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Figure 1. Visual comparison between our method, MRefSR [25], and SwinIR [13] on a real-world example where a panorama shot is

upscaled with the help of a set of close up images captured during a trip through the city. All images were captured using a Google Pixel 7a

smartphone. Our method uses SwinIR trained for the RealSR setting as a backbone. While MRefSR struggles in this in-the-wild scenario,

our method effectively uses the available reference images and produces high quality results.

Abstract

In recent years image restoration methods have made sig-

nificant progress addressing a wide variety of degradations.

Some methods focus on a specific task while others ad-

dress enhancement in a more generic setting. Reference-

based restoration aims at leveraging any image of higher

quality that would be available to further improve the re-

sults. To the best of our knowledge reference images were

only used in the context of image and video super-resolution

(RefSR and RefVSR), with specialized models. In this work,

we propose a novel and generic reference-based restora-

tion method that is applicable to any model and any task.

We start with the observation that restoration models typi-

cally operate in feature space before a final decoding step

which transforms the extracted features into an image. Our

model operates as an add-on that extracts information from

the references and uses this to enhance these pre-decoding

feature maps, leading to significant improvement in image

quality. Our strategy is compatible with virtually all ex-

isting image restoration methods and we demonstrate this

with a wide range of both specialized and generic image

enhancement models where we achieve a significant boost

in quality. Besides its generic applicability, we also demon-

strate that the proposed solution outperforms existing spe-

cialized RefSR state-of-the-art methods both quantitatively

and qualitatively.

1. Introduction

Image quality enhancement is a fundamental computer vi-

sion task which aims to restore a high quality signal from

a low quality image. As image quality can be degraded



for a multitude of reasons there is a variety of meth-

ods aimed at different sub-tasks of image restoration. To

name a few, there are specialized methods for image super-

resolution [5, 7–9, 13, 18, 26], compression artifact re-

moval [13], and denoising [13, 22]. In each of these cat-

egories significant progress has been made in recent years

and current state-of-the-art methods are able to recover im-

pressive levels of detail from heavily degraded input im-

ages.

In many real-world applications a single degraded im-

age is not the only information available. Often, higher

quality images depicting similar content are available and

can be used to guide the restoration process to achieve even

higher quality. In the field of image super-resolution a num-

ber of methods have been proposed which are able to utilize

available reference images and show a significant boost in

quality. However existing reference based super-resolution

(RefSR) methods [2, 10, 14, 19, 21, 24, 25, 27, 29] are

specifically designed and trained (from scratch) for the task

of super-resolution. We believe this to be an important lim-

itation. On one side it is difficult to benefit from progress

made in terms of models (architecture, training, etc.), as

each time a new design and re-training is needed to inte-

grate reference image information. On another side, there

is no reason to limit the usage of references to the super-

resolution task.

In this work we propose a generic reference refinement

module that is designed as an add-on compatible with any

existing image restoration method, enabling the optional

use of reference images to boost quality. By extracting in-

formation from the references and using it to enhance the

last feature maps of any existing restoration model, our pro-

posed module can be efficiently trained as we leave the orig-

inal model frozen, while benefiting from all its advantages.

Compared to existing RefSR approaches this has two main

advantages: First, our approach allows us to build upon the

large existing body of work exploring neural network archi-

tecture and training for super-resolution, and we can easily

utilize newer, more powerful image models once they be-

come available. Second, our generic design is not limited

to the task of RefSR. Instead our method can be applied

to any image restoration task. We show that our approach

yields state-of-the-art results on the task of RefSR and can

be applied seamlessly to other image restoration tasks like

denoising or compression artifact removal.

We claim the following contributions:

• A novel reference-based restoration module compatible

with existing image restoration methods.

• We achieve state-of-the-art quantitative and qualitative re-

sults for the task of RefSR.

• The first method capable of utilizing reference images for

general image restoration tasks like denoising or com-

pression artifact removal.

