by starting the processing from the lowest level and con-

catenating it with the bilinearly upsampled hidden state of the

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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previous level. The flow update is only performed at the
1/4 resolu-

tion.

Frame Synthesis. For the final frame synthesis, we construct a

pair of feature pyramids and bilinearly backward-warp them with

rescaled and bilinearly resampled F𝐾
𝑡→{0,1} . We then apply an occlu-

sion mask to the warped frames of the valid pixels in F0

𝑡→{0,1} . That
is, we zero out warped features if not a single value was forward-

warped to that pixel.

Warped features, along with the final hidden state h𝑘 at
1/4 reso-

lution, are concatenated on every level of scale and processed with

a 3 × 6 GridNet [Fourure et al. 2017] to obtain the final interpolated

frame.

3.4 Low-Rank Sharpness Adapter

Training with just pixel losses often yields blurry results therefore

many methods perform a fine-tuning stage with a perceptual feature

loss [Niklaus and Liu 2018, 2020; Niklaus et al. 2017b] as well as style

loss [Plack et al. 2023; Reda et al. 2022] to improve the perceptual

quality. However, models tuned with such losses can sometimes

exhibit artifacts or hallucinate unwanted anomalies such that blurry

results can be the preferred behavior. We propose a method exten-

sion that allows to control the level of sharpness and hallucination

based on low-rank adaption (LoRA) [Hu et al. 2022b].

We first train the model without any perceptual losses and then

fine tune only the low rank updates for each convolution [Man-

grulkar et al. 2022] of the frame synthesis network lateral blocks

while adding VGG feature difference loss [Niklaus and Liu 2018].

The output of each convolution is redefined to

𝑦 = Φ(𝑥) +𝑤 · ΔΦ𝑟 (𝑥) , (5a)

ΔΦ𝑟 (𝑥) = 𝐾𝑟×𝑑2
∗ 𝐾𝑑×𝑟

1
∗ 𝑥 , (5b)

where 𝑥 is the input, Φ is the original convolution and ΔΦ𝑟 is a low-
rank convolution first mapping inputs to the lower 𝑟 -dimensional

space and then transforming back to the original 𝑑-dimensional

space, 𝑤 is the control weight that is uniformly sampled during

training 𝑤 ∼ U[0,1] . Both ΔΦ𝑟 weights are fine-tuned and the

second weight is initialized to as zeros while the original Φ(𝑥) is
frozen.

During inference, we can dynamically change the control weight

𝑤 to achieve different outputs without retraining the model. Addi-

tionally, the weight can be changed spatially to control only some

parts of the image. To provide a spatially-varying mask to lower

levels of the GridNet we apply average pooling operation.

4 Experiments

Training Details. We train our method on Vimeo-90K [Xue et al.

2019] septuplet dataset. During training, we sample random 256×256

crops from a uniformly-spaced frame triplet. For data augmentation

we apply temporal and spatial flips. The model is trained with the

Adam [Kingma and Ba 2015] optimizer with batch size of 4 for 500𝐾

steps. We use the reciprocal square root learning rate schedule [Zhai

et al. 2022], performing 100𝐾 warm up and cooldown steps, with

peak learning rate reaching of 10
−4
. Following Lu et al. [2022], we

use 𝐿1 and Census losses. It takes approximately 45 hours to train

our final model on a single NVIDIA RTX 4090 GPU using mixed-

precision training.

Sharpness LoRA Training. To train the low-rank sharpness adapter,
we add perceptual feature loss following [Niklaus and Liu 2018] and

train for an additional 200𝐾 steps using constant learning rate of

10
−3
. The fine-tuning takes additional 13 hours.

Point Tracking. To obtain the points between the keyframes we

use CoTracker2 [Karaev et al. 2025]. For training, we use a single

set of pre-generated tracks per sequence, initialized on a regular

grid with an edge size of 16 in 3rd and 5th frame and tracked over

the whole sequence. During inference, by default we sample 2048

points near motion boundaries similar to Le Moing et al. [2024]. For

the user interaction tests we use a regular with an edge size of 32 to

have fewer tracks that need to be interacted with.

