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A Broader Impact and Ethics
To the best of our knowledge, our method is the first that can reen-
act a wide array of objects and motions given a target image and
motion reference video without training domain-specific models.
We believe this represents a significant advancement in controllable
video generation, as our approach can address multiple existing
domain-specific scenarios within a single framework and even fa-
cilitate entirely new applications. That said, we acknowledge the
potential for misuse of reenactment methods like ours, such as cre-
ating realistic deepfakes or videos depicting individuals or objects
performing specified, potentially inappropriate actions. We strongly
condemn such misuse and advocate for implementing safety mech-
anisms and procedures in real-world applications. Additionally, we
support ongoing research into detecting fake videos to mitigate
these risks.

For legal reasons, we cannot show images or videos from public
data sets in the paper without individuals’ written consents. For the
qualitative evaluation, we therefore use motion reference videos
and target images from internal data sets as well as target images
generated with Stable Diffusion XL [Podell et al. 2024].

B Extended Related Work
In this section, we provide an extended description of related work
for interested readers.
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B.1 Domain-Specific Reenactment
Reenactment has been a significant research area, but much of the
focus has been on domain-specific approaches like face reenact-
ment [Drobyshev et al. 2022; Guo et al. 2024b; Hsu et al. 2022; Li
et al. 2023; Nirkin et al. 2019; Wang et al. 2021] and human full-body
motion transfer [Chan et al. 2019; Hu 2024; Karras et al. 2023; Ma
et al. 2024a; Tu et al. 2024a,b; Wang et al. 2024a; Yang et al. 2020;
Zhu et al. 2024; Zuo et al. 2024]. While these methods perform well,
their architectures and training data are tailored to specific domains,
making it challenging to adapt them for use across multiple domains.

B.2 Keypoint-Based Motion Transfer
Keypoint-based motion transfer has been a popular approach in
reenactment, spanning both domain-specific andmore general meth-
ods. Many techniques extract keypoints using pre-trained, domain-
specific landmark detectors [Chan et al. 2019; Hsu et al. 2022; Hu
2024; Ma et al. 2024a; Ni et al. 2023; Nirkin et al. 2019; Tu et al. 2024a;
Yang et al. 2020; Zuo et al. 2024], which limits their applicability
to specific object categories like human bodies or faces. To move
toward general motion transfer, other approaches learn keypoints
in an unsupervised manner [Drobyshev et al. 2022; Guo et al. 2024b;
Siarohin et al. 2019, 2021; Tanveer et al. 2024; Wang et al. 2021;
Zhao and Zhang 2022]. Although this strategy increases flexibility,
it still typically requires a separate model per domain, making it
impractical for applications involving diverse object types.
Several methods first find meaningful common keypoints and

then warp features [Ni et al. 2023; Siarohin et al. 2019, 2021; Zhao
and Zhang 2022] or latents [Tanveer et al. 2024] to transfer mo-
tion from the driving to the target object. However, such warping
becomes nontrivial in the presence of 3D rotations, and methods
like AnaMoDiff [Tanveer et al. 2024] are thus limited to flat 2D
motions. JOKR [Mokady et al. 2022], while not relying on explicit
warping, also focuses on relatively planar 2D motions and requires
an affine alignment between the target and the driving video. Cru-
cially, both JOKR and AnaMoDiff require a target video to learn
target object motions, whereas our method works well even with a
single target image by leveraging motion priors from a pre-trained
image-to-video model.
Keypoint-based approaches also face challenges when applied

to unseen domains or extreme cross-domain transfers (e.g., from
animal to inanimate object). While recent advances in deep features
from diffusion models [Hedlin et al. 2023; Luo et al. 2023; Tang
et al. 2023; Zhang et al. 2024a, 2023a] have made it easier to find
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correspondences between points across different images, a more
fundamental problem remains: where to place keypoints in the
first place to meaningfully capture motion. This becomes especially
difficult for hand-crafted motions or for motion transfers with large
structural differences between objects (e.g., Fig. 7), where there may
be no obvious semantically meaningful anchors. To address these
challenges, we propose using an implicit motion representation
instead of relying on explicit keypoints. We show that priors from
pre-trained diffusion models can be used more directly, rather than
only as a tool to find keypoint correspondences.

B.3 Video Generation
Following the rise of text-to-image diffusion models [Ramesh et al.
2022; Rombach et al. 2022; Saharia et al. 2022], video generation
models have also greatly improved in quality in recent years. Many
text-to-video methods start with a pre-trained text-to-image model
and inflate it by adding and training temporal convolution and at-
tention blocks after each corresponding spatial block [Bar-Tal et al.
2024; Blattmann et al. 2023b; Guo et al. 2024a; Wang et al. 2023b].
Similarly, many image-to-video diffusion models use a pre-trained
text-to-image [Zhang et al. 2023c] or text-to-video [Blattmann et al.
2023a] model as a starting point. They then adapt the model to the
image-to-video task by conditioning the model on the image, e.g., by
adding [Zhang et al. 2023c] or concatenating [Blattmann et al. 2023a]
it to the noisy input. The text embedding input from the pre-trained
model is either kept [Zhang et al. 2023c] or replaced with an image
embedding input [Blattmann et al. 2023a]. Recently, video genera-
tion models [Brooks et al. 2024; Kong et al. 2024; Yang et al. 2025]
based on diffusion transformers [Peebles and Xie 2023] have gained
significant popularity. While training a custom video generation
model provides the most freedom in terms of design choices, it is
very expensive in terms of computation and data. Even fine-tuning
video models requires substantial resources, so we decided to use a
pre-trained diffusion model, Stable Video Diffusion [Blattmann et al.
2023a], and keep it frozen. Additionally, we aim for our method to
be applicable to a wide range of motions and subjects. In contrast,
approaches that involve training the model often focus on a single
type of motion, such as human full-body motion [Hu 2024; Ma et al.
2024a].