2. Related Work

Image restoration is a classic computer vision task with the

goal of recovering a high-quality signal from a degraded,

low-quality image. Dong et al. [7] were among the first

to apply deep neural networks to the task of image super-

resolution, which have since become the standard approach

of tackling any image restoration task. Since then, signif-

icant progress in network architecture [8, 13, 18, 26] has

been made and current state-of-the-art image restoration

methods are able to recover impressive details even from

heavily degraded inputs. Methods like BSRGAN [23] are

even able to upscale low-resolution images with a multi-

tude of degradations while methods like [1, 5, 9] can handle

arbitrary scaling factors or even arbitrary geometric trans-

formations [1, 16]. In an effort to further increase image

quality methods have been proposed which are able to uti-

lize additional input information. For example, video super-

resolution methods like [3, 4, 20] utilize temporal informa-

tion from neighboring video frames to produce high qual-

ity super-resolution results, while methods like [1, 6] con-

ditioning their method on the downsampling kernel. An-

other popular approach to increase super-resolution quality

is the usage of reference images. Zheng et al. [28] were

among the first to propose a method of this task. Later

methods such as [11, 14, 19, 21, 27] improved upon these

early results by identifying better correspondences between

the degraded and reference image. Other methods such

as [2, 10, 24] have further pushed quality by employing

more sophisticated architectures and training procedures. A

major limitation of most RefSR methods is their inability

to utilize multiple reference images. This was addressed

by MRefSR [25] which was the first RefSR method ca-

pable of utilizing multiple reference images. In addition

to their method they also introduce the LMR dataset con-

taining both training and testing examples for multi-RefSR.

While their method clearly outperforms previous methods

which were limited to a single reference image our evalua-

tion shows that our two stage refinement process manages

to extract significantly more information from the avail-

able reference images and produces much higher quality re-

sults. The task of RefSR has also been extended to video

by RefVSR [12]. Their method is, however, limited to their

highly specific triple camera setup and only a single refer-

ence image can be used for each video frame. To the best of

our knowledge currently no reference-based methods exist

which can handle image restoration tasks other than super-

resolution or even arbitrary scale super-resolution. Ad-

ditionally, all RefSR methods so far have been designed

and trained from scratch for RefSR. This means integrat-

ing new advances in image restoration into these existing

approaches requires redesign their architecture and compu-

tationally expensive re-training. Our method on the other

hand can easily be adapted to any new backbone without
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Figure 2. Overview of our proposed reference-based image restoration method. First, an initial feature map is extracted from the degraded

input image using the pre-trained backbones feature extractor. Both our proposed refinement stages then sequentially refine this feature

map by injecting information from the available high quality reference images. Finally, the refined feature map is decoded to an image

using the backbones image decoder. Note that only the two refinement stages are trained while all backbone parts are kept frozen.

any redesign and relatively low computational cost.

3. Method

On a high level all existing image restoration methods op-

erate in two stages as illustrated on the left side of Figure 2.

Starting from the input image I , the core part of most exist-

ing enhancement models operates on features, the resulting

features F are then decoded into the enhanced image Î . In

the following we assume that F has the same spatial reso-

lution as Î . Typically for SR methods this means that F is

the high resolution feature map.

We propose a reference-based image restoration module

that leaves the backbone architecture unchanged. Using a

set of available reference images I1,··· ,N , our method re-

fines F in two stages. Both follow the same principles: first,

compute a mapping between the original and the references;

second, extract and align features from the references; third,

use the aligned features to enhance F . The first stage relies

on robust matching to compute the mapping with the ref-

erences, while the second stage relies on a fine matching

methods. The motivation for these two stages is the abil-

ity to best leverage the references with both large and small

differences in appearance and viewpoint.

In summary, starting from the backbone core module E ,

we enhance the initial feature map F through the two stages

R1 and R2 using the references, before finally decoding the

result image I ′ with the backbones decoder D.

F = E(I) (1)

F ′ = R2(R1(F )) (2)

I ′ = D(F ′) (3)

For the robust matching we rely on the same strategy as

RefSR, using CCN [11] based matching, while for the fine

matching we use PDCNet+ [17].