Evaluation. To evaluate our methods we adopt the commonly

used Vimeo-90K test splits and the more challenging DAVIS [Per-

azzi et al. 2016] dataset at 1080𝑝 resolution. For DAVIS dataset we

interpolate 4-th frame of each of the 50 sequences based on its

two neighboring frames. Unless otherwise noted, we use sharpness

control value𝑤 = 1.0.

Runtime and Memory. When measured over the DAVIS test set,

tracking 2048 points takes 0.30 ± 0.00𝑠 , while running the whole

interpolation model takes 0.80 ± 0.06𝑠 . Model inference on a 2𝐾

dataset uses approximately 8GB of GPU memory, while 4𝐾 content

uses approximately 24GB.

4.1 Comparison with Prior Methods

To evaluate the unassisted baseline performance of our method,

i.e. without taking any user inputs, we compare it with the tradi-

tional state-of-the-art frame interpolation methods. For quantitative

comparisons, we re-evaluate the methods with implementations

provided by their authors and present the results in Table 1. For

XVFI we use the variant trained on Vimeo-90K dataset.

A clear benefit from using our method is the possibility to in-

terpolate tracks with cubic splines that represent the motion more

accurately. As shown in Table 1 our method shows significant im-

provement and outperforms prior work by a large margin. Addition-

ally, even our base model shows a strong performance, especially

on the more challenging DAVIS dataset, and is on par with the state-

of-the art, quantitatively outperforming all prior works apart from

the concurrent work GIMM [Guo et al. 2024].

Qualitative comparison with the top-performing two-frame meth-

ods is shown in Figure 5. For FILM and our method we show the

perceptually trained variants. It can be seen that our method has

better quality results when interpolating scenes with complex mo-

tion.

4.2 Motion Control Evaluation

To quantitatively evaluate howuser-provided correspondence points

can improve the interpolation quality, we simulate it by extracting

tracks from the sequence, including the target reference frame.

Initially, we extract point tracks between both keyframes as in

traditional inference and linearly interpolate them, while also track

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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Inputs
AMT VFIMamba FILM Reference

CFR-RIFE PerVFI GIMM Ours

PSNR | SSIM | LPIPS 21.41 dB | 0.725 | 0.3825 22.83 dB | 0.765 | 0.3829 23.11 dB | 0.722 | 0.1976

24.39 dB | 0.790 | 0.3555 25.97 dB | 0.809 | 0.0865 23.99 dB | 0.746 | 0.1317 26.25 dB | 0.803 | 0.0894
Inputs

AMT VFIMamba FILM Reference

CFR-RIFE PerVFI GIMM Ours

PSNR | SSIM | LPIPS 17.60 dB | 0.602 | 0.5305 19.90 dB | 0.649 | 0.4639 20.94 dB | 0.626 | 0.1939

21.32 dB | 0.706 | 0.3731 21.42 dB | 0.638 | 0.2187 25.33 dB | 0.799 | 0.1052 21.50 dB | 0.649 | 0.1754
Inputs

AMT VFIMamba FILM Reference

CFR-RIFE PerVFI GIMM Ours

PSNR | SSIM | LPIPS 17.73 dB | 0.465 | 0.5501 22.88 dB | 0.637 | 0.2867 20.32 dB | 0.518 | 0.2055

21.71 dB | 0.593 | 0.3779 22.38 dB | 0.637 | 0.1275 22.80 dB | 0.652 | 0.1118 22.62 dB | 0.632 | 0.1161
Inputs

AMT VFIMamba FILM Reference

CFR-RIFE PerVFI GIMM Ours

PSNR | SSIM | LPIPS 20.54 dB | 0.615 | 0.3108 20.80 dB | 0.622 | 0.2800 20.48 dB | 0.570 | 0.1869

21.63 dB | 0.634 | 0.3050 20.82 dB | 0.585 | 0.1759 21.39 dB | 0.596 | 0.1593 20.88 dB | 0.587 | 0.1649

Fig. 5. Qualitative comparison with the prior frame interpolation methods without any user interaction or additional inputs. We show overlaid keyframes as

inputs and report metrics per full image.
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Table 1. Quantitative evaluation against prior methods, without using any

user inputs. We list the methods trained with perceptual losses separately.

For our model we report two scores with different sharpness control values

S𝑤 . Finally, we report results with non-linear motion estimation from four

input frames on the DAVIS dataset. It is not applicable for Vimeo-90K.

