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Fig. 1. Given an input mesh with patch-level localized expressions (left), ScaffoldAvatar can synthesize ultra-high fidelity multi-view consistent photorealistic
avatars. Our avatars can synthesize high frequency facial details as shown in two-level zoom-ins (right). Our method is capable of generating realistic and
high-quality animations including freckles and other fine facial details with real-time rendering.

Generating high-fidelity real-time animated sequences of photorealistic 3D
head avatars is important for many graphics applications, including immer-
sive telepresence and movies. This is a challenging problem particularly
when rendering digital avatar close-ups for showing character’s facial mi-
crofeatures and expressions. To capture the expressive, detailed nature of
human heads, including skin furrowing and finer-scale facial movements,
we propose to couple locally-defined facial expressions with 3D Gaussian
splatting to enable creating ultra-high fidelity, expressive and photorealistic
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3D head avatars. In contrast to previous works that operate on a global
expression space, we condition our avatar’s dynamics on patch-based local
expression features and synthesize 3D Gaussians at a patch level. In partic-
ular, we leverage a patch-based geometric 3D face model to extract patch
expressions and learn how to translate these into local dynamic skin appear-
ance and motion by coupling the patches with anchor points of Scaffold-GS,
a recent hierarchical scene representation. These anchors are then used
to synthesize 3D Gaussians on-the-fly, conditioned by patch-expressions
and viewing direction. We employ color-based densification and progres-
sive training to obtain high-quality results and faster convergence for high
resolution 3K training images. By leveraging patch-level expressions, Scaf-
foldAvatar consistently achieves state-of-the-art performance with visually
natural motion, while encompassing diverse facial expressions and styles in
real time.
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1 INTRODUCTION
The creation of realistic digital human avatars is a fast-evolving
field with many applications in virtual telepresence, movies and
entertainment. The resulting digital avatar should be photorealis-
tic, animatable, allow novel viewpoint rendering in real-time, and
must preserve a high degree of spatial fidelity, such as fine-scale
expression-specific skin details during animation. Developing a 3D
representation that can capture high-frequency appearance and
accurate motion dynamics of human heads represents a major chal-
lenge, in particular under novel close-up views of the face where
the skin exhibits many details. We require a representation that can
jointly reconstruct the facial motion while simultaneously retaining
capacity to facilitate high-fidelity re-rendering.
Recent advances in computer vision and graphics, in particular

3D Gaussian Splatting (3DGS) [Kerbl et al. 2023], has quickly gained
popularity in many application domains due to its simplicity and
rendering speed, combined with its differentiable formulation that
can be optimized to reconstruct a scene given a set of images from
different viewpoints. Several works have extended 3DGS to adapt
it for multi-vew consistent animatable human avatars [Giebenhain
et al. 2024b; Qian et al. 2024; Teotia et al. 2024; Xu et al. 2023a],
achieving a new state-of-the-art in realistic digital humans. These
existing methods achieve most of the criteria required: photorealism,
animatable, novel viewpoints, and real-time, but they fall short on
actor fidelity. For example, the recent GaussianAvatars [Qian et al.
2024] method opened the door to real-time photoreal human heads,
but it did not focus on high actor fidelity, so re-rendering appears
blurry when zoomed in and expression-dependent appearance de-
tails like wrinkles are not supported. Neural Parametric Gaussian
Avatars (NPGA) [Giebenhain et al. 2024b] achieves dynamic ex-
pression wrinkles, but still loses fidelity and appear blurry when
zoomed in. Gaussian Head Avatars (GHA) [Xu et al. 2023a] make
a first attempt at high-fidelity by training on 2K images, which is
nearly double the resolution of previous methods. However, as we
will show in the results, zoom-in regions still lack the necessary
details to recover the actor’s appearance with sufficient fidelity. This
lack of fine-scale facial expressions is due to the use of global ex-
pression conditioning from existing 3D face models [Gerig et al.
2017; Giebenhain et al. 2024a]. Such global expression spaces lack
expressiveness for fine-grained facial regions, and the inaccurate
motion representation due to the low-dimension expression codes
leads to blurred out appearance. In summary, existing methods lack
the representative capacity to re-render photoreal fine scale details
in dynamic human faces, which is the problem we tackle in this
work.

