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Abstract

The field of 2D portrait manipulation has experienced
significant advancements in recent years. A lot of
research has leveraged the prior knowledge embedded in
large generative diffusion models to enable high-quality
image editing and animation tasks. However, most
generative methods only focus on creating RGB images
as output, and the co-generation of consistent visual plus
3D output remains largely under-explored. In our work,
we propose to jointly learn the visual appearance and
depth of faces simultaneously in a diffusion-based portrait
image generator. Our method embraces the end-to-end
diffusion paradigm and introduces a new architecture
suitable for learning this joint distribution, consisting of
a reference network for target identity and a channel-
expanded diffusion backbone. We extend the training
objective to predict both RGB and depth from a single
representation, enabling various applications such as joint
generation, facial depth estimation, and depth-driven
portrait manipulation. Our experiments demonstrate that
joint learning not only surpasses separate conditional
generation but also achieves state-of-the-art results on
both facial depth estimation and portrait image animation,
validating the benefit of a joint-learning approach for depth
and appearance of portrait images.

1. Introduction
The development of deep generative models, like
GANs [24, 25] and diffusion models [4, 19, 37] have
witnessed significant advancements in recent years. What
we learned from large pre-trained models like Stable
Diffusion [37, 41] is that image synthesis methods can
produce stunning photo-realistic images of human faces,
indistinguishable from reality. Based on these models,
researchers have devised a host of algorithms for tasks like
portrait relighting [29, 36, 40], appearance editing [9, 28,
44, 65] (e.g. changing the hair color, adding accessories or

re-aging the person) and animation retargeting [12, 16, 22,
35, 39, 43, 46, 53, 58, 64].

To accomplish these tasks, modern approaches start
with a pre-trained generative model [4, 11, 37, 38]
as the backbone and learn to condition the generation
on other signals, like landmarks or images. While
such methods [17, 18, 20, 61] have proven to be very
powerful in portrait image manipulation, one issue is
that the backbone generators only learn to generate the
appearance (i.e. the RGB color) of the face, which can
limit downstream applications that would benefit from
additional information such as depth. Moreover, recent
work [13, 26] has demonstrated that pre-trained diffusion
models encode rich 3D structural priors, which facilitates
3D tasks like depth estimation and shape reconstruction.
Even though some studies [32, 71] have attempted
to leverage 3D representations as condition to guide
portrait generation, these methods take the representations
purely as an auxiliary signal without fully exploiting the
intrinsic 3D information embedded within the diffusion
model. In contrast, we propose a simple yet effective
joint-learning framework based on a diffusion generative
model where visual appearance and 3D depth are learned
simultaneously. We directly integrate the appearance and
depth information into the diffusion process by learning
a joint distribution, so that 3D priors are better utilized,
yielding various applications including joint appearance
plus depth generation, facial depth estimation, and depth-
driven portrait animation.

The correlation between the appearance and depth
channels is of critical importance for our jointly learning
architecture, i.e. the generated depth map must match the
generated face image. Our new diffusion-based portrait
image generator is built on top of Stable Diffusion [37, 41],
but adapted to learn this joint distribution. Similar to
related work [20, 48, 60], we employ a reference network
designed to extract the identity of an RGB reference photo,
which guides the image diffusion process. We expand
the traditional Stable Diffusion backbone to de-noise a 6-



channel input image, which consists of separately-noised
RGB and depth latent images, and we extend the training
objective to predict both RGB and depth from a single
representation. The shared UNet in the diffusion step also
ensures good correlation between the appearance and depth
outputs. Finally we train the model on a combination
of studio-captured facial images with ground truth 3D
geometry obtained from a facial scanner, and also in-
the-wild facial videos with approximate 3D reconstructed
geometry. As we will show, this combination allows our
model to both learn accurate depth generation and also
generalize to outdoor settings.