B.4 Video Motion Editing with Explicit Motions
B.4.1 Based on Sparse Control Signals. In theory, the motion of
all video generation models that have a text input can simply be
controlled by text [Dai et al. 2023; Li et al. 2024b; Molad et al. 2023;
Yan et al. 2023], but this approach struggles with complex motions
in practice. For more precise spatial control, recent methods use
bounding boxes, either with training [Li et al. 2024b; Wang et al.
2024e] or without [Chen et al. 2024; Jain et al. 2024; Ma et al. 2024b],
and trajectories [Chen et al. 2023a; Geng et al. 2024; Li et al. 2024c,
2025; Mou et al. 2024; Niu et al. 2024; Qiu et al. 2024; Wu et al. 2024b;
Yin et al. 2023; Zhou et al. 2024], but they rely on consistent spatial
alignment for effective motion transfer. Similarly, keypoints are
another option for describing motions [Gu et al. 2024; Niu et al. 2024;
Tanveer et al. 2024], but they suffer from the challenges outlined
in Section B.1. Additionally, some methods focus specifically on

camera motions [Bahmani et al. 2024; Cheong et al. 2024; He et al.
2024; Hou et al. 2024; Hu et al. 2024; Xu et al. 2024; Zheng et al. 2024]
or combine camera and bounding box motions [Wang et al. 2024c;
Wu et al. 2024c; Yang et al. 2024]. However, all these approaches
are either limited to simple motions or require significant effort
to specify complex ones. For instance, a bounding box can specify
an object’s location (e.g., a person) but not the detailed motion
within it (e.g., doing jumping jacks). Modeling complex motion with
part-based boxes or trajectories [Li et al. 2024c] quickly becomes
impractical, especially if a precise temporal alignment to a reference
motion is desired.

B.4.2 Based on Dense Control Signals. Dense control signals, such
as motion vectors [Wang et al. 2024d], 3D tracking videos [Gu et al.
2025], warped noise [Burgert et al. 2025], and depth maps [Chen
et al. 2023b; Wang et al. 2024d; Zhang et al. 2024b] allow for a more
precise motion specification. However, using them for general mo-
tion transfer is challenging because they also encode information
about image and object structure. This can result in unnatural mo-
tions when there is a mismatch between the structures of the target
image and the reference video as shown in MotionCtrl [Wang et al.
2024c].

B.5 Video Motion Editing with Implicit Motions
This subsection covers methods for implicitly representing and
transferring motion from a reference video. We thereby focus on the
two main paradigms: fine-tuning approaches, which encode motion
into model weights, and inversion-then-generation methods, which
capture motion in model features and attention maps. Additionally,
some techniques integrate elements of both paradigms.
When the layout of the subjects in the reference and generated

videos match, a given transfer can be seen as either changing the
appearance to match the target image or altering the motion to
match the reference video. Our focus is on motion transfer where
the layouts do not align, a less explored area in the literature, as
discussed in Section B.5.3.

B.5.1 Fine-Tuning. Many fine-tuning methods are inspired by im-
age customization techniques like DreamBooth [Ruiz et al. 2023]
and LoRA [Hu et al. 2022]. Loosely speaking, the idea is to fine-tune
the parts of the model responsible for motion but avoid training the
parts responsible for appearance. Tune-A-Video [Wu et al. 2023]
inflates a text-to-image model by adding spatio-temporal atten-
tion and only trains some parts of the attention layers. Similarly,
Materzyńska et al. [2024] only fine-tune parts of the model and
further focus the training more on earlier denoising steps to empha-
size learning the general motion rather than fine appearance details.
MotionDirector [Zhao et al. 2024] proposes a dual-path LoRA ar-
chitecture and an appearance-debiased temporal loss to disentangle
appearance from motion. Similarly, DreamVideo [Wei et al. 2024],
MotionCrafter [Zhang et al. 2023b], Customize-A-Video [Ren et al.
2024], and CustomTTT [Bi et al. 2025] have separate branches for ap-
pearance and motion. CustomTTT [Bi et al. 2025] further proposes
a test-time training method to improve the results when combing
the appearance and motion information. VMC [Jeong et al. 2024]
adapts temporal attention layers using a motion distillation strategy
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with residual vectors between consecutive noisy latent frames as
the motion reference.

Fine-tuning a model carries the risk of appearance leakage, which
is why many of the aforementioned methods focus on preventing
it. We find that using an image-to-video model instead of a text-to-
video model largely avoids these problems. LAMP [Wu et al. 2024a]
is the most similar method to ours in that sense, but they adapt
a pre-trained text-to-image model to the image-to-video task and
fine-tune it only briefly. In contrast, we employ a pre-trained, large-
scale image-to-video model to leverage stronger priors for better
generalization.

B.5.2 Inversion-then-Generation. The inversion-then-generation
framework, initially developed for image editing [Hertz et al. 2023;
Parmar et al. 2023; Tumanyan et al. 2023], involves first invert-
ing a reference video into “noise” using methods like DDIM [Song
et al. 2020] to enable reconstruction through backward diffusion.
Thereby, features such as self-attention maps are extracted from
the reference video and then injected into the diffusion process of
the video being generated. These features either directly replace
existing features [Tumanyan et al. 2023] or are incorporated into a
loss function [Parmar et al. 2023], ensuring the generated video has
a similar structure. Numerous methods have been proposed within
this framework for video appearance editing [Bai et al. 2024; Ceylan
et al. 2023; Geyer et al. 2024; Harsha et al. 2024; Liu et al. 2024; Meral
et al. 2024; Wang et al. 2023a; Yang et al. 2023; Zhao et al. 2023]
and video motion editing [Bai et al. 2024; Yatim et al. 2023], mainly
differing in their inversion techniques and feature choices.
The methods mentioned above face several inherent issues in

motion transfer tasks. Most notably, they often assume or enforce
that the features of the reference and target videos are identical,
which leads to problems when generating videos with different
geometries or spatial layouts. Some methods attempt to address this
by collapsing the spatial dimension of features before using them in a
loss [Yatim et al. 2023], but they still typically produce motions with
similar directions in pixel space. This limits control and diversity
and can produce less natural results. Furthermore, these approaches
require tuning numerous hyperparameters (choice of feature, layers,
time steps) and necessitate inverting the video, which is challenging
for high guidance scales [Mokady et al. 2023] and when using few
time steps [Garibi et al. 2024].