3.1. Aligned Multi­Scale Feature Extraction (A­
MSFE)

Reference image features are extracted at multiple scales.

Feature at each scale are used to progressively enhance the

feature map F extracted from the backbone core module

in a coarse-to-fine manner. We start by describing the

multi-scale architecture then detail the spatial feature

alignment. Here we assume the 2D mappings (Mi) to the

references Ii is already computed.

Multi-Scale Feature Extraction (MSFE). The multi-scale

feature extractor (MSFE) is the basic building block used

throughout our method. From any feature map F it returns

three feature maps F 1, F 2, F 3 at scales 1, 1

2
, and 1

4
respec-

tively.

F l = RDB(down(F l−1)) and F 1 = RDB(F ) (4)

Here, RDB refers to residual-dense-blocks as introduced

in [18, 26] and they are used to extract features at each

scale. The down operation spatially downscales feature

maps by a factor of 2 using pixel-unshuffling followed by a

convolution adjusting the number of channels.

Pre-Alignment MSFE. When using pre-alignment the

multi-scale feature extraction is only used after 2D align-

ment

Fi = RDB(Convin(Ii)) (5)

F̃i = warp(Fi,Mi) (6)

F̃ 1
i , F̃

2
i , F̃

3
i = MSFE(F̃i). (7)

To avoid warping the raw reference image Ii directly we

perform shallow feature extraction via RDB first which
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Figure 3. Visual illustration of our proposed multi-scale multi-

reference feature refinement module. The current feature map is

refined at multiple scales by the MRFR module which aggregates

and injects information from multiple reference images. Note that

in the first refinement stage the current feature map is the fea-

ture map provided by the backbone while in the second refinement

stage it refers to the output of the first refinement stage.

results in the unaligned feature map Fi. This feature map

Fi is then warped and further processed by the MSFE.

Post-Alignment MSFE. When using post-alignment the

reference image Ii is first processed by the MSFE and each

extracted feature map is then aligned to F individually.

F 1
i , F

2
i , F

3
i = MSFE(Convin(Ii)) (8)

F̃ l
i = warp(F̃ l

i ,M
l
i ) (9)

Each scale l is warped according to the mapping Mi

adjusted for the scale. Further details regarding how the

mappings are obtained are discussed next.

We note that multi-scale feature extraction is possible

with Pre- or Post- alignment. Experimentally their perfor-

mance varies depending on the type of matching we use

(robust vs fine). We use post-alignment MSFE for the en-

hancement with robust matching and pre-alignment MSFE

for the enhancement with fine matching.

3.2. Matching and Warping

Our aligned multi-scale feature extraction relies on the es-

timation of a 2D mapping between the image to enhance

and the references. There can be a wide range of variabil-

ity between the references and the image to enhance, both

in terms of viewpoint and colors. To handle more extreme

cases while still benefiting from refined matching when pos-

sible, we adopt a two-stage strategy.

Robust Matching. Following MRefSR [25] we use the

Contrastive Correspondence Network (CCN) introduced by

C2-Matching [11] to extract correspondences between the

base image Î and each reference image Ii. We refer to this

mapping as M3
i . Note that M3

i is at one fourth the reso-

lution of Î . We generate higher resolution version of this

mapping M2
i and M1

i at half and full resolution via near-

est neighbor upsampling. The main advantage of CCN is

its ability to identify similar content in reference images for

each location in the base image even under large deforma-

tions.

Precise Matching. For our second refinement stage we use

PDCNet+ [17] to extract correspondences between the im-

age Î and each reference image Ii. The main advantage of

PDCNet+ is that it provides us a smooth flow field at full

resolution with sub-pixel accuracy. Warping is performed

using nearest neighbor grid sampling and adding the sub-

pixel offsets and confidence provided by PDCNet+ to the

warped feature maps along the channel dimension. More

details are provided in supplementary material.