To this end, we present ScaffoldAvatar, a novel patch-basedmethod
for real-time digital avatars that explicitly tackles high spatial fi-
delity with a novel formulation to increase representative capacity,
beyond what is achievable with current state-of-the-art methods.
We achieve this by operating on localized patch expressions. Our
approach has similarities to Scaffold-GS [Lu et al. 2024], a spatially
hierarchical 3DGS approach that gives us local control of small facial
regions. Our unique architecture provides local network capacity
dedicated to recovering Gaussian parameters for the local regions,

conditioned on learned local features and local expression parame-
ters. The scaffold anchors are attached to patch centers of a tracked
3D mesh, where we use a localized patch-level facial expression,
following Chandran et al. [2022] who showed that a patch blend-
shape model is both very expressive and cheap to compute. The
system is trained end-to-end on multi-view dynamic performance
sequences with 3K high resolution images. Furthermore, unlike ex-
isting methods that use positional gradients for densification, we
use view-space color gradients to recover sharper skin texture and
employ progressive training for faster convergence.
ScaffoldAvatar has the capacity to represent fine-scale skin de-

tails, including dynamic wrinkles, freckles, and high frequency facial
details (as depicted in Fig. 1). Since our MLPs are conditioned on
patch-based expression blendweights, we can regress expression-
dependent appearance like wrinkles and blood flow. Once trained,
our method supports real-time inference with control over expres-
sion and viewpoint like existing Gaussian-based avatars, but at
higher spatial fidelity than current methods. To summarize, we
present the following contributions:

• A novel method capable of synthesizing ultra-high fidelity
photorealistic avatars, due to our unique network formulation
similar to Scaffold-GS with conditioning on localized patch-
level facial expressions, which can reconstruct finegrained
facial details like freckles and wrinkles.

• By leveraging progressive training and view-space color gra-
dient for densification, our method can synthesize sharp skin
texture and converge faster for 3K high resolution images.

2 RELATED WORK
We first discuss 3D face and head models that primarily focus on
geometry, and then cover more recent photorealistic 3D human
head animation techniques.

2.1 Geometric 3D Face and Head Models
The seminal work of Blanz and Vetter [1999] introduced a model-
based approach to represent variations in human faces using PCA.
Thereafter, more advanced face models were introduced, including
multilinear models for identity and expression [Bolkart and Wuhrer
2015; Brunton et al. 2014], as well as recent methods combining
linear shape spaces with articulated head parts [Li et al. 2017]. In con-
trast to these model-based approaches relying on global expression
blendweights, techniques based on local patch blendweights [Chan-
dran et al. 2022; Neumann et al. 2013] can produce much more accu-
rate deformations. For instance, Neumann et al. [2013] demonstrate
that by separating facial performances into localized deformation
components, they can produce high-detail deformations like mus-
cle bulges. Similarly, Chandran et al. [2022] show that operating
on small patches on the mesh surface result in more accurately
retargeted facial performances. Similar to these works, we leverage
local patch blendweights to achieve high frequency details with our
patch-based 3DGS avatar.
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2.2 Photorealistic 3D Human Head Animation
Early approaches for reconstructing photorealistic head avatars
were based on NeRFs [Mildenhall et al. 2021], which store the radi-
ance field of the scene in a neural network and render novel views
of the scene via volume rendering. Recently, 3D Gaussian Splatting
(3DGS) [Kerbl et al. 2023] has emerged as an efficient representation
for reconstructing fine geometric structures with real-time render-
ing, leading to a lot of interest in point-based representations for
animatable avatars. We discuss both of these approaches below in
more detail, in the context of animatable human head avatars.

2.2.1 NeRF Based Reconstruction. Gafni et al. [2021] introduced
one of the first methods conditioning NeRFs on the expression fea-
tures from monocular videos. Following this, INSTA [Zielonka et al.
2022] deforms query points to a canonical space by finding the
nearest triangle on a FLAME mesh [Li et al. 2017], combined with
InstantNGP [Müller et al. 2022] to achieve fast rendering. NeRF-
BlendShape [Gao et al. 2022] models a dynamic scene by blending
hash tables with 3DMM parameters. AvatarMAV [Xu et al. 2023b]
decouples motion and appearance, blending voxel grids only for
the motion field. Nersemble [Kirschstein et al. 2023] uses spatio-
temporal NeRFs and learns deformation fields for coarse motion
and hash grid encodings for fine scale deformations and is trained
using high quality multi-view video data.

2.2.2 3DGS Based Reconstruction. Zheng et al. [2023] explored
point-based representations with differential point splatting by
defining a point set in canonical space and learning a deforma-
tion field conditioned on FLAME’s expression space for animating
the avatar. GaussianAvatars [Qian et al. 2024] is the seminal work
proposing a method for dynamic 3D representation of human heads
based on 3DGS by rigging the anisotropic 3D Gaussians to the faces
of the FLAME mesh. GaussianHeads [Teotia et al. 2024] predict RGB
color and opacity in the UV space of FLAME mesh and deform the
canonical gaussians using MLP. GaussianHeadAvatars (GHA) [Xu
et al. 2023a] optimizes neural 3D Gaussians with MLP-based de-
formations driven by the global expression space of BFM [Gerig
et al. 2017] for handling the dynamics. Very recently, Neural Para-
metric Gaussian Avatars (NPGA) [Giebenhain et al. 2024b] also
learns canonical 3D Gaussians and deforms them using a MLP con-
ditioned on the rich expression space of neural parametric head
models [Giebenhain et al. 2024a]. While both GHA and NPGA are
capable of producing quality animations with expression-dependent
deformations and refining the results with a screen-space CNN, they
cannot produce fine-scale facial details when zoomed-into different
regions of the avatar’s face.
In contrast to these techniques based on global expression fea-

tures, we leverage local patch level expression blendweights and
predict patch level deformations and Gaussian parameters, thus our
method is capable of producing finer details for facial zoom-ins.