Once our model is trained it can be adapted for
several applications. In addition to unconditional sampling
to achieve coupled RGB and depth images, we show
applications of channel-wise inpainting. Specifically, for
a given image we can inpaint the depth channel, achieving
facial depth estimation with our model. Alternatively, for
a given depth image, we can inpaint the RGB channels to
obtain an artistic way to control face image generation using
either a 3D morphable face model or the estimated depth
from a separate image. Furthermore, following previous
works [18, 20, 61] that introduce temporal layers in
diffusion models, our approach can be extended to generate
temporally consistent visual results. Importantly, our
experiments show that joint learning outperforms separate
conditional learning (e.g. from depth to RGB or RGB to
depth) for facial depth estimation and portrait animation.

Specifically, our contributions are:
1. A novel architecture for joint learning of depth and

appearance of portrait images, implicitly learning the
relationship of 2D and 3D information, with better
performance than separate conditional generation,

2. A new training scheme for learning paired image and
depth maps from a combination of in-studio and in-the-
wild facial data,

3. The demonstration of several applications in portrait
manipulation including both image-to-depth and depth-
to-image channel-wise inpainting, achieving state-of-
the-art results for facial depth estimation, depth-driven
image editing and animation.

2. Related Works
Diffusion Model for Geometric Estimation. Diffusion
models trained on large image datasets for high-quality
generation tasks have been proven to contain a rich
understanding of the underlying scene structure. This
capability has extended the diffusion model to 3D geometric
estimation tasks, including depth estimation [1, 2, 15, 21,
62], normal estimation [54, 59], and view synthesis [33,
34, 45, 51]. Recently, Marigold [26] leverages the
diffusion priors by fine-tuning large pre-trained diffusion
models specifically for depth estimation. Wonder3D [33]

designs a cross-domain diffusion model with attention
across different modalities for information exchange.
Geowizard [13] proposes to jointly estimate depth and
normals and involve a scene distribution decoupler strategy
to discern different scene layouts. Recently, Khirodkar
et al. [27] proposes Sapiens, a human-centric foundation
model capable of pose estimation, body segmentation,
depth and normals estimation. Several approaches
have been developed to jointly denoise cross-domain
representations utilizing the prior of large pretrained model.
JointNet [66] achieves joint generation by replicating
the original network, enabling it to handle multiple
geometric tasks within a unified framework. Additionally,
HyperHuman [31] proposes to learn the correlation between
appearance and geometric structure by denosing the depth
and surface-normal along with the RGB image. Different
from these methods, we introduce a reference network
designed for portrait images to extract identity information,
with no need for an additional joint network to keep the
generalization of the diffusio model. Instead, our unified
framework efficiently achieves state-of-the-art results on
depth estimation and portrait animation.

Diffusion Model for Portrait Animation. Diffusion-based
generative models have shown remarkable capabilities in
generative tasks, demonstrating diversity and adaptability
across various multimedia domains. The development of
large pre-trained models, such as Stable Diffusion [41],
has spurred numerous applications leveraging its robust
model priors. By extending the pre-trained model from 2D
image generation to 3D video generation, researchers have
explored tasks for animating human images. For example,
AnimateDiff [18] introduces a plug-and-play temporal
module designed to adapt flexibly to different motion
patterns without model-specific tuning. In animating
specific characters, DreamPose [23] introduces a dual clip-
image encoder for image encoding. Similarly, methods
like Animate Anyone [20], MagicAnimate [61], and
Talk-Act [14] resort to a ReferenceNet with symmetrical
U-Net architecture to maintain appearance consistency.
Intermediate representations like landmarks, skeletons, or
segmentation maps are used as control signals in this
process for fine-grained control. Our work builds upon
the diffusion priors of Stable Diffusion, achieving video
generation by integrating a motion module for improved
temporal consistency.

3. Joint Learning Method

We now describe our joint learning framework, starting with
preliminary background details on latent diffusion models,
followed by our new model for joint learning.



Fixed

Concatenation

Latent

Decoder

Latent

Decoder

Latent Diffusion U-Net

Latent

Encoder

ReferenceNet

Reference

Noise

con

con

RGB

Depth

Figure 1. The overview of the proposed pipeline. Given a
reference image, our model jointly generates the appearance
(RGB) and depth of the identity under various expressions and
poses, by simply sampling random noise in the latent space.