Another recent line of work [Ling et al. 2024; Pondaven et al. 2024;
Xiao et al. 2024] extracts features from a reference video in line with
the inversion-then-generation framework but without inversion.
While these approaches bypass the costly inversion process, they
still suffer from issues related to primarily replicating the spatial
rather than semantic motion.

B.5.3 With Different Spatial Layout. To avoid being restricted to
the layout of a single motion reference video, some methods use
multiple motion videos [Materzyńska et al. 2024; Wei et al. 2024;
Wu et al. 2024a; Zhao et al. 2024]. However, our goal is to transfer
motion with precise temporal alignment to the reference video. This
would require multiple temporally-aligned videos, which are often
impractical to obtain. Additionally, many motion editing methods
with spatial variations [Li et al. 2024a; Materzyńska et al. 2024;
Ren et al. 2024; Wang et al. 2024b] use text to define the subject’s

appearance instead of an image, resulting in videos that only roughly
match the input image. The concurrent work by Wang et al. [2024b]
is most similar to ours as it keeps the model frozen and learns a
motion embedding like we do, but it also suffers from the above
limitation.

C Implementation Details

C.1 High-Level Overview of the Implementation
To aid in reproducibility, we list the main steps of our method’s
implementation below:

(1) [Only once] Take pre-trained Stable Video Diffusion (SVD)
[Blattmann et al. 2023a] and adapt code to inflate motion-text
embedding and cross-attention. See high-level description
in the method section of the main paper and details in Sec-
tion C.4.

(2) Initialize motion-text embedding of shape (𝐹 + 1) × 𝑁 × 𝑑 .
See Section C.2.

(3) Repeat until convergence:
• Load same 𝐹 frames of reference video in data loader for
each iteration.

• Augment data. See Section C.2.
• Input noisy version of frames, motion-text embedding, and
other inputs into SVD.

• Apply loss to update motion-text embedding.
(4) Save motion-text embedding.
(5) For all target images:

• Input learned motion-text embedding along with new tar-
get image to inflated SVD during inference to generate
video with motion from reference video.

C.2 Hyperparameters
Our implementation builds up on the diffusers implementation [von
Platen et al. 2022] of Stable Video Diffusion (SVD) [Blattmann et al.
2023a]. We use the default parameters of the 14-frame version of
SVD (e.g., micro-conditionings) unless specified otherwise. Like
SVD, we generally employ a classifier-free guidance [Ho and Sali-
mans 2021] scale that increases linearly from 1 to 3 across the frame
axis. For the motion visualization (unconditional image input), how-
ever, we use a higher scale, i.e., increasing linearly from 1 to 10,
to improve the visibility of the objects. We initialize the 𝐹 = 14
sets of 𝑁 = 5 tokens for the spatial cross-attention with the CLIP
image embedding token of each corresponding frame and the 𝑁 = 5
tokens for the temporal cross-attention with the mean of the CLIP
image embedding tokens across all frames. We additionally add
Gaussian noise N(0, 0.1) to the combined motion-text embedding
during initialization. In our experience, the initialization does not
affect the results significantly, so other initializations are equally
reasonable. During optimization, we always pick the same 𝐹 frames
of a given video and apply the same spatial and color augmenta-
tions to all frames.1 Since most of the video motion is determined
in noisy diffusion steps, we shift the noise schedule towards higher
noise values (from 𝑃mean = 1.0, 𝑃std = 1.6 to 𝑃mean = 2.8, 𝑃std = 1.6
where log 𝜎 ∼ N(𝑃mean, 𝑃

2
std) to speed up the optimization. We use

1For horizontal camera motions, we turn of horizontal flipping
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Adam [Kingma and Ba 2015] with a learning rate of 10−2 for 1000
iterations with a batch size of 1.

C.3 Hardware Requirements and Runtime
The optimization for a motion reference video with a resolution of
1024×576 takes around 55GB of GPUmemory and around one hour
on an NVIDIA Tesla A100 (80 GB) GPU. The inference takes less than
one minute per video. While the peak memory usage was measured
at 55 GB on the A100, we have also successfully run the method
on a 48 GB RTX A6000 GPU. Our current implementation has not
been optimized extensively for memory efficiency or runtime, and
further engineering could reduce the resource requirements.

C.4 Motion-Text Embedding and Cross-Attention Inflation
This section provides more implementation details for the motion-
text embedding and cross-attention inflation described in the main
paper. Fig. 1 shows the spatial and temporal cross-attention layers
of the default Stable Video Diffusion (SVD) [Blattmann et al. 2023a]
and our inflated version along with their tensor dimensions.
The image embedding of the default SVD consists of a single

token and has dimensions 𝐵×1×𝑑 , where 𝐵 is the batch size (in our
implementation typically 1when optimizing the motion-text embed-
ding and 2 during inference because of classifier-free guidance) and
𝑑 is the CLIP [Radford et al. 2021] embedding dimension. For spatial
cross-attention, the image embedding is broadcast to dimensions
(𝐵 ∗ 𝐹 ) × 1 × 𝑑 , i.e., the same token is used for all 𝐹 frames. This
results in an attention map𝑀 of dimensions (𝐵 ∗ 𝐹 ) × (𝐻𝑖 ∗𝑊𝑖 ) × 1
where 𝐻𝑖 and𝑊𝑖 are the spatial heights and widths respectively,
and 𝐶𝑖 is the number of channels of level 𝑖 of the diffusion model.
Notably, due to the softmax operation and the last dimension being
1, every value of the attention map is 1. This means that each spatial
location attends 100% to the single token. Similarly, for temporal
cross-attention, the image embedding is broadcast from dimensions
of 𝐵× 1×𝑑 to dimensions (𝐵 ∗𝐻𝑖 ∗𝑊𝑖 ) × 1×𝑑 , eventually leading to
an attention map𝑀 of dimensions (𝐵 ∗𝐻𝑖 ∗𝑊𝑖 ) × 𝐹 × 1 where every
value is 1. Having only one token thus leads to a degenerate case
of the cross-attention where Attention(𝑄,𝐾,𝑉 ) =𝑉 (broadcasted)
and many of the components (e.g., queries and keys) have no effect
on the result.