3 PRELIMINARIES
3DGS [Kerbl et al. 2023] defines the scene as a collection of Gauss-
ian primitives, each parameterized by position 𝜇, scale 𝑠 , rotation
quaternion 𝒒, opacity 𝛼 and color 𝒄 . The scene is then rendered into
images with a differentiable rasterizer. This representation, however,

is very expensive in terms of memory to store thousands to mil-
lions of primitives. More details can be found in the supplemental
material.

To improve scene coverage and avoid redundant Gaussian primi-
tives and redundant parameters, Scaffold-GS [Lu et al. 2024] intro-
duces a hierarchy of primitives. First, the initial scene is discretized
into a sparse voxel grid. The center of each voxel 𝑣 at position x𝑣 is
called an anchor and is equipped with a local feature vector 𝑓𝑣 ∈ R𝐹 .
Each visible anchor at point x𝑣 spawns 𝐿 Gaussian primitives with
each position 𝜇𝑙 defined as:

{𝜇1, . . . , 𝜇𝐿} = x𝑣 + {O1, . . . ,O𝐿} · 𝑠𝑣, (1)

where {O1, ...,O𝐿} ∈ R𝐿×3 represents the learnable offsets and
𝑠𝑣 is the scaling factor from the associated anchor. These offsets
are learned per anchor. The remaining 3DGS attributes including
opacity 𝛼 , color 𝒄 , rotation 𝒒, and scale 𝒔 are predicted by individual
but global MLPs 𝐹𝛼 , 𝐹𝑐 , 𝐹𝑞, 𝐹𝑠 conditioned on the learned anchor
feature vector 𝑓𝑣 and view direction 𝑑𝑣 . Note that the parameters of
each Gaussian primitive per anchor are predicted at the same time,
for example opacity is predicted as:

{𝛼1, ..., 𝛼𝐿} = 𝐹𝛼 (𝑓𝑣, 𝑑𝑣) . (2)

Colors {𝑐𝑙 }, rotation quaternions {𝑞𝑙 } and scales {𝑠𝑙 } are predicted
in a similar fashion. These spawned Gaussian primitives are then
rasterized following standard 3DGS [Kerbl et al. 2023].

4 DATA CAPTURE AND PREPARATION
We begin by describing the data we captured for each actor, and the
required pre-processing steps.

4.1 Capture Setup and Mesh Tracking
Our main capture setup consists of 9 synchronized video cameras
spread out in the hemisphere in front of the actor (8 of which are
used for training, one center camera for validation). For the sake
of hardware availability, we use a combination of 12MP and 20MP
color cameras, with a combination of 60mm and 85mm lenses, all
shooting at 24fps. We capture between 5-8 performance sequences
for each actor, where the sequences contain various localized muscle
movements, overall facial workouts, natural expressions, and dialog
performances. Themulti-view sequences are reconstructed to obtain
a topology-consistent tracked mesh of the facial skin and head
region using the highly accurate tracking method ofWu et al. [2016],
extended to multi-camera inputs.

A second capture setup, which consists of 8 static DSLR cameras
arranged in 4 stereo pairs, is used to scan 20 blendshapes of each
actor [Beeler et al. 2010], which are used to build the tracking model
used on the dynamic performances above, as well as to build a local
patch-based model that we describe next.

4.2 Patch Blendweight Optimization
We leverage the expressive patch-based facial blendshape model of
Chandran et al. [2022] to represent dynamic local facial expressions.
To this end, the tracked mesh topology is divided into 𝑃 = 432 small
overlapping patches as shown in Fig. 2. For each patch 𝑝 in the set
of all patches P, we build a local blendshape model from the 𝐾 = 20
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Target Shape Source Blendshapes

PBS  Solver

β0 β1 βP−1
Patch 0 Patch 1 Patch P-1 

β2
Patch 2 

……………………….