Vimeo-90K 256𝑝 DAVIS 1080𝑝

PSNR SSIM LPIPS PSNR SSIM LPIPS

↑ ↑ ↓ ↑ ↑ ↓

SoftSplat-L1 [Niklaus and Liu 2020] 36.09 0.970 0.0220 26.65 0.796 0.1907

XVFI-Vimeo [Sim et al. 2021] 35.06 0.963 0.0234 24.83 0.752 0.2332

ABME [Park et al. 2021] 36.22 0.971 0.0217 27.06 0.811 0.1889

VFIFormer [Lu et al. 2022] 36.55 0.972 0.0207 Out of Memory
RIFE [Huang et al. 2022] 34.28 0.957 0.0192 26.79 0.792 0.1175

FILM-𝐿1 [Reda et al. 2022] 36.05 0.970 0.0201 27.42 0.811 0.1162

AMT-G [Li et al. 2023] 36.53 0.972 0.0195 26.80 0.799 0.1832

UPRNet LARGE [Jin et al. 2023] 36.43 0.972 0.0206 25.95 0.782 0.2316

EMA-VFI [Zhang et al. 2023] 36.65 0.972 0.0205 26.41 0.784 0.2213

SGM 50% [Liu et al. 2024] 35.81 0.968 0.0217 27.14 0.806 0.1760

CFA-RIFE [Zhong et al. 2025] 34.85 0.962 0.0241 27.70 0.823 0.1638

VFIMamba [Zhang et al. 2024b] 36.64 0.972 0.0202 27.34 0.814 0.1869

GIMM [Guo et al. 2024] 35.74 0.967 0.0122 28.77 0.838 0.0738
Ours-S0.0 35.74 0.968 0.0212 28.16 0.829 0.1176

SoftSplat-L𝐹 [Niklaus and Liu 2020] 35.45 0.964 0.0128 26.20 0.767 0.1337

FILM-L𝑆 [Reda et al. 2022] 35.86 0.969 0.0132 27.22 0.802 0.0970

PerVFI [Wu et al. 2024] 34.02 0.954 0.0179 27.38 0.808 0.0912

LDMVFI [Danier et al. 2024] 33.11 0.945 0.0233 24.65 0.727 0.1658

Ours-S1.0 35.49 0.966 0.0142 27.98 0.820 0.0839

FLAVR [Kalluri et al. 2023] n/a 26.29 0.778 0.2874

Ours-S0.0-cubic splines n/a 29.30 0.852 0.1123

Ours-S1.0-cubic splines n/a 28.95 0.844 0.0791

Table 2. Quantitative evaluation of motion control by observing the interpo-

lation improvement depending on the number of reference tracks provided

to our method. See the text for more details.

Vimeo-90K 256𝑝 DAVIS 1080𝑝

Reference Tracks PSNR SSIM LPIPS PSNR SSIM LPIPS

# ↑ ↑ ↓ ↑ ↑ ↓

0 35.51 0.967 0.0141 27.84 0.820 0.0853

4 35.62 0.967 0.0140 27.91 0.821 0.0840

8 35.72 0.968 0.0139 27.93 0.821 0.0839

16 35.87 0.969 0.0137 27.96 0.822 0.0837

32 36.11 0.970 0.0134 28.05 0.826 0.0831

64 36.46 0.971 0.0130 28.28 0.836 0.0816

128 36.57 0.972 0.0129 28.91 0.860 0.0774

256 36.57 0.972 0.0129 30.24 0.899 0.0699

512 36.57 0.972 0.0129 31.66 0.925 0.0645

the same points across all keyframes. We then evaluate which tracks

have the largest error between the true and linearly assumedmotion,

defined as

error𝑙 = | |𝑃𝑙𝑡 −
𝑃𝑙

0
+ 𝑃𝑙

1

2

| |2 . (6)

Subsequently, we select a specified number of reference tracks

with the largest error and replace them with their true position in
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PSNR, dB

0.085

0.090

0.095

0.100
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0.110

0.115
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S0.3

S1.0S2.0

Fig. 6. Sharpness control results. PSNR and LPIPS values for different per-

ceptual control values S𝑤 over the DAVIS test dataset.

the target frame. This process approximates a scenario where a user

notices interpolation errors and corrects them by adjusting nearby

tracks.