C.4.1 Multiple Tokens. To avoid the above degenerate case and
instead be able to dynamically attend to different tokens, we extend
the token dimension from 1 to 𝑁 where 𝑁 is a hyperparameter.
For spatial cross-attention, this results in an attention map 𝑀 of
dimensions (𝐵 ∗ 𝐹 ) × (𝐻𝑖 ∗𝑊𝑖 ) × 𝑁 where, in general, each spatial
location has different values ≠ 1 for the𝑁 different tokens. Similarly,
the temporal cross-attention map𝑀 has dimensions (𝐵 ∗𝐻𝑖 ∗𝑊𝑖 ) ×
𝐹×𝑁 with values≠ 1. Since SVDwas pre-trained using multiple text
embedding tokens as input, the code can already handle multiple
tokens, so mainly the initialization of the motion-text embedding
as well as some input dimensions have to be adapted slightly.

C.4.2 Different Tokens per Frame. As explained in the main paper,
we propose to learn different sets of tokens per frame for the spatial
cross-attention to obtain a higher temporal granularity of themotion.
The default SVD implementation broadcasts the embedding from

dimensions 𝐵×𝑁 ×𝑑 across all frames to (𝐵∗𝐹 )×𝑁 ×𝑑 (where𝑁 = 1
originally). We instead learn a larger spatial motion-text embedding
of dimensions 𝐵×𝐹 ×𝑁 ×𝑑 and reshape it to (𝐵∗𝐹 )×𝑁 ×𝑑 . We keep
the dimensions of the temporal motion-text embedding at 𝐵 ×𝑁 ×𝑑
and learn it separately. Therefore, the dimensions of the combined
spatial and temporal motion-text embedding is 𝐵 × (𝐹 + 1) × 𝑁 × 𝑑 .

C.4.3 Analogy. To give an intuitive analogy for our motion-text
embedding inflation, think of building a house. Instead of using a
single tool for every part of the house, it is more efficient to have 𝑁
different tools depending on the spatial location on a given floor—
like a hammer for the floor and a drill for the wall. Moreover, each
of the 𝐹 floors of the house might need a different set of tools.
For example, the roof requires different tools compared to the walls.
Similarly, in our approach, we usemultiple tokens to handle different
aspects of the motion.

D Motion-Text Embedding Analysis
SVD was pre-trained as a text-to-video model and dropped the
image (latent) input for some percentage of training iterations for
classifier-free guidance [Ho and Salimans 2021]. We find that SVD
can produce somewhat reasonable videos with the image (latent)
input zeroed out and only the CLIP [Radford et al. 2021] image
embedding as input, especially if we increase the classifier-free
guidance scale (e.g., to 10). We can use this to visualize our learned
motion-text embedding with an unconditional appearance.

Fig. 2 shows motion visualizations of our motion-text embedding
for a “jumping jacks” motion after different numbers of optimization
iterations and the generated videos for a given target image side-by-
side. Starting around iteration 500, a person doing a “jumping jacks”
motion can be seen in the visualizations. Beyond 1000 iterations,
the motion visualizations become more abstract, but the generated
motions in the conditional case remain of high quality. Notably, the
appearance and position of the people do not match those of the
motion reference video (from Fig. 3). Furthermore, the position of
the people is different in the conditional and unconditional videos,
but all videos have a similar semantic motion. This demonstrates
that our motion-text embedding neither encodes the appearance
nor the exact spatial positioning of the objects extensively, likely
for reasons described in the motivation section of the main paper.

E Applicability to Other Video Diffusion Models
We believe our approach should generalize to other architectures,
including ones based on transformers, as long as the image-to-
video model mainly extracts appearance from the image input
and motion from text/image embeddings. This appears to hold for
HunyuanVideo-I2V [Kong et al. 2024]; when we repeated the ex-
periment from observation 1 of the main paper, the horse remained
white despite the text input specifying a “pink” horse. For video
models with full spatio-temporal attention (e.g., HunyuanVideo-
I2V), rather than SVD’s separate spatial and temporal attention, it
remains to be investigated whether inflating the motion-text em-
bedding to have different tokens per frame is strictly necessary for
good performance, as it was for SVD.
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operation causes all entries of the cross-attention maps to be 1. Therefore, the section highlighted in
yellow simplifies to a broadcasted version of the value vector of that token.
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(b) Inflated SVD [Blattmann et al. 2023a] (Ours): We use 𝑁 tokens instead of 1, so the model now
dynamically attends to different tokens depending on the spatial and temporal location. Additionally,
we use different sets of tokens per frame for the spatial cross-attention instead of broadcasting the
same tokens to all frames.

Fig. 1. Technical diagrams of the motion-text embedding and cross-attention inflation showing the dimensions of the features of the spatial and temporal
cross-attention blocks. The changes between the default SVD [Blattmann et al. 2023a] and our inflated version are shown in red font. 𝐵 = batch size, 𝐹 =
number of frames,𝐶 = number of channels, 𝐻 = height,𝑊 = width, 𝑑 = embedding dimension, 𝑑𝑎 = attention dimension, 𝑁 = token dimension,𝑊𝑄 = query
weight matrix,𝑊𝐾 = key weight matrix,𝑊𝑉 = value weight matrix,𝑄 = queries, 𝐾 = keys,𝑉 = values, FC = fully connected layer. For simplicity, the multiple
attention heads and block level 𝑖 indices are not shown.
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Iter. Conditional Unconditional (Motion visualization)

Seed 0 Seed 1
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Fig. 2. Motion visualization. We generate videos using our optimized motion-text embedding for a “jumping jacks” motion (reference from Fig. 3) both with
the image input (conditional) and without (unconditional) after a different number of optimization iterations. Note how the appearance of the unconditional
generations differs from the motion reference video and varies with different seeds. Further observe that our method effectively generates similar semantic
motions without needing or enforcing spatial alignment.