Fig. 2. Patch Blendweight Optimziation: Given a target shape from our
tracked meshes, we fit patch blendshape model (Eq. 3) and use our PBS
Solver to find optimal per-patch blendweights {𝜷𝑖 | 𝑖 = 0, 1, . . . , 𝑃 − 1},
where 𝑃 is the total number of patches in our mesh. This process is repeated
for every frame in the dataset. The patch layout rendering in the bottom
row shows that same patch layout is used for all the shapes.

static scans S = {S𝑖 | 𝑖 = 0, 1, . . . , 𝐾 − 1} as:

XS
𝑝 = 𝑝S0 +

𝐾−1∑︁
𝑖=1

𝛽𝑝,𝑖 (𝑝S𝑖 − 𝑝S0 ), (3)

where 𝛽𝑝,𝑖 ∈ R𝐾−1 are patch blendweights used to linearly blend the
patch blendshapes. Since each patch has its own set of patch blend-
weights 𝛽𝑝,𝑖 , this formulation provides more degrees of freedom for
representing the expressions than global blendshape models, i.e.,
𝑃 · (𝐾 − 1) = 8208 total expression parameters vs. 100 of FLAME [Li
et al. 2017].
Next we fit the local blendshape models to all the dynamic cap-

tured frames for the corresponding actor. Specifically, given a cap-
tured shape X𝑡 at time 𝑡 = 1...𝑇 , we solve for all the patch blend-
weights

𝜷 = {𝛽𝑝,𝑖 , 𝑝 = 1...𝑃, 𝑖 = 1...𝐾 − 1}, (4)
such that the resulting deformed patches accurately describe the
local skin deformations exhibited in X𝑡 , accomplished with a least-
squares optimization as:

E𝑙𝑠 =
∑︁
𝑝∈P

X𝑡𝑝 − 𝑅XS
𝑝

2
2
, (5)

where XS
𝑝 is defined in Eq. 3 and 𝑅 is global rigid transformation.

The patch coefficients are additionally regularized to remain close
to zeros as:

E𝑟𝑒𝑔 =
∑︁
𝑝∈P

𝐾−1∑︁
𝑖=1

∥𝛽𝑝,𝑖 ∥2, (6)

and to stay consistent across adjacent patches,

E𝑜 =
∑︁
𝑝∈P

∑︁
𝑞∈N(𝑝 )

𝐾−1∑︁
𝑖=1

∥𝛽𝑝,𝑖 − 𝛽𝑞,𝑖 ∥1, (7)

where N(𝑝) defines the patches neighboring 𝑝 . The overall loss
for fitting the patch blendshape model to a target shape X𝑡 is the

weighted sum of these losses as

E𝑃𝐵𝑆 = 𝜆𝑙𝑠E𝑙𝑠 + 𝜆𝑟𝑒𝑔E𝑟𝑒𝑔 + 𝜆𝑜E𝑜 , (8)

and final patch blendweights are obtained as:

𝜷∗ = argmin
𝜷

E𝑃𝐵𝑆 . (9)

This process is repeated for each of the𝑇 shapes in the dynamic data,
yielding a sequence of per-frame per-patch expression coefficients
{𝜷1, 𝜷2, ..., 𝜷𝑇 }. Each actor is processed and trained separately.

5 SCAFFOLD AVATAR
We propose a novel avatar representation that combines the ex-
pressive power of local deformation models for human faces with
efficient hierarchical scene rendering (similar to Scaffold-GS). Using
the local patch blendshape representation (Sec. 4.2), we assign an
anchor to each patch, which spawns multiple Gaussian primitives.
These primitives are represented with attributes predicted by MLPs,
conditioned on learned anchor features as well as local expression
deformation (see Fig. 3 for an overview).

A key contribution of our method is how we build the connection
between anchors and the patches of our tracked mesh (Sec. 5.1 and
Sec. 5.2) and how to spawn Gaussian primitives around the anchors
(Sec. 5.3). Additional optimization and training details are given in
Sec. 5.4 and Sec. 5.5, respectively. Hyperparameters are given in the
supplementary document.

5.1 Defining Patch Centers and Attributes
To determine the center of each patch for a given tracked mesh with
𝑃 patches, we first calculate the mean position c𝑝 of all vertices
belonging to that particular patch 𝑝 . Then we designate the closest
mesh vertex in Euclidean distance to c𝑝 as the patch center v𝑝 . The
patch centers {v𝑝 |𝑝 = 1, . . . , 𝑃} are determined once and remain
fixed throughout the experiments.
To determine the orientation and position of each patch center

v𝑝 in global space, we define the TBNP (Tangent-Bitangent-Normal-
Position) matrix T𝑝 as:

T𝑝 =


t𝑥𝑝 b𝑥𝑝 n𝑥𝑝 v𝑥𝑝

t𝑦𝑝 b𝑦𝑝 n𝑦𝑝 v𝑦𝑝

t𝑧𝑝 b𝑧𝑝 n𝑧𝑝 v𝑧𝑝

0 0 0 1


, (10)

where t𝑝 , b𝑝 , and n𝑝 represents the tangent, bitangent and normal
vectors at the patch center, and v𝑝 denotes the position of patch
center in global space. These matrices are defined for every patch,
computed for every frame, and later used to displace the anchors
and Gaussian primitives.