3.3. Multi­Scale Multi­Reference Feature Refine­
ment

Our proposed multi-reference feature refinement is illus-

trated in Figure 3. First, we operate on the core feature map

F . Here we use MSFE to extract features at three different

scales, which are progressively enhanced using the refer-

ences. On the reference side (top part of the figure), the

mapping estimated between Î and the reference Ii is used

to extract multi-scale features using the aligned multi-scale

feature extraction. We now describe in more details how we

produce the refined feature map.

Given the multi-scale feature extracted from F

F 1, F 2, F 3 = MSFE(F ), (10)

and the aligned multi-scale features extracted for each ref-

erence

F̃ 1
i , F̃

2
i , F̃

3
i = A-MSFE(Ii) ∀i ∈ [1, N ], (11)

we use an attention based fusion mechanism (AttnFusion)

to fuse the information at each scale, before propagation to

the next scale.

F̂ 3 = AttnFusion(F 3, F̃ 3
1 , · · · , F̃

3
N ) (12)

F̂ l = AttnFusion(F l + up(F̂ l+1), F̃ l
1, · · · , F̃

l
N ) (13)

where AttnFusion is based on multi-head attention (mha)

Fref = mha(F, F̃i, · · · , F̃N )

F̂ = F + Convout(RDB(F ||Fref))

F is used to extract queries, while key-value pairs are ex-

tracted from F1,··· ,N . The attention mechanism is per-

formed separately for each spatial location. Note that the

operator || refers to concatenation along the channel dimen-

sion. The obtained feature map is used as residual to F (See

Figure 3).



LMR CUFED5 WR-SR

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

LIIF [5] (CVPR21) 28.63 0.835 0.157 25.78 0.779 0.193 27.44 0.796 0.209

SwinIR [13] (ICCV21) 29.87 0.859 0.183 26.92 0.812 0.199 28.32 0.817 0.245

DRCT [8] (CVPR24) 30.00 0.861 0.183 27.02 0.812 0.205 28.40 0.818 0.246

C2-Matching-rec [11] (CVPR21) 30.52 0.880 0.147 28.18 0.852 0.137 28.19 0.814 0.244

DATSR-rec [2] (ECCV22) 30.89 0.888 0.132 28.58 0.863 0.122 28.19 0.815 0.234

MRefSR-rec [25] (ICCV23) 31.78 0.903 0.121 28.80 0.868 0.126 28.40 0.818 0.237

Ours (LIIF) 32.18 0.912 0.105 28.94 0.874 0.116 28.55 0.823 0.230

Ours (SwinIR) 32.61 0.918 0.100 29.29 0.882 0.108 28.75 0.829 0.224

Ours (DRCT) 32.68 0.918 0.098 29.33 0.883 0.110 28.80 0.830 0.222

Table 1. Numeric evaluation for ×4 scaling on common RefSR datasets. We highlight the best result in bold and underline the second-best.

Our method using either SwinIR or DRCT as a backbone significantly outperforms existing RefSR approaches. Even when LIIF is used as

a backbone our method outperforms existing approaches while not being limited to fixed ×4 scaling.

Figure 4. Visual results for ×4 scaling. Previous methods either produce noticeable artifacts when trained with an adversarial loss (column

2-4) or blurry results when trained without (column 5). Our method utilized reference images more effectively managing to produce sharp

results without any noticeable artifacts.

4. Results

We evaluate our method on a variety of image restoration

tasks using a variety of backbone models. For each exper-

iment our model is trained in two stages. First, the refine-

ment stages 1 and 2 are trained independently, each for 300k

steps. Both stages are then combined and trained jointly



for another 150k steps. All training is performed on the

LMR [25] dataset using two RTX4090 GPUs. Further train-

ing details are provided in supplemental material.

4.1. Ref­SR

We start our evaluation by comparing our method to exist-

ing RefSR approaches. Note that previous methods train

two versions of their model. A perceptually optimized ver-

sion trained with an adversarial loss and a numerically opti-

mized version without adversarial loss. We indicate the nu-

merically optimized versions with the postfix -rec. For our

method we use a single version trained with L1 loss for both

numeric and visual evaluation. Also note that DATSR [2]

and C2-Matching [11] are both limited to using only a sin-

gle reference images. If multiple reference images are avail-

able we simulate a best case scenario for these methods by

picking the reference image that results in highest PSNR.