3.1. Preliminaries: Latent Diffusion Models
Diffusion models have set the new standard for generative
models due to its ability to generate high-quality samples
and perform a wide range of tasks with finetuning
techniques. The diffusion model is trained to generate
images by iteratively adding noise to the image and then
removing the noise level-by-level, so that the model learns
to generate the image from the gaussian noise. Different
from the diffusion models that directly work on the image
space, the latent diffusion models perform diffusion in
a latent space, providing computational compactness and
scalability to higher resolution images. The latent space
is obtained from a pretrained variational auto-encoder
(VAE) [30].

For a given sampled image x, the encoder E of the VAE
encodes the image into this latent space, as z = E(x). The
forward pass of the diffusion process adds noise to the latent
code z0 according to the uniformly sampled noise level l:

zl =
√
ᾱlz0 +

√
1− ᾱlϵ, (1)

where ϵ ∼ N (0, I), ᾱl is associated with the variance
schedule of a diffusion process with L noise levels so that
zL becomes a gaussian distribution. In the reverse process,
the denoising network ϵθ(·), parameterized with learnable
parameters θ, gradually removes noise from zl to get zl−1,
so as to obtain the fully denoised z0. The decoder D of
the VAE then decodes z0 to generate the image x. During
training, the parameters θ are updated by minimizing the
following loss function:

L(θ) = Eϵ∼N (0,I),l∼U(L) ∥ϵ− ϵθ(zl, l)∥2 . (2)

Equipped with conditional information injected using
cross-attention modules [50], the latent diffusion models
can be extended to perform various tasks, such as text-to-
image generation [41] and image-to-image translation [67].

In this work, we propose to leverage a pretrained latent
diffusion model and adapt it to perform the task of co-
generation of depth and appearance for portrait image
animation, conditioned on a reference image.

3.2. Joint Learning of Depth and Appearance
As demonstrated in Fig. 1, given a reference image r
of the identity of interest, our task is to jointly generate
the appearance (RGB) x and depth d of the subject
under various expressions and poses. We model this as
a conditional joint distribution in the latent diffusion U-
Net [42] model, as p(zx0 , z

d
0 |r), where zx0 and zd0 are the

latent features for the appearance and depth, respectively.
The final maps are generated by decoding the latent codes
with the decoder of the VAE, as x = D(zx0 ) and d =
D(zd0 ).

The reference image r is essential to generate consistent
appearance and depth of the identity. In order to capture
intricate details of the target, we use a reference network
R to extract the identity features zr from the reference
image r, as zr = R(r), which are then injected into the
latent diffusion model using the spatial attention modules.
Now the denoising process is conditional on the reference
features, as zl−1 = zl − ϵθ(zl, z

r, l).
To model the joint distribution, we generalize the

latent diffusion process to handle multiple latent codes.
Specifically, in the forward pass, we use the encoder E to
separately encode the appearance and depth, as zx0 = E(x)
and zd0 = E(d). We then independently add noise to each
latent code, as follows:

zxl =
√
ᾱlz

x
0 +

√
1− ᾱlϵ

x, (3)

zdl =
√
ᾱlz

d
0 +

√
1− ᾱlϵ

d, (4)

where ϵx and ϵd are independently sampled from N (0, I).
This follows the same reverse process as the original latent
diffusion model, except now the denoising network ϵθ is
modified to denoise both latent codes. For simplicity, we
concatenate the noised appearance and depth latent codes,
as zl = [zxl , z

d
l ]. Then the denoising network ϵθ(·)

is modified to denoise the concatenated latent code, as
[zxl−1, z

d
l−1] = zl − ϵθ(zl, z

r, l). During training, ϵθ learns
to predict the concatenated noise:

L(θ) = Eϵ∗∼N (0,I),l∼U(L)

∥∥[ϵx, ϵd]− ϵθ([z
x
l , z

d
l ], z

r, l)
∥∥2 .
(5)