5.2 Rigging Scaffold Anchors to Patches
For a given patch 𝑝 we associate a set of anchors in its neighbor-
hood and let these anchors move as the patch moves for different
expressions. More specifically, the anchors are static in the local
space of its parent patch but change in the global space as the patch
moves by transforming them by their parent’s patch TBNP matrix.
Let A𝑝 = {A𝑝,1,A𝑝,2, . . . ,A𝑝,𝑁 } denote the set of 𝑁 anchors

associated with the patch center v𝑝 , where each anchor contains
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Fig. 3. Method Overview: (a) Given a sequence of multiview images, we first run a 3D Face Tracker [Wu et al. 2016] to obtain tracked meshes in consistent
topology. (b) Next, we define a patch layout and compute patch centers, together with orientations and positions in the world space (given by a TBNP matrix
T𝑝 ). This gives us a per-patch coordinate frame, which we combine with individual patch blendweights 𝜷𝑝 (obtained from the PBS model Sec. 4.2) for the next
steps. (c) Finally, Scaffold-GS anchors A𝑝 are attached to the patches. Each anchor’s attributes, i.e. position 𝝁, scale 𝒔, opacity 𝛼 , and anchor feature f and
optimized together with the global expression MLP G, per-patch expression MLPs {P0 · · · P𝑃−1} and scaffold MLPs {F𝝁 , F𝛼 , Fq, Fs, F1:𝑃

c } for decoding
the Gaussian features. Note that the Gaussian primitives (position, scale, and orientation) are predicted in the local coordinate frame of the patch and are
deformed to global space with the tracked mesh. The result is a high-quality, re-animatable 3DGS-based avatar.

the following attributes:

A𝑝,𝑖 = {𝝁𝑝,𝑖 , s𝑝,𝑖 , 𝛼𝑝,𝑖 } ∪ {f𝑝,𝑖 }, (11)

with 𝝁𝑝,𝑖 denoting anchor’s position in local space of the patch,
s𝑝,𝑖 the anchor’s scale, and 𝛼𝑝,𝑖 the anchor’s opacity. Similar to
Scaffold-GS, we learn per-anchor features f𝑝,𝑖 containing semantic
information describing the behaviour of anchor primitives.
LetMloc

𝑝 = {𝝁𝑝,1, 𝝁𝑝,2, . . . , 𝝁𝑝,𝑁 } denote the set of anchors posi-
tions for patch 𝑝 such that each anchor is represented in the local
coordinate space of the patch. The global positions of the anchors,
denoted as Mglob

𝑝 are given by transforming the anchors as follows:

Mglob
𝑝 =

{
𝝁
glob
𝑝,1 , 𝝁

glob
𝑝,2 , . . . , 𝝁

glob
𝑝,𝑁

}
with 𝝁

glob
𝑝,𝑖

= T𝑝 ·
[
𝝁𝑝,𝑖
1

]
. (12)

Note that the anchors A𝑝,𝑖 do not define a separate rotation R.
Empirically, we found that learning separate rotation for anchors
did not help with the quality, hence we omit it and use the rotation
of the parent patch 𝑝 extracted from T𝑝 as the anchor rotation.

The number of anchors per patch is dynamically optimized during
training. New anchors can be added (densification) or old anchors
removed (pruning). Each anchor and their attributes are then used
to spawn 3D Gaussian primitives in the global space, which we
explain in the next section.

5.3 Spawning 3D Gaussian Primitives from Blendweights
One of our core ideas is to leverage per patch expression blend-
weights {𝜷1, . . . , 𝜷𝑃 } to synthesizing 3D Gaussian primitives. How-
ever, directly using patch blendweights leads to suboptimal results.
Therefore, we leverage a set of small per-patch blendweight MLPs
P = {P1, . . . , P𝑃 } to map patch-specific blendweights to latent ex-
pression features. Each patch expressionMLP P𝑖 processes the blend-
weights 𝜷𝑖 of the corresponding patch and predicts latent features
𝒆𝑝 capturing the localized patch expression information as:

e𝑝 = P(𝜷𝑝 ), ∀𝑝 ∈ {1, 2, . . . , 𝑃}. (13)

The per patch blendweight MLPs ensure accurate handling of fine-
grained expression details across patches for subsequent processing
by Scaffold MLPs. We additionally learn a global expression MLP
G with the concatenated patch blendweights as input for encoding
global expression semantics:

e𝑔 = G(𝜷1, . . . 𝜷𝑃 ). (14)

Similar to Scaffold-GS, we use a fixed number of 𝐿 = 5 Gauss-
ian primitives per anchor and use small Scaffold MLPs to learn
and compress the 3DGS attributes. These MLPs directly predict the
attributes of all primitives in a single forward pass and are condi-
tioned on anchor attributes, latent expression features and viewing
direction. Specifically, we learn a set of Gaussian attribute MLPs
F = {F𝝁 , Fq, Fs, F𝛼 , F 1:𝑃

c } one for each of the Gaussian attributes,
except color where we use one MLP per patch. Empirically we found
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that this resulted in sharper and more accurate colors. Note that
in contrast to vanilla Scaffold-GS, we also use an MLP to predict
the Gaussian position 𝜇. We use a sigmoid as the last activation
layer for F 𝑝

c and F𝛼 , and a softplus for Fs. We omit patch-anchor
association index for ease of notation in the following equations.
Given anchor feature f , patch expression features e𝑝 (Eq. 13),

global expression feature e𝑔 (Eq. 14), viewing direction d𝑣 , we predict
the attributes for 𝐿 Gaussian primitives per global MLP as:

�̂�1:𝐿 = F𝝁 (f𝑝 ; e𝑝 ; e𝑔 ; 𝝁), (15a)

ŝ1:𝐿 = Fs (f𝑝 ; e𝑝 ; e𝑔 ;d𝑣), (15b)
q1:𝐿 = Fq (f𝑝 ; e𝑝 ; e𝑔 ;d𝑣), (15c)
𝛼1:𝐿 = F𝛼 (f𝑝 ; e𝑝 ; e𝑔 ;d𝑣) . (15d)

The final Gaussian colors are predicted by the associated patch
MLP F 𝑝

c to which the anchor belongs as:

ĉ0:𝐿−1 = F 𝑝
c (f𝑝 ; e𝑝 ; e𝑔 ;d𝑣). (16)

The final Gaussian scale s𝑔 is the anchor scale s combined with
Gaussian’s local scale ŝ as

s𝑔 = ŝ s. (17)

Given an anchor’s position in global space 𝝁glob, scaling s, rota-
tion matrix R and predicted Gaussian’s local position �̂�, the final
Gaussian’s position in global space is calculated as:

𝝁𝑔 = 𝝁glob + s.R.�̂� . (18)

The Gaussian’s rotation quaternion in the global space q is pre-
dicted directly from rotation MLP Fq. Note that during training we
only render Gaussians whose parent’s anchors are visible from the
given viewpoint and have an opacity 𝛼 above the threshold 𝜏 :

𝛼𝑔 = (𝛼 > 𝜏) ∩ 𝛼. (19)

The final Gaussian attributes in the global space are passed into
the 3DGS rasterizer R and the RGB image is rendered as:

𝐼RGB = R(𝝁𝑔 ; s𝑔 ; q;𝛼𝑔 ; c𝑔). (20)

5.4 Optimization and Regularization
Unlike GHA [Xu et al. 2023a], having a fixed number of Gauss-
ian primitives is insufficient for capturing fine facial details. For
instance, representing dynamic wrinkles need more Gaussians with
dynamically changing color based on expressions compared to a
constant mole on the skin. Therefore, we need an adaptive den-
sity control strategy that can add and remove anchors based on
view-space gradient of the spawned Gaussians.

We found in our experiments that standard position-based densi-
fication used by current methods is slower to optimize and does not
lead to sufficient densification to render fine facial features. Instead
we use a color-based densification strategy that converges much
faster and can more accurately reconstruct fine facial details. We
follow the densification strategy similar to Scaffold-GS, except that
we use screen space color gradient as our heuristic for densification
and pruning anchors. Since we bind anchors to the patch centers, we
additionally track one more parameter with the anchor attributes
A, which is the index of its parent patch. This way we also keep
track of the anchors attached to each patch and ensure that every
patch always has at least one anchor attached.

Fig. 4. Dataset: One frame selected for each participant from the dataset
and corresponding zoom-in for some regions. We selected participants with
diverse facial geometry like beard and freckles.

We supervise our renderings with L1 and SSIM loss as:
Lrgb = (1 − 𝜆)L1 + 𝜆LSSIM . (21)

To further enhance perceptual fidelity, especially when zooming
into different facial regions, we additionally apply the LPIPS [Zhang
et al. 2018] loss on local image patches as:

Lpatch =
1
𝐽

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

LLPIPS (𝐼 𝑗RGB, 𝐼
𝑗

GT), (22)

where 𝐼 𝑗RGB and 𝐼 𝑗GT refer to the 𝑗𝑡ℎ local patch regions from the
rendered and ground-truth multiview images. We use 256 × 256
patches and sample 16 local patches uniformly for the facial area.
Our anchor-patch association ensures that anchors be spatially

correlated with their parent patches andstay close, e.g. an anchor
for the mouth should not be associated with a patch from the hair.
Similarly, Gaussians should also stay close to their parent anchor.
To address this and improve locally consistent motion, we apply
soft regularization on the anchor and Gaussian positions as:

Lxyz = ∥𝝁∥2 + ∥�̂�∥2, (23)

where 𝝁 and �̂� refers to anchor and Gaussian position in their
respective local space.
We further add a regularization similar to Saito et al. [2024] to

ensure that the scale of the Gaussian primitives stays in a reasonable
range, defined as:

Lscale =


1

max(𝑠,10−7 ) if 𝑠 < 0.1,
(𝑠 − 10.0)2 if 𝑠 > 10.0,
0 otherwise.