F Additional Evaluation

F.1 Additional Information for the Compared Methods
F.1.1 Choice of Compared Methods. To the best of our knowledge,
our method is the first to tackle the general motion transfer task in
the image-to-video setting. As a result, there are no direct competi-
tor methods. Instead, we evaluate the most closely related general
methods, (whichwere originally designed for slightly different tasks)
on our problem. We considered the three most similar classes of
methodology and compared our method with a representative of
each class:

(1) Image-to-video model with explicit, dense motion represen-
tation: VideoComposer [Wang et al. 2024d]

(2) Image-to-video model with implicit motion representation:
MotionClone [Ling et al. 2024] (our method falls into this
category)

(3) Text-to-video model with implicit motion representation: Mo-
tionDirector [Zhao et al. 2024]

Methods within each class tend to have certain inherent draw-
backs in common. Specifically, methods based on explicit, dense
motion representations (class (1)) transfer spatial but not semantic
motion and may leak the reference video’s structure; and meth-
ods based on text-to-video models (class (3)) do not directly take a
target image input, compromising the preservation of the target’s
appearance and layout. We believe that comparing to one method
from each class is sufficient to demonstrate the types of artifacts, as
adding more methods would not address the inherent limitations
shared within the class.

Additional practical considerations: The following related meth-
ods did not have corresponding code publicly available at the time
of writing: Diffusion as Shader [Gu et al. 2025] (class (1)), Go-With-
The-Flow [Burgert et al. 2025] (class (1)), GenVideo [Harsha et al.
2024], and CustomTTT [Bi et al. 2025] (class (3)). The following

methods are computationally infeasible given the size of our evalua-
tion data set and our computational resources available: LAMP [Wu
et al. 2024a] (class (2), ≈ 14 GPU hours per reference video), and
DreamVideo [Wei et al. 2024] (class (3), ≈ 1 GPU hours per motion
reference video and ≈ 2 GPU hours per target image).

Furthermore, we do not compare to methods using explicit, sparse
motion representations (see Section B.4.1) because it is unclear how
to automatically extract sparse motion inputs frommotion reference
video. We also do not compare to methods based on text-to-video
models without learned appearance [Materzyńska et al. 2024; Wang
et al. 2024b; Yatim et al. 2023; Zhang et al. 2023b] because defining
appearance solely through text is insufficient to accurately preserve
the target image appearance.

F.1.2 Implementation Details. We used the official implementations
for all compared methods and followed their installation and usage
instructions closely. For the methods requiring a text input, we man-
ually captioned images and videos for the qualitative evaluation.
We initially tried several image and video captioning methods, but
their captions all led to worse results than manual captions that
follow the captions used in the papers more closely. For the quan-
titative evaluation, we used the corresponding caption from the
Something-Something V2 data set [Goyal et al. 2017].

F.2 Additional Qualitative Comparisons to Baseline
Fig. 3 compares our method with the Stable Video Diffusion (SVD)
[Blattmann et al. 2023a] baseline for multiple motions and seeds.
It further visualizes our motion-text embeddings and SVD’s image
embeddings with unconditional appearances. While this is not a fair
comparison—since SVD does not incorporate the motion reference
video—the goal is to analyze and better understand the capabilities
of both methods.

As expected, SVD’s generated results generally do not follow the
reference motions. In rare cases, the motion does match somewhat,
likely because the expected motion of the target image is similar
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SVD Ours

Ref.

Seed 0

Seed 1

Seed 2

Uncond. Seed 0 - -

Uncond. Seed 1 - -

Uncond. Seed 2 - -

Ref.

Seed 0

Seed 1

Seed 2

Uncond. Seed 0 - -

Uncond. Seed 1 - -

Uncond. Seed 2 - -

Ref.

Seed 0

Seed 1

Seed 2

Uncond. Seed 0 - -

Uncond. Seed 1 - -

Uncond. Seed 2 - -

Fig. 3. Comparison to Stable Video Diffusion [Blattmann et al. 2023a] baseline. We compare our method to Stable Video Diffusion (SVD) for multiple motions
and seeds. While SVD often fails to align with the motion reference and is highly influenced by the seed, our motion-text embedding guides the model to
generate videos with matching motion, minimizing variations caused by the seed.
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to reference motion, as seen in the horse/dog example. However,
close inspection reveals that the gaits of the generated videos do
differ and that the dog’s tail wiggles in the third example. Our
method’s motion-text embeddings seem to capture the motion of
the reference videos well, i.e., replacing the image embedding of the
target image with the motion-text embedding leads to successful
motion transfers for all three seeds. In our method, different seeds
produce varying artifacts (e.g., arms for the jumping jacks example)
while maintaining largely consistent motions. For the horse/dog
example, our method generates videos where the motion closely
follows the horse’s gait, as explored further in Fig. 7.

Generating results with an unconditional appearance, i.e., where
the image (latent) input is zeroed out, provides insight into the infor-
mation encoded in the embeddings. However, note that the visual-
ization is not always easily interpretable, depending on the motion,
the optimization iteration, and the seed. SVD uses the CLIP [Radford
et al. 2021] image embedding of the target image, resulting in videos
that depict characters semantically similar to those in the target
image. The motions vary with the seed and do not consistently align
with those in videos generated with the image (latent) condition. In
contrast, our method uses the motion-text embeddings optimized
on the motion reference video. While the exact appearance (e.g.,
colors) varies with the seed, the object types seem to resemble those
of the motion reference video. This may stem from initializing the
motion-text embedding with image embeddings extracted from the
motion reference video. The encoding of object types in the motion-
text embedding may also explain the occasional structure leakage
noted in the limitations section.
Results generated with SVD frequently exhibit significant arti-

facts (e.g., first two seeds for the jumping jacks example) and ap-
pearance changes (e.g., last two seeds for the yawning example).
As our method builds on SVD’s frozen weights, we inherit some
of SVD’s issues, as described in the limitations section. However,
by conditioning the model on a reference motion, our results tend
to appear more realistic and contain fewer artifacts. We hypothe-
size that this improvement arises because the model leverages the
provided (realistic) motion rather than needing to hallucinate it
from scratch, simplifying the overall task. Additionally, SVD often
generates static objects with moving cameras in our experience. We
suggest that motion transfer methods, like ours, can help generate
more natural and diverse motions.