3.3. Network Architecture
Diffusion Backbone. We aim to leverage the expressive
knowledge stored in a pretrained latent diffusion model
to learn our proposed conditional joint distribution with
limited available data. However, since the latent diffusion
model is originally trained to generate only RGB images,
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Figure 2. Detailed architecture of the building block of our
extended model for portrait video generation, equipped with
additional motion modules to achieve temporal consistency.

it must be adapted to co-generate depth and appearance.
Here, we adopt a straightforward solution: expanding the
input and output channels of the latent denoising network
ϵθ. Specifically, the additional parameters in the input layer
are initialized to zero, while the parameters in the output
layer are duplicated from the original ones. We find it
sufficient for our task, likely due to the rich priors learned
in pretrained model, which enhances the model’s capability
to produce satisfactory results.

ReferenceNet. ReferenceNet is designed to enhance and
stabilize the generation process by leveraging existing
images as reference. It mirrors the layer structure of the
denoising model, ensuring compatibility. Both networks
produce feature maps with matching spatial resolutions and
semantically aligned characteristics. This alignment allows
ReferenceNet to effectively integrate extracted features into
the diffusion model, resulting in improved visual quality.
The weights of our ReferenceNet are initialized from the
denoising network and trained together with it.

4. Adapting for Applications
Once trained, our model can be adapted to achieve several
applications, which we will highlight in Sec. 5 and the
supplemental video. For example, sampling from the model
to achieve novel expressions with corresponding depth is
straightforward. However, the model can also be adapted
for bi-directional prediction of image or depth conditioned
on the other signal, allowing for tasks such as monocular
depth estimation and depth-based image editing/animation.
In this section, we discuss the details of adapting our model
for these tasks.

Our joint distribution of depth and appearance can
be transformed into a conditional distribution in both
directions by domain-wise inpainting. With a light fine-
tuning process, our model is capable of both depth-to-image

Method AbsRel ↓ δ1 ↑ RMSE ↓

Marigold [26] 0.529 0.538 0.055
GeoWizard [13] 0.392 0.644 0.050
DepthAnything V2 [63] 0.457 0.612 0.050
Sapiens-0.3B [27] 0.313 0.526 0.056
Sapiens-0.6B [27] 0.297 0.549 0.048
Sapiens-1B [27] 0.197 0.696 0.047

w/o Joint Learning 0.260 0.738 0.050
Ours-Wild-Only 0.313 0.658 0.059
Ours 0.162 0.765 0.047

Table 1. Quantitative comparison for monocular depth estimation
on portrait images.

generation and image-to-depth generation. Specifically, we
employ masked latent as an additional input condition [41]
and design asymmetric masks for appearance and depth
while fine-tuning. The task of image-to-depth, i.e.
monocular depth estimation, can then be achieved by setting
pure white for the depth mask and pure black for the
image mask, and vice-versa for depth-to-image generation.
Note that the involvement of ReferenceNet here enables the
generation of the RGB image matching the appearance of
the reference image, which allows possibilities for various
applications like facial attribute editing and animation. Our
model can be easily extended to generate portrait videos
by incorporating temporal modules into diffusion backbone
with attention modules. Similar to existing methods [18,
20, 61], we add an additional temporal-attention module
in each building block of the denoising U-Net to maintain
consistency between the generated frames. Fig. 2 illustrates
the detailed architecture of the building block of our
extended model.

5. Experiments

We begin describing our experimental setups (Sec. 5.1),
and then we show that joint learning surpasses separate
conditional learning for the same tasks (Sec. 5.2). We
then demonstrate several applications including monocular
depth estimation (Sec. 5.3), depth-conditioned portrait
editing (Sec. 5.4) and depth-driven portrait animation
(Sec. 5.5), showing that our method outperforms existing
techniques. Finally, we end with limitations of our method
(Sec. 5.6). Please refer to the supplemental document for
additional results and ablation studies.