(24)

Our final loss function, therefore can be written as:

L = Lrgb + 𝜆patchLpatch + 𝜆xyzLxyz + 𝜆scaleLscale . (25)

5.5 Progressive Training
Since we want to focus on high frequency facial details in different
facial regions, it is important to train with high resolution data
to get the details upon zooming. However, upon directly training
with high resolution images (3K), the method trains too slow and
fails to converge in a reasonable time. Therefore, we first train with
1K images and progressively increase the resolution to 3K. This
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Fig. 5. Novel View Synthesis: Our method trained even at 1K resolution outperforms recent state-of-the-art methods and produces significantly sharper
renderings. Refining further with 3K resolution data adds even more details. Our method achieves precise reconstruction like wrinkles around the eyes. We
request readers to zoom-into the pdf to see subtle differences. Note that all baseline methods were trained at 1K resolution for consistent comparison.
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GaussianAvatars GaussianHeadAvatars NPGA

Ours1024 Ours Ground Truth

Fig. 6. Self-Reenactment: We perform self-reenactment with one held out sequence. Our method achieves ulta-high fidelity results for zoom-ins.

converges much faster while bringing out all the details in different
skin areas of the facial region.

6 EXPERIMENTS
We collected a high-quality dataset captured using the multi-view
setup and pre-processing steps described in Section 4. We selected
three challenging participants with facial details like freckles, wrin-
kles and facial hair. A snapshot of the dataset is shown in Fig. 4.
Our model is trained progressively on NVIDIA RTX A6000 (48 GB
VRAM) for up to 100,000 iterations (3-4 days) until convergence. On
a consumer GPU (NVIDIA RTX 4070Ti 12GB VRAM), it achieves
100.78 FPS for Ours1024 (our 1K res model) and 76.91 FPS for our
full resolution model, making it suitable for interactive applications.

6.1 Avatar Reconstruction and Animation
We evaluate ScaffoldAvatar on two tasks, (a) Novel View Synthesis:
driving the avatar with training sequences them from held-out/novel
viewpoints, and (b) Self-Reenactment: animating the avatar with
unseen expressions from held-out viewpoints. For each subject, we
downsample images to 3072 × 2304, and first train at 1024 × 768 and
progressively refine at 3K res. We train with all except one workout
sequence (used as held out sequence for self-reenactment) and all
views except the front view which is used for novel view synthesis.

6.2 Metrics
We report the results on a held-out sequence (self-reenactment)
and evaluate standard perceptual quality metrics (PSNR, SSIM), and
perceptual metric LPIPS [Zhang et al. 2018]. We additionally report
results for novel view synthesis (NVS), compare all methods against

Table 1. Quantitative Comparison.We compare to recent state-of-the-art
baseline methods for novel view synthesis (NVS) and Self-Reenactment.

Method NVS Self-Reenactment

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
GA [2024] 26.76 0.9082 0.1489 24.52 0.9078 0.1952
GHA [2023a] 28.93 0.9366 0.1335 26.82 0.9395 0.1911
NPGA [2024b] 30.15 0.9398 0.1312 27.44 0.9335 0.1857
Ours1024 32.19 0.9653 0.12597 29.82 0.9515 0.1813

Ours 34.48 0.9712 0.1259 30.37 0.9540 0.1797

held-out camera view from the train set. We use BackgroundMat-
tingV2 [Lin et al. 2020] to remove the background before training.
We train all compared baseline methods at 1K resolution and com-
pare against our method trained at both 1K and 3K resolution. Sim-
ilar to [Giebenhain et al. 2024b], we mask out the torso and neck
and report metrics for the facial region.

6.3 Results
6.3.1 Baseline Comparisons. We compare against recent state-of-
the-art methods for NVS and Self-Reenactment. All baseline meth-
ods are trained at 1K resolution using the default hyperparame-
ters proposed in their original implementation. For a fair compari-
son, we also show results of our method trained at 1K. GaussianA-
vatars [Qian et al. 2024] generates blurry results and cannot synthe-
size expression dependent details like dynamic wrinkles. Gaussian-
HeadAvatars [Xu et al. 2023a] generates grid-like artifacts due to
super-resolution CNN. While NPGA [Giebenhain et al. 2024b] can
synthesize dynamic wrinkles and more facial details, it still produces
blurry results and artifacts for zoom-ins. Our method outperforms
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Baseline (w/ patch expressions) + color-dens. + progressive

w/o patch color MLPw/o patch expressions Ours (Full)

Fig. 7. Ablation Study: The naïve baseline of our method "Baseline (w/ patch expressions)" trained with position-based densification and without progressive
training produces blurry results. Training with color-based densification (+ color-dens.) improves sharpness and is further refined by progressive training
(+progressive). Without patch expressions, our method presents artefacts around lip boundaries and produces relatively blurry results. Without using per-patch
color MLP, normal zoom-ins look good but close zoom-ins are blurry. Our full model leveraging all these components achieves the best results.