F.3 Additional Qualitative Comparisons to
State-of-the-Art Methods

To further demonstrate the effectiveness of our method in transfer-
ring semantic motion from a reference video to target images, we
generated videos using state-of-the-art competing methods for the
same examples presented in the main paper. These results, covering
a range of motion types and complexities, are provided in Fig. 4 and
Fig. 5. As before, competing methods suffer from problems inherent
to their class of methods. Stable Video Diffusion [Blattmann et al.
2023a], lacking a motion input, typically fails to follow the reference
motion. VideoComposer [Wang et al. 2024d], an image-to-video
method with dense motion inputs, struggles when the reference
video’s motions are not aligned with the input image. In such cases,

the method applies the spatial but not semantic motion, leading
to either unwanted background movement or the foreground ob-
ject morphing into the spatial position where the motion occurs in
the reference video. MotionDirector [Zhao et al. 2024], based on a
text-to-video model, cannot directly use the target image as input
and must instead learn its appearance. As a result, the generated
videos often deviate in appearance and spatial layout from the target
image.
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Ref.
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Fig. 4. Qualitative evaluation for additional examples (1/2). We compare our method to SVD = Stable Video Diffusion [Blattmann et al. 2023a] (baseline, no
motion input), VC = VideoComposer [Wang et al. 2024d], MC = MotionClone [Ling et al. 2024], and MD = MotionDirector [Zhao et al. 2024] for four different
motions and target images.
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Rotating bird’s eye view camera Following vehicle with camera
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MD

Ours

Jumping towards camera Object passing over other object
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Fig. 5. Qualitative evaluation for additional examples (2/2). We compare our method to SVD = Stable Video Diffusion [Blattmann et al. 2023a] (baseline, no
motion input), VC = VideoComposer [Wang et al. 2024d], MC = MotionClone [Ling et al. 2024], and MD = MotionDirector [Zhao et al. 2024] for four different
motions and target images.
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Table 1. Quantitative evaluation data. List of video IDs from the Something-Something V2 data set [Goyal et al. 2017] used in our quantitative evaluation.

Class ID: Label Video ID for Motion Reference Video: Video IDs for Target Images

0: Approaching something with your camera 31416: 174027, 49364, 179191, 58108, 219270, 124642, 18253, 112846, 75372, 201968
23: Letting something roll down a slanted surface 97908 : 220450, 22070, 46282, 136926, 216643, 109913, 137160, 69704, 19903, 86892
27: Lifting something up completely without letting it drop down 144105: 181548, 167709, 81608, 132100, 167837, 46057, 158390, 41755, 93247, 106014
32: Moving away from something with your camera 121394: 3201, 100064, 35438, 44298, 123636, 4328, 178356, 76980, 71173, 33210
36: Moving something and something away from each other 51295: 4443, 88084, 76718, 132951, 49285, 43627, 45186, 18456, 18788, 142654
37: Moving something and something closer to each other 87711: 180193, 137350, 39979, 150128, 10055, 16205, 208340, 97632, 94171, 99258
41: Moving something away from the camera 207150: 205156, 108506, 139808, 44794, 68922, 197965, 201362, 153856, 21809, 211202
44: Moving something towards the camera 160529: 145447, 30260, 118270, 10405, 66666, 154312, 157137, 106357, 164212, 176798
92: Pulling two ends of something so that it separates into two pieces 187909: 162071, 51196, 87892, 11780, 75398, 148274, 113149, 177507, 47061, 28237
165: Turning the camera downwards while filming something 169117: 120585, 131318, 68372, 104829, 162135, 124382, 108641, 98914, 197549, 213899

Table 2. Quantitative evaluation aggregated by motion category (camera/object). As in the main paper, we compare our method to Stable Video Diffu-
sion [Blattmann et al. 2023a] (baseline, no motion input), VideoComposer [Wang et al. 2024d], MotionClone [Ling et al. 2024], and MotionDirector [Zhao et al.
2024]. The first value in each cell corresponds to camera motions and the second to object motions. The best performing method per column is marked in bold.

Method Image Appearance Preservation Video Motion Fidelity Overall

CLIP-Avg ↑ CLIP-1st ↑ User rank ↓ Acc-Top-1 ↑ Acc-Top-5 ↑ Cos-Sim ↑ User rank ↓ User rank ↓

Stable Video Diffusion 0.837/0.849 0.842/0.857 1.215/1.378 4%/2% 4%/6% 0.398/0.342 4.689/3.733 3.311/2.333
VideoComposer 0.713/0.726 0.853/0.860 3.867/3.704 64%/24% 82%/42% 0.575/0.419 2.941/3.119 3.407/3.696
MotionClone 0.610/0.664 0.881/0.890 4.778/4.393 48%/26% 80%/44% 0.555/0.491 3.215/3.059 4.385/4.015
MotionDirector 0.738/0.762 0.752/0.774 3.185/3.859 38%/24% 58%/58% 0.545/0.501 3.067/2.733 2.785/3.333

Ours 0.745/0.813 0.873/0.894 1.956/1.667 72%/36% 86%/66% 0.785/0.606 1.089/2.356 1.111/1.622

F.4 Additional Information for the Quantitative Evaluation
We selected the action classes from the Something-Something V2
data set [Goyal et al. 2017] according to the following criteria:

• All interacting objects typically appear in the start frame.
• The action is typically long enough, so that it appears in most
of the frames.