5.1. Experimental Setups
Implementation Details. The joint learning of portrait
RGB images and depth takes about three days on four
4090 GPUs. We use a batch size of 32 and a constant
learning rate of 1e-5 and train our model for 30000 steps.
We then fine tune our model by incorporating different
masks for the inpainting task. Note that our model is still
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Figure 3. Benefit of joint learning for depth estimation.

capable of jointly generating RGB and depth by setting
the mask to be pure white for both domains. To train our
depth-driven animation network, we incorporate temporal
attention modules. The training is performed on 4x RTX
4090 GPUs, and it takes about 3 days for the joint-learning
model training, 15 hours for the inpainting fine-tuning and
2 days for the motion module training respectively.

The weights of the motion module are initialized from
Animatediff [18], and we retain all other parameters from
the first stage. We generate 14 frames at once and use the
first 4 ground truth frames of each training sample as the
motion frames during training.
Datasets. We train our model on a combination
of datasets collected from both studio and in-the-wild
scenarios. Particularly, we use a high-quality multi-view
studio face dataset [5], comprising of images from 336
subjects performing various facial expressions, along with
corresponding high-fidelity registered meshes. We render
ground truth depth maps from these registered meshes to
obtain the paired RGB-Depth data for training our method.
To improve the generalization of our model to real world
data, we incorporate in-the-wild visual sequences, from
selected clips of the HDTF [70] and VFHQ [57] datasets.
As these in-the-wild datasets do not contain corresponding
geometry, we use a state of the art monocular face tracking
approach [6, 7] to estimate 3D geometry from these videos,
using which we can extract pseudo ground truth depth maps
for training. In total we collect around 3 hours of video data
from HDTF and VFHQ, containing 2,423 clips with diverse
identities, facial expressions and head poses. All videos
are sampled at 25 FPS and the images are cropped to a

Method L1 ↓ SSIM↑ LPIPS↓ FID↓
w/o Joint Learning 0.058 0.640 0.178 29.720
Ours 0.055 0.691 0.174 27.536

Table 2. Quantitative comparison for appearance generation.

Image Depth w/o Joint Learning Ours

Figure 4. Benefit of joint learning for appearance generation.

resolution of 512×512. The combination of studio data and
in-the-wild data provides a solid foundation, enabling our
network to jointly generate high-quality image and depth
across various practical scenarios.

5.2. Benefit of Joint Learning
In order to evaluate the effectiveness of joint learning, we
compare our approach with separate individual networks in
both directions. To this end, we train two separate networks
that take image or depth as a condition for the U-Net
to predict the corresponding depth or image, respectively.
We use the same dataset and training settings to train the
separate conditional networks for fair comparison.
Image to Depth. We first train the depth generation
network and compare it with our model on a monocular
depth estimation task on an unseen studio dataset, as this
provides us with precise 3D depth maps that we can
consider as ground truth. This evaluation dataset consists
of 1264 images from 55 identities consisting of various
facial expressions and poses. We follow the relative-
depth evaluation protocols proposed in MiDaS [3] and
LDM3D [47], and evaluate standard metrics including
absolute relative error (AbsRel), δ1 accuracy and root mean
squared error (RMSE). As the ground truth depth maps
derived from the 3D mesh in the studio dataset contain only
the facial skin region, we apply a mask and remove regions
outside this area to ensure a fair comparison of methods. We
show quantitative results at the end of Tab. 1 and qualitative
results in Fig. 3. Our approach outperforms separate
generation on all metrics. We also present qualitative
results for monocular depth estimation on in-the-wild face
portraits. Since there is no groundtruth depth for them,
we show estimated depth from a fitting method [6, 7] that
was used to generate the depth component of our in-the-
wild training data. Our approach generates depth that are
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Figure 5. Qualitative comparisons with the state-of-the-art methods for monocular depth estimation on studio images. Several existing
methods produce flat or exaggerate faces (please see supplemental video for geometry side-views).

most aligned with the image, even surpassing fitting-based
methods, demonstrating the effectiveness of joint-learning.
Depth to Image. We then train the depth-conditioned
image generation network and use the same studio dataset
for evaluation. As shown in Tab. 2, our approach has better
performance on all image metrics, L1 error, SSIM, LPIPS
and FID. The samples in the Fig. 4 also highlight how
joint learning of depth enhances appearance generation,
particularly in facial expression and shape accuracy.
Now that we have highlighted the benefit of joint over
separate learning, we continue with illustrating applications
and comparisons using our joint learning method.