In Table 1 we present a numeric evaluation for ×4 refer-

ence based super-resolution on common datasets. For this

evaluation we train our method using both SwinIR [13] and

DRCT [8] as a backbone. With either backbone our method

clearly outperforms existing approaches across the board.

Even when using LIIF [5], an arbitrary scaling SR method,

as a backbone our method still produces state-of-the-art re-

sults. When using the LIIF backbone our method is not

fixed to ×4 scaling but can handle arbitrary scaling fac-

tors instead. Our methods strong numeric performance is

backed up by clear visual improvements which is illustrated

in Figure 4. Here, we see that previous methods trained with

adversarial loss (GAN) produce undesirable artifacts while

MSE optimized methods produce overly blurry results. Our

method produces sharp results without any noticeable arti-

facts.

4.2. Ref­Restoration

As our method is naturally compatible with most existing

image restoration methods we evaluate the benefits of refer-

ence images on a variety of image restoration tasks. Table 2

illustrates that our method manages to effectively use ref-

erence images to improve quality for arbitrary scaling SR

using LIIF [5] as a backbone, JPEG artifact removal using

SwinIR [13] as a backbone, denoising using Restormer [22]

as a backbone, and RealSR using SwinIR [13] as a back-

bone. For each task we use the publicly available pre-

trained backbone checkpoints. Figures 5&6 illustrate the vi-

sual improvement our method achieves for different restora-

tion tasks. We can clearly see that our method effectively

uses the available reference images to improve quality in

each case. Our methods benefits also translate to the in-

the-wild setting presented in Figure 1. Here, we upscale a

panorama shot captured with a smartphone using a set of

close up images. The set of close up reference images was

captured using the same smartphone during a walk through
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Figure 5. Visual results illustrating the benefits of using reference

images for a variety of tasks. Our method effectively utilized avail-

able reference images which significantly boost quality compared

to the backbone.

the city. Compared to MRefSR [25] our method produces

much sharper, more visually appealing results.

Task Backbone
Backbone Backbone + Ours

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SR ×2.5 LIIF 29.14 0.866 0.076 31.10 0.892 0.064

SR ×6.5 LIIF 25.70 0.719 0.258 26.41 0.750 0.266

JPEG 10 SwinIR 32.16 0.895 0.142 33.69 0.924 0.101

JPEG 30 SwinIR 36.18 0.951 0.065 37.21 0.960 0.052

Noise 25 Restormer 34.39 0.937 0.057 36.62 0.954 0.048

Noise 50 Restormer 29.40 0.870 0.108 33.78 0.926 0.083

RealSR SwinIR 25.62 0.719 0.347 27.53 0.794 0.239

Table 2. Numeric evaluation illustrating the benefits of using refer-

ence images for different tasks. We evaluate arbitrary scale super-

resolution for scales 2.5 and 6.5 using LIIF as backbone, JPEG

artifact removal for quality levels 10 and 30 using the SwinIR

backbone, image denoising with the Restormer backbone and σ

25 and 50, and finally real image super-resolution using SwinIR

as a backbone. For RealSR we apply noise to the HR image with

σ = 20, then downscale the image by ×4, and finally apply JPEG

compression with q = 30 to the LR image.



Figure 6. Visual results of our method applied to a variety of tasks. For SR × 4 we compare our method against MRefSR [25] which

is also capable of using the available reference images. For all other tasks we compare our method against its backbone. For the task of

RealSR the input image is generated by first adding noise (σ = 20) to the ground truth image, then downscaling by a factor of 4, and

finally applying JPEG compression (q = 30) to the LR image.