In Table 2, we show how the number of provided tracks, extracted

by using the reference, impacts the final interpolation result on our

two benchmarks. It can be observed that by increasing the number

of control points, the interpolation quality also improves.

4.3 Sharpness Control Evaluation

Results with two sharpness control values are reported in Table 1. In

Figure 6we show how different control values impact the perception-

distortion quality.

4.4 Ablation Study

We present an ablation study in Table 3, evaluating the impact of

training data, point densification methods, and network compo-

nents.

First, we train our model on Vimeo-90K triplet (3f) training

dataset as well as the Vimeo-90K septuplet (7f) dataset, adjusting

the ratio of tracks with linear assumption. That is, during training

with a chosen probability lin we replace the true position of all

target frame tracks with a linear approximation. These results show

the benefits of training with more challenging data, while highlight-

ing the importance of considering the non-linear motion during

training.

In the second part, we investigate the impact of different point

densification approaches by comparing nearest and barycentric in-

terpolation methods with our algorithm, described in Section 3.2.

Additionally, we consider an extension of our algorithm that op-

timizes continuous blending weights for nearest neighbors and

applies them to the target frame tracks.

Finally, we ablate design decisions in our model by training a

model without providing depth values to the splatting weight es-

timation, without masking occluded regions, and using a smaller,

efficient model with halved internal layer feature dimensions. While

some alternative variants perform better quantitatively, we priori-

tize the perceptual quality.
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Table 3. Ablative experiments on the model design and training data.

Vimeo-90K 256𝑝 DAVIS 1080𝑝

PSNR SSIM LPIPS PSNR SSIM LPIPS

Scenario ↑ ↑ ↓ ↑ ↑ ↓

T
r
a
i
n
i
n
g
D
a
t
a

3f 35.97 0.970 0.0204 27.89 0.827 0.1181

7f, lin=100% 35.87 0.967 0.0256 28.63 0.841 0.2109

7f, lin=75% 35.89 0.968 0.0253 28.62 0.842 0.2038

7f, lin=50% 35.93 0.968 0.0254 28.56 0.840 0.2009

7f, lin=25% 35.95 0.968 0.0262 28.79 0.848 0.1804

7f, lin=0% (Ours) 35.74 0.968 0.0212 28.16 0.829 0.1176

D
e
n
s
i
fi
c
a
t
i
o
n

Nearest 35.66 0.968 0.0209 28.09 0.827 0.1187

Barycentric 35.53 0.967 0.0217 28.06 0.827 0.1177

Optimized 35.74 0.968 0.0211 28.17 0.829 0.1175
Ours 35.74 0.968 0.0212 28.16 0.829 0.1176

M
o
d
e
l

w/o Depth 26.73 0.835 0.1321 25.04 0.751 0.2754

w/o Occlusion

Masking

35.80 0.969 0.0209 28.18 0.829 0.1188

Smaller Model 35.63 0.968 0.0215 28.22 0.830 0.1227

Ours 35.74 0.968 0.0212 28.16 0.829 0.1176

4.5 Real-World User Controllability

To interact with the model, we developed an interactive desktop

application that allows users to load automatically estimated tracks

and modify them by adjusting their position and visibility in each

keyframe, as well as delete and add new tracks. It allows choosing

different point interpolation methods and to specify global sharpness
weight.

We use this tool to process several sequences from the DAVIS test

set and show results in Figure 8. Examples of interaction are shown

in the supplementary video.

4.6 User Study

To evaluate the perceptual improvement of our baseline method as

well as the impact of user interactions, we conducted a user study

where participants had to give a strong or weak preference for one

of two 32× interpolated videos. In the study, 26 users provided 1598

votes and the summary of the results is shown in Figure 7.

Our baseline version, without any user inputs, already shows

strong results compared to prior art, with only the concurrent GIMM

achieving close results. However, our assisted version, obtained

by interacting with the method for 6:06 minutes per sequence on

average, shows a clear preference in the user ratings, achieving 91.4%

preference over the best prior method GIMM, and 83.7% preference

over our unassisted version.

For more details on the user study design and results, please see

the supplementary document.