5.3. Depth Estimation
Recently there has been great interest in fine-tuning
foundational models to predict depth from monocular RGB
input [13, 15, 26, 62, 62, 63]. As illustrated in Sec. 4, our
model can readily be used for the task of monocular depth

estimation (or RGB conditioned depth prediction) after a
light fine-tuning. We use the same test set as in Sec. 5.2
and compare our method against state-of-the-art monocular
depth estimators including Marigold [26], Geowizard [13],
DepthAnything V2 [63] and three different backbones
from the human-centric foundation model Sapiens [27].
Quantitative results are listed in Tab. 1 and qualitative
results are shown in Fig. 5. As we see in Tab. 1, our method
outperforms all other models on this task, including the
Sapiens-1B model. Qualitatively our method captures the
facial shape and expression similar to Sapiens-1B, while
containing significantly fewer grid-like artifacts. We also
present qualitative results for monocular depth estimation
on in-the-wild face portraits (Fig. 6), and compare our
estimated depth to the result of fitting a 3D morphable
model [6, 7] to the input RGB image as in Sec. 5.2. Our
results on unseen in-the-wild images have better mouth
and face structure when compared to the 3DMM fit, and
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Figure 6. Qualitative comparisons for monocular depth estimation on wild faces. Note that even 3D facial tracking (right column) can
sometimes fail. Our method can achieve a better depth due to the high-quality studio data as a subset of our training data.

correspond better to the RGB image. This is due to the fact
that our method learned accurate depth correlation from the
joint learning and combined studio training data.

5.4. Depth-Conditioned Portrait Editing
In addition to monocular depth estimation, the joint learning
of RGB and depth modalities also enables us to generate
an RGB image by providing a depth map as input. This
application of our model can be particularly useful in having
precise control over the generated RGB image for editing
applications. In Fig. 7, we show examples of editing an
RGB image, by modifying its corresponding depth map,
and requiring our model to re-generate an RGB image
corresponding to the edited depth. The inpainting mask
spatially guides the model to the regions it is expected to
modify in the given image. Our approach generates photo
real images that respect the identity of the original RGB
image and the edited depth maps.

5.5. Depth-Driven Portrait Animation
As illustrate in Sec. 4, our approach enables portrait
animation by involving temporal layers. Here we
show comparisons with concurrent diffusion-based
portrait animation methods, including AniPortrait [56],
EchoMimic [8], X-Portrait [58], Follow-Your-Emoji [35]
and MegActor-Σ [64]. The qualitative results are presented
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Figure 7. Depth-based face editing results.

in Fig. 8. We find that previous work suffers from
artifacts, especially under large variations on the head pose
or expressions. Additionally, previous condition-based
methods struggle to have fine control over the head pose
and facial expression. For quantitative rsults, we evaluate
all the methods on the test video data from HDTF and
VFHQ. For self reenactment task, we use four metrics to
assess the video quality including L1 error, SSIM [55]
and LPIPS [68] and FVD [49]. We also evaluate cross
reenactment on three metrics, ArcFace score [10] to
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Figure 8. Qualitative comparisons with the state-of-the-art methods for portrait animation.

Method
Self Reenactment Cross Reenactment

L1 ↓ SSIM ↑ LPIPS ↓ FVD ↓ ID Similarity ↑ Image Quality ↑ Expression/Pose ↓
AniPortrait [56] 0.049 0.732 0.197 204.194 0.763 51.381 0.71/2.99
EchoMimic [8] 0.085 0.616 0.311 516.652 0.727 44.902 0.65/4.94
X-Portrait [58] 0.078 0.624 0.284 233.384 0.766 51.339 0.68/5.50
Follow-Your-Emoji [35] 0.042 0.755 0.145 180.305 0.794 50.107 0.67/3.07
MegActor-Σ [64] 0.081 0.619 0.310 202.550 0.672 42.980 0.64/4.79
Ours 0.041 0.760 0.152 192.630 0.798 54.324 0.61/2.59

Table 3. Quantitative comparisons with state-of-the-art methods on self reenactment and cross reenactment tasks.

measure identity similarity, HyperIQA [69] to assess the
image quality, and the extracted facial blendshapes and
head poses from a 3DMM model [6, 7] to access the
expression and pose accuracy. The results are presented in
Tab. 3. Our approach demonstrates comparable performace
on self-reenactment and surpasses other methods across all
cross-reenactment metrics. Notably, our model achieves
competitive performance while requiring significantly less
training data than compared methods.