4.3. Ablation Study
In this section we ablate a number of design choices we

made throughout our method. As existing reference-based

methods focus on the task of super-resolution we choose

this task to ablate our design choices. However, the in-

sights gained from our ablation study should translate to

other tasks and our evaluation shows that our method per-

forms well on a wide variety of reference-based restora-

tion tasks. Throughout this section we report runtime, GPU

memory consumption, and number of parameters in differ-

ent settings. Unless mentioned explicitly results are gener-

ated on the LMR [25] testset without performing any CPU

offloading and transfer times from CPU to GPU are not in-

cluded in the reported runtimes. Runtime is always reported

as seconds-per-image which refers to the average number

of seconds required to process each example in the test-

set. Memory consumption refers to maximum GPU mem-

ory consumption over the whole testset in Gigabytes. The

number of parameters is reported in three categories. Train

refers to the number of parameters which are optimized

when training a given method. Enhance refers to the num-

ber of parameters which are directly contributing to the en-

hanced output image. This excludes parameters from PDC-

Net+ [17] and CCN [11] which are only used to compute

correspondences between the base and reference images.

Total refers to the total number of parameters in the model.

Unless explicitly stated otherwise our ablation is performed

using the ×4 upscaling SwinIR [13] as a backbone.

Corr Align Scales PSNR SSIM LPIPS
Time Mem Params [M]

[s] [GB] Train Enhance Total

CCN Post 3 31.55 0.899 0.125 8.4 8.0 12.5 24.4 25.5

CCN Pre 3 31.39 0.897 0.126 8.4 8.0 12.5 24.4 25.5

CCN Post 1 30.96 0.888 0.140 8.6 12.8 3.3 15.2 16.3

PDC Pre 3 32.44 0.916 0.101 2.6 8.1 12.5 24.4 42.8

PDC Post 3 32.37 0.914 0.104 2.5 8.1 12.5 24.4 42.8

PDC Pre 1 32.00 0.909 0.109 2.9 12.9 3.5 15.4 33.8

CCN + PDC 3 32.61 0.918 0.100 10.0 8.1 24.9 36.8 56.4

Table 3. Ablation study showing effect of different model ar-

chitecture choices in both refinement stages. For the CCN-

alignment stage post-aligning feature maps performs better than

pre-alignment, while for the PDC-alignment stage pre-alignment

performs better. For both stages a deeper 3-scale architecture with

64, 128, 256 channels produces higher quality results and is less

computationally expensive compared to a 1-scale architecture with

128 channels. In the last row we show the result of combining the

best performing CCN and PDC stages. The combined model out-

performs both individual refinement stages which clearly shows

the advantage of our two stage refinement process.

Our first ablation is presented in Table 3. Here, we show

that post-alignment performs better when CCN correspon-

dences are used while pre-alignment is preferable for PD-

CNet+ correspondences. Additionally, we also show that

our multi-scale design has clear benefits both in terms of

quality and computational cost. We compare a single-scale

version of our method where all refinement happens at full

resolution with 128 feature channels to our multi-scale de-



sign with three levels of size 64, 128, and 256. The re-

sults show that the multi-scale design performs significantly

better while using less GPU memory and achieving faster

runtime. We note that the PDCNet+ refinement stage per-

forms significantly better at greatly reduced computational

cost compared to the CCN stage. This may be an interest-

ing direction to pursue for future work focused on resource

constrained environments. Our work is, however, aimed at

maximum performance in an offline setting and we see that

combining the two refinement stages yields the best results.

This illustrates the effectiveness of our two stage refinement

process.

Corr Match Image Enhancement PSNR ↑ SSIM ↑ LPIPS ↓

CCN bicubic features 31.55 0.899 0.125

CCN backbone features 31.44 0.897 0.127

CCN bicubic image 31.53 0.899 0.125

PDC backbone features 32.44 0.916 0.101

PDC bicubic features 32.36 0.914 0.105

PDC backbone image 32.40 0.915 0.105

Table 4. Ablation study showing the effect of using different match

images and injected reference information at different locations.