• The class is sufficiently different from other classes.

We then extracted the first 11 examples of the given class (with
some manual filtering in case the above criteria is not met) and took
the first video as motion reference video and the first frames of the
other 10 for the target images. Table 1 lists the final class IDs and
video IDs used.

The 10 action classes used in our evaluation can be grouped into
two categories: five involving camera motion (IDs: 0, 32, 41, 44, 165)
and five involving object motion (IDs: 23, 27, 36, 37, 92). Table 2
provides the quantitative results from the main paper, aggregated by
motion category. We observe that image appearance preservation
is generally worse for camera motions. This is likely because strong
camera movements cause significant changes in the visual content.
In contrast, video motion fidelity is typically higher for camera
motions, possibly because the movements are more uniform and
linear, and spatial alignment between themotion reference video and
target image is less critical. As a result, methods that mostly transfer
spatial rather than semantic motion (e.g., VideoComposer [Wang
et al. 2024d]) can still perform well for camera motions.
Our method consistently outperforms all compared methods

across both motion categories in terms of video motion fidelity. No-
tably, for object motions, the advantage over MotionDirector [Zhao

et al. 2024] is even more pronounced than the mean user rank
suggests: our method was selected as the best in 58% of compar-
isons, compared to only 22% for MotionDirector. The relatively
high mean rank of our method can be attributed to occasional fail-
ure cases (further discussed in Section I) which greatly affect the
average. In terms of appearance preservation, Stable Video Diffu-
sion (SVD) [Blattmann et al. 2023a] slightly outperforms our ap-
proach, though this may be because SVD often produces very limited
motion, making it easier to maintain the appearance of the input
image. When considering the overall user preference, our method
shows a substantial lead: it was voted best among the five compared
methods in 90% of the evaluations for camera motions and 65% for
object motions. Notably, for object motions, Stable Video Diffusion,
despite lacking any motion input, was voted best in 33% of cases,
while all other methods combined accounted for just 2%. We believe
this can be explained as follows: when our method succeeds, it sig-
nificantly outperforms all other methods; when it fails, e.g., due to
challenging motion reference videos or target images, SVD’s con-
servative, low-motion outputs tend to be the most visually coherent
and thus the preferred choice.

G Additional Ablation Study Results
In the main paper, we show results for different settings of the
motion-text embedding size for one motion. In Fig. 6, we show two
more examples for this ablation. As previously stated, the biggest
performance improvement can be seen between rows 2 and 3 for
each example, i.e., once there are different tokens per frame. Note
that the differences for the horse/dog example are best seen in the
attached videos. While the dog is always moving to the right, the
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Table 3. Quantitative results for our ablation. Here, we compare various settings for the dimensions of the motion-text embedding. Table (a) shows the overall
scores aggregated over all motion categories, whereas (b) shows the scores aggregated by the motion category of the motion reference videos, where the first
value in each cell corresponds to camera motions and the second to object motions. The best performing method per column is marked in bold.

(a) Overall

Method Image Appearance Preservation Video Motion Fidelity

CLIP-Avg ↑ CLIP-1st ↑ Acc-Top-1 ↑ Acc-Top-5 ↑ Cos-Sim ↑

Ours (𝐹 ′ = 1, 𝑁 = 1) 0.788 0.875 44% 62% 0.619
Ours (𝐹 ′ = 1, 𝑁 = 15) 0.785 0.878 44% 65% 0.637
Ours (𝐹 ′ = 15, 𝑁 = 1) 0.776 0.883 52% 77% 0.704
Ours (𝐹 ′ = 15, 𝑁 = 15) 0.776 0.886 56% 77% 0.705

Ours (𝐹 ′ = 15, 𝑁 = 5, Default) 0.779 0.884 54% 76% 0.696

(b) By motion category (camera/object)

Method Image Appearance Preservation Video Motion Fidelity

CLIP-Avg ↑ CLIP-1st ↑ Acc-Top-1 ↑ Acc-Top-5 ↑ Cos-Sim ↑

Ours (𝐹 ′ = 1, 𝑁 = 1) 0.755/0.821 0.865/0.885 64%/24% 76%/48% 0.722/0.516
Ours (𝐹 ′ = 1, 𝑁 = 15) 0.754/0.817 0.874/0.881 70%/18% 82%/48% 0.758/0.517
Ours (𝐹 ′ = 15, 𝑁 = 1) 0.743/0.810 0.872/0.894 74%/30% 86%/68% 0.807/0.600
Ours (𝐹 ′ = 15, 𝑁 = 15) 0.740/0.813 0.874/0.899 78%/34% 86%/68% 0.810/0.601

Ours (𝐹 ′ = 15, 𝑁 = 5, Default) 0.745/0.813 0.873/0.894 72%/36% 86%/66% 0.785/0.606

Reference

𝐹 ′ = 1, 𝑁 = 1

𝐹 ′ = 1, 𝑁 = 15

𝐹 ′ = 15, 𝑁 = 1

𝐹 ′ = 15, 𝑁 = 5
(Default)

𝐹 ′ = 15, 𝑁 = 15

Fig. 6. Ablation with additional examples. Inflating the motion-text embedding, by having more tokens 𝑁 or by having different tokens for each frame (where
𝐹 ′ = 𝐹 + 1 = 15), greatly improves the motion transfer.

speed and style of the gait does not match the reference for the first
two rows.