Table 2. Ablation Study. We perform an ablation study on one of the
subjects from our dataset and report results for Novel-View Synthesis (NVS)
and Self-Reenactment.

Method NVS Self-Reenactment

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Baseline (w/ patch expressions) 31.44 0.9635 0.1772 30.34 0.9691 0.1793
+ color-dens 33.76 0.9790 0.1615 32.63 0.9742 0.1656
+ progressive 33.53 0.9779 0.1624 33.24 0.9775 0.1653
w/o patch expressions 34.75 0.9849 0.1291 33.66 0.9822 0.1295
w/o patch color MLP 35.63 0.9837 0.1075 34.39 0.9856 0.1087

Ours (Full) 37.03 0.9880 0.0996 35.145 0.9871 0.1065

these baselines even at 1K resolution. Our full model trained at
3K consistently achieves better results over all the baselines on
both tasks perceptually as well as quantitatively. Qualitative results
for NVS are shown in Fig. 5 and for Self-Reenactment in Fig. 6.
Quantitative results averaged over all subjects are shown in Tab. 1.

6.3.2 Ablation Study. We ablate different design choices of our
method on one of the subjects from our dataset. We document these
results in Tab. 2 and show a visual comparison in Fig. 7. We started
out with a "Baseline" version of our method which serves as the
naïve baseline of our patch-based avatar. This version is trained with
position-based densification, without utilizing progressive training
and does not employ per patch color MLP, however it does use per-
patch expressions. While this version of our method can produce

light wrinkles, it fails to produce sharp results for fine-scale facial
details like freckles on the skin and details on the lips.

Color-Based Densification. When changing from view-space po-
sitional gradient to view-space color gradient as the heuristic for
densifying and pruning the anchors, we notice that our results get
sharper. Empirically, we observe that this also converges much faster
compared to position based densification.

Progressive Training. We use color based densification and pro-
gressively increase the resolution of the training images. For the first
20,000 iterations we train with 1K images, then for 35,000 iteration
we train with 2K and then finally bump up the resolution to 3K. We
notice that progressively increasing the image size also improves
the quality of our results compared to training directly at 3K.

W/o Patch Expressions. We use color-based densification and pro-
gressive training, but we omit using patch-based expressions and
instead concatenate all patch blendweights to obtain a single global
expression (Eq. 14) which acts as the expression input for our Scaf-
fold MLPs. Note that in this case, we also do not employ per-patch
color MLPs but use a single color MLP, since we are operating in
global expression space. Although this can produce dynamic wrin-
kles, we can observe some artefacts around the lips, with intersecting
lines between upper and lower lip as shown in Fig. 7.
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Fig. 8. Cross-Reenactment: Qualitative results demonstrating expression transfer from a source actor (top) to our avatar (bottom) across a dialogue sequence.
Tracked meshes used in the process are shown in the inset for reference.

W/o Patch Color MLP.. Finally, we show the importance of using
per-patch color MLPs for predicting view and expression dependent
color. Although without using per-patch MLPs, our method already
achieves good results, the zoom-ins lack sharpness. Per-patch MLPs
can handle super-fine facial details much more effectively, as demon-
strated in Fig. 7 and reflected quantitatively in Tab. 2.

6.3.3 Cross-Reenactment. We reconstruct the 3D facial performance
from the driving actor and perform mesh-based retargeting to ob-
tain the mapped geometry performance of our ScaffoldAvatar (us-
ing [Chandran et al. 2022]). Then, we fit the patch-blendshape model
to this 3D performance to obtain local expression blendweights for
driving our avatar with the retargeted geometry. To further im-
prove mouth interior, we added 28 additional patches by leveraging
tooth geometry. We train our avatar with expression sequences and
evaluate retargeting for a dialogue sequence in Fig. 8.

6.4 Limitations
While our method synthesizes high fidelity avatars, it has some lim-
itations. Our template mesh cannot model accessories like eyewear
or headwear, and does not include eyes, so eyeball rotation may
not be correctly animated. Since we focus on facial microdetails
(wrinkles/freckles), we do not track or reconstruct tongue, so certain
expressions with tongue motion might not be correctly tracked.

7 CONCLUSION
In this work, we propose ScaffoldAvatar, a novel method based
on patch blendweights for synthesizing high fidelity 3DGS-based

avatars. The key idea of our method is to leverage per-patch blend-
weights to learn local deformations on the surface in order to pro-
duce more accurate and sharper results. We use anchor-based scaf-
folding and bind them to the patch centers in order to learn high
frequency facial details. We utilize effective densification based on
color gradient and patch perceptual loss to obtain sharper results.
Our method outperforms current state-of-the-art methods, espe-
cially when zoomed into the facial regions. We believe that our
method takes an important step towards avatar reconstruction and
animation with high fidelity facial details.
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