5 Discussion and Limitations

Although we propose a user-oriented frame interpolation method

that shows strong unassisted interpolation results and is first to

enable full control for improving interpolation outputs and motion

trajectories, there are still a few limitations and open areas for future

work.
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)

25%

50%

75%

(b) Preference for Ours (assisted)

strong preference ours

weak preference ours

strong preference theirs

weak preference theirs

Fig. 7. User study results of comparing our methods - (a) non-assisted and

(b) assisted - against prior methods. Dark green and light green represent

strong and weak preference for our method, respectively, while dark red and

light red indicate strong and weak preference for the compared method.

As our work prioritizes quality and controllability over compu-

tational efficiency, it adds an overhead to the interactive workflow.

While we find it generally sufficient to make edits in a low interpo-

lation factor preview and only then rendering the high framerate

version only once, the high framerate video can sometimes show

problems that are not very apparent in the low-framerate video.

Future work on increasing interpolation efficiency without com-

promising quality could allow to interactively preview the final

rendering.

Additionally, more investigation into the graphical interface to

interact with the model could improve user efficiency and quality

outputs. For example, to change trajectories of an object, all points

have to be manually selected. This could be improved by use of seg-

mentation models or other tools to automatically guess the region

user might want to edit. There is also currently no control over the

depth and occlusion values, which makes some sequences, such as

dog-agility in results, challenging to improve (Figure 9). Another im-

portant interaction aspect is removal of incorrect point matches and

specifying new ones. Further advances in point tracking algorithms

would alleviate some of this burden.

Finally, as our method is inherently based on explicit flow rep-

resentations, it can fail to interpolate complex elements where the

motion cannot be approximated with a single displacement vector,

e.g. volumes. Adoption of implicit motion modeling (GIMM) [Guo

et al. 2024] for flow reversal could further improve the performance

of the model.

6 Conclusion

In this paper we have presented a tracking-based frame interpola-

tion method that utilize sparse point tracks to improve the interpo-

lation quality and enable artist control over interpolation results.

Using only point tracks, estimated from the keyframes, our method

achieves state-of-the-art results on a challenging test dataset.

Additionally, we have shown that by allowing a user to interact

with the model, it allows to improve the quality and significantly

outperforms prior methods in user preference.
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Inputs GIMM Ours Assisted Reference

PSNR | SSIM | LPIPS 25.16 dB | 0.929 | 0.0419 24.12 dB | 0.916 | 0.0562 24.05 dB | 0.919 | 0.0505Inputs GIMM Ours - unassisted Ours - assisted Reference

PSNR | SSIM | LPIPS 26.95 dB | 0.848 | 0.0818 24.47 dB | 0.833 | 0.1123 27.40 dB | 0.889 | 0.0715Inputs GIMM Ours - unassisted Ours - assisted Reference

PSNR | SSIM | LPIPS 22.80 dB | 0.652 | 0.1118 22.62 dB | 0.632 | 0.1161 22.60 dB | 0.632 | 0.1168Inputs GIMM Ours Assisted Reference

PSNR | SSIM | LPIPS 30.61 dB | 0.878 | 0.0566 28.03 dB | 0.817 | 0.0723 28.46 dB | 0.817 | 0.0705Inputs GIMM Ours - unassisted Ours - assisted Reference

PSNR | SSIM | LPIPS 27.07 dB | 0.836 | 0.0746 28.12 dB | 0.866 | 0.0687 28.50 dB | 0.867 | 0.0680Inputs GIMM Ours - unassisted Ours - assisted Reference

PSNR | SSIM | LPIPS 21.39 dB | 0.596 | 0.1593 20.88 dB | 0.587 | 0.1649 20.90 dB | 0.589 | 0.1644

Fig. 8. Qualitative comparison of frame interpolation before and after user interaction, along with GIMM [Guo et al. 2024] results. We show overlaid keyframes

as inputs and report metrics per full image.

Inputs GIMM Ours - unassisted Ours - assisted Reference

PSNR | SSIM | LPIPS 19.12 dB | 0.728 | 0.1323 18.65 dB | 0.738 | 0.1394 19.09 dB | 0.742 | 0.1338

Fig. 9. User control limitation. With no explicit control over depth and occlusions, it is difficult to improve samples with changing depth (left front paw).
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