To quantitatively evaluate the settings of the motion-text embed-
ding size, we followed the same protocol as for the quantitative
evaluation in the main paper. The results are listed in Table 3 and
align well with our observations. Whereas the image appearance
preservation is similar throughout, the motion fidelity improves
slightly as we increase the token dimension 𝑁 (when 𝐹 ′ = 1) and
significantly once we use different tokens per frame (𝐹 ′ = 15). If

𝐹 ′ = 15, the embedding dimension 𝑁 does not seem to affect the
results much for the tested reference motion videos. In addition to
the results aggregated over all evaluation videos in Table 3a, we
provide results aggregated by the motion category (camera/object)
of the motion reference videos in Table 3b. The results suggest
that our proposed motion-text embedding inflation improves the
performance for camera and object motions alike.
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Ref.
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Gen. 2

Gen. 3

Gen. 4

Fig. 7. Motion style transfer. Our learned motion-text embeddings do not only store the rough motion category but also the style of the motion. Here, we
apply two different gaits to the same target image: a horse trot (smooth) and a canter (rocking). The resulting videos for the cartoon dog are not only showing
the dog moving, but their motions also closely match the motion reference video’s gait style. Furthermore, the extreme cross-domain examples with the boat,
car, and cereal box show that the essence of the motion style is preserved even across completely different objects.

Reference

Regular input image

Flipped input image

Fig. 8. Semantic motion transfer. Our learned motion-text embeddings store the semantic motion (animal moving in the direction it is facing and moving its
head down) rather than the spatial motion (animal moving from right to left and left part is going down). This can be seen in the above example where we
apply the same learned motion-text embedding to a flipped input image, and our method produces semantically similar results.

H Additional Results
Fig. 7 shows that our method does not only apply the rough motion
category but also its style, even in difficult cases where the domains
differ vastly, e.g., transferring the motion of a horse to a cereal
box. Furthermore, these examples demonstrate that our method
can transfer joint subject and camera motion. Fig. 8 demonstrates
that our method transfers the same semantic rather than spatial
motion by applying the same learned motion to a flipped target
image. Fig. 9 shows additional results of our method, where we apply
the same optimized motion to different target images to showcase
our method’s impressive cross-domain capabilities and temporal
alignment. Lastly, Fig. 10 transfers the same four camera motions to
four different target images in a grid, demonstrating the robustness
of our method for camera motions.
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Fig. 9. Additional results. Our learned motion-text embeddings can be applied to multiple target images, resulting in semantically similar motions.
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Fig. 10. Camera motion grid. Our learned motion-text embeddings handle camera motions robustly, enabling us to apply a given motion to various target
images and various motions to a given target image. The results are best seen in the project website.
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I Failure Rate Analysis
As is common practice in diffusion-based video generation, we
sampled multiple outputs per input and selected the best for display.
Quantifying failure rates is difficult, as success can be subjective and
depends heavily on the complexity of the motion. Table 2 shows
metrics broken down by motion category. The Acc-Top-1 metric
reports the percentage of videos correctly classified by an action
recognition model [Tong et al. 2022] and can loosely be interpreted
as a success rate for the semantic motion transfer (independent of
visual artifacts). Our method achieves much higher accuracy for
camera motions (72%) than for object motions (36%). It is worth
noting that the main challenge in the quantitative evaluation on
Something-Something V2 [Goyal et al. 2017] stems from the domain
gap between the motion reference video and the target image—e.g.,
transferring a toy car rolling down a book to a pen rolling down
a rock—rather than the motion complexity itself. In contrast, our
qualitative experiments explored more complex motions to better
test the limits of our method, and thus had higher failure rates:
approximately 1 in 10 motions resulted in good motion transfers for
more than half of the tested target images. To give a more intuitive
sense of when ourmethod succeeds or fails, we list motion categories
based on how reliably they could typically be transferred in Table 4.

In our experiments, we observed that the reconstruction quality
of the motion reference video, i.e., applying the optimized motion-
text embedding to the first frame of the motion reference video, is
a strong indicator of the final motion transfer performance. If the
model fails to reconstruct the reference video accurately, it suggests
that the optimized motion-text embedding does not effectively cap-
ture the semantics of the motion. In such cases, applying the same
embedding to a different target image typically also fails. This issue
is illustrated in Fig. 11, where the reconstructed video collapses the
person into a blob-like shape rather than depicting a realistic for-
ward roll. The same collapse occurs when transferring the motion
to a different target image. One contributing factor may be the use
of a simple mean-squared error loss, which can lead to pixels being
placed in roughly the correct spatial positions, even if the resulting
motion does not semantically match the reference. Another poten-
tial reason for failure is that some motions may be out-of-domain
for the pre-trained Stable Video Diffusion [Blattmann et al. 2023a].
Since our approach optimizes only the input motion-text embedding
without fine-tuning the model itself, it is challenging to capture en-
tirely novel or complex motion types that the model has not seen
during training. To mitigate these issues, we encourage future work
to explore more semantically meaningful loss functions, regularize
the embedding to remain closer to the original CLIP [Radford et al.
2021] space, or adopt recent video diffusion models with stronger
motion understanding, such as VideoJAM [Chefer et al. 2025].
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Table 4. Summary of motion types by performance.

Performance Motion Types

Motions good
Quality good

Camera motions: bird’s-eye panning/zooming/rotation, panoramas, smooth drone flights, object tracking
Common head motions: nodding, facial expressions (surprise, yawning, opening mouth)
Some full-body motions: walking (human to human, four-legged to four-legged), jumping jacks
Handcrafted motions with small domain gap: colliding/passing circles of similar shapes/colors

Motions good/okay
Quality bad

Fast motions: boxing, fast running animals (left/right limb confusion)
Head motions with drastic appearance changes: frontal-to-profile rotations, extremely wide mouth openings,
revealing teeth from closed mouth
Some full-body motions: jumping forward far, walking into jump, karate kicks
Handcrafted motions where target object has many details: texture-free bouncing ball transferred to soccer ball
with many patches, stick figure to detailed human / two-legged animal

Motions bad Fine-grained motions: tongue movement, eyebrow raises, small/distant actions
Emerging objects: hand entering frame
Large domain gap: human face motions to minimalistic cartoon or ostrich, human to kangaroo, bouncing ball to
landscape scene with sun
Complex full-body motions: running into forward roll, handstands, swinging arm punch, yoga/stretching

Reference

Reconstruction

Transfer

Fig. 11. Failure case with poor reconstruction. When the optimized motion-text embedding fails to accurately reconstruct the reference motion, the subsequent
transfer to a new target typically fails as well.
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