Other important design choices are which image to use

when computing correspondences, where to inject informa-

tion from reference images, and the ordering of the two

refinement stages. We ablate this in Table 4. For CCN

correspondences we find that it is best to use a biubically

upscaled image to extract correspondences while for PDC-

Net+ an already enhanced image from the backbone model

performs better. This finding also informs our ordering of

the refinement stages. Using CCN for the first stage makes

sense as it does not benefit from an already enhanced im-

age. PDCNet+ is best suited for the second stage where it

can benefit from an already enhanced image from the first

stage. For both stages we see that refining the feature map

extracted by the backbone performs better than refining the

restored image directly.

In Table 5 we showcase the effect both the quality and

number of reference images have on computational cost

and performance. This experiment is performed on the

CUFED5 [27] dataset which provides a set of reference im-

ages with different levels of similarity for each example. We

evaluate our method using the best/worst 1/3 reference im-

ages and also using all the available reference images. We

identify two key insights from these results - more similar

reference images are better than less similar ones and more

reference images are better than fewer. We also note that

using all available reference images yield the best results

which indicates that our method manages to ignore infor-

mation from lower quality reference images where higher

quality information is available.

Finally, we compare our method to MRefSR [25] both

References PSNR SSIM LPIPS
Time Mem

[s] [GB]

Best 1 28.84 0.869 0.124 0.3 0.8

Best 3 29.23 0.880 0.110 0.4 1.1

Worst 1 27.30 0.822 0.184 0.3 0.8

Worst 3 28.06 0.848 0.149 0.4 1.1

All 29.29 0.882 0.108 0.6 1.5

Table 5. Impact of number and quality of reference images on our

method computational cost and performance on the CUFED5 [27]

testset which provides reference images of varying similarity level

for each example. We see that higher quality reference images re-

sult in better performance compared to lower quality references.

We also see that, independent of reference image quality, provid-

ing more reference images strictly improves output quality.

Method PSNR SSIM LPIPS
Time Mem Params[M]

[s] [GB] Train Enhance Total

SwinIR 29.87 0.859 0.183 0.8 1.4 11.9 11.9 11.9

DRCT 30.00 0.861 0.183 4.1 3.1 27.6 27.6 27.6

MRefSR (MSE) 31.78 0.903 0.121 13.6 22.1 23.7 23.7 25.4

Ours S (SwinIR) 32.26 0.913 0.107 9.1 5.0 6.1 18.0 37.6

Ours S (DRCT) 32.36 0.914 0.106 12.2 5.2 6.1 33.7 53.3

Ours L (SwinIR) 32.61 0.918 0.100 10.0 8.1 24.9 36.8 56.4

Ours L (DRCT) 32.68 0.918 0.098 13.0 8.3 24.9 52.5 72.1

Table 6. Computational cost and quality comparison between

our method and MRefSR [25]. Independent of the backbone our

method significantly outperforms MRefSR in both quality and

computational cost.

in terms of runtime and peak memory consumption on the

LMR [25] dataset. Our method is evaluated using both the

SwinIR [13] and DRCT [8] as a backbone and for both op-

tions we test a small and large version. The large version

(Ours L) uses intermediate feature maps of size 64, 128, 256
while the small version (Ours S) halves each layers size to

32, 64, 128. The results are presented in Table 6. We see

that, in all configurations, our method produces higher qual-

ity results than MRefSR [25] while consuming less memory

and achieving faster runtimes. We also see that the small

versions of our method have significantly lowered memory

requirements while still providing noticeably higher qual-

ity than other methods. While in this work we focus on

maximum quality in a offline setting we believe that the re-

sults achieved by our small model show that application in

a more resource constrained environment is feasible. This

is, however, beyond the scope of this work.

5. Conclusion
In this paper we have introduced a generic method
capable of utilizing available reference images for
any image restoration task. Our method is compat-
ible with virtually any image restoration backbone
and our results clearly show the benefits of using ref-
erence images across a variety of image restoration
tasks. For the task of RefSR our method significantly
outperforms the current state-of-the-art while simulta-
neously reducing the required computational resources.
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