5.6. Limitations
Although our method is not limited to the facial skin
region in principle, as it currently relies on depth maps
derived from registered 3D geometry for training, it can
only predict depth maps only for the skin region when given
a new RGB image. Secondly, since our model uses depth

maps for portrait manipulation, it can’t handle fine-grained
movements such as eye gaze or hair dynamics. Thridly, due
to our modest computational resources, we were limited
from scaling our training datasets and training times to
those comparable with existing portrait animation methods.
Therefore our current results could also be improved with
longer training on larger datasets.

6. Conclusion
In this work we propose a new generative model for face
portrait images, with a focus on jointly learning the visual
appearance and the 3D depth in a unified framework. To
accomplish this task we introduce a new diffusion-based
architecture and corresponding training scheme, which
ensures correlation between the two different output
signals. Here we have demonstrated our joint-learning is



superior than spearate individual network through extensive
experiments. Further applications are also possible with our
joint learning framework, which believe advances the state-
of-the-art in portrait depth estimation and image animation.
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Joint Learning of Depth and Appearance for Portrait Images

Supplementary Material

In this supplementary material, we provide more details
about the network architecture and data processing. More
information on our training details, more results of our
method, and an ablation study are also provided. We
recommend watching the supplementary video for even
more results.

7. Implementation Details
We describe more implementation details on the network
architecture and the training details used in Sec. 3 of the
main paper.

7.1. Network Architecture
Here, we present the details of our network architecture for
portrait animation. For the depth-driven animation task, we
add a temporal-attention module in each block.
• Temporal-Attention Module. We use the same

Temporal-Attention layers as in recent advances [48].
This module is designed to ensure smooth transitions
across synthesized frames. To capture the dependencies
between consecutive frames, we apply self-attention
mechanisms on the temporal dimension of the features.
Specifically, we first reshape the input feature F ∈
Rb×c×f×h×w, where b, c, f, h, w represent the batch size,
feature channel, the number of the generated frames in a
sequence and the height and width of the feature map, to
F ∈ R(b×h×w)×c×f . Then we apply self-attention across
the temporal dimension f . However, motion consistency
can only be guaranteed inside each sequence in this way,
constraining the application for long video generation.
Therefore, we draw inspiration from existing works [52]
and take the last n generated frames from the preceding
sequence as the motion frames. Here, we first feed these
motion frames into the ReferenceNet to extract multi-
resolution motion features. Then in each block, we
concatenate the temporal module input and the motion
feature along the temporal dimension f to get the self-
attention layer input. In this way, the motion information
from the previous sequence can be involved, so to ensure
the coherence among different clips.

7.2. Training Details
As described in Sec. 3, our method contains three different
training stages. In the first stage, we use the multi-view
studio face dataset along with the in-the-wild dataset to train
our joint-learning network. In the second stage, we slightly
fine tune our model by incorporating different masks for
the inpainting task. Here we design asymmetric masks
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Figure 9. Ablation studies to show the effect of our architecture
without the ReferenceNet (top), and trained on studio-only data
(middle), compared to our proposed method (bottom).

for the RGB and depth branches, so that after fine-tuning,
our model is capable of down-stream tasks including depth
estimation, relighting and depth-based image editing. Note
that our model is still capable of jointly generating RGB
and depth by setting the mask to be pure white for both
domains. In the third stage, we extend our first stage
model to the depth-driven animation task by incorporating
temporal attention modules. Only in-the-wild datasets are
employed in this stage due to the lack of video data in
studio face datasets. As mentioned in Sec. 5.1, we fix the
parameters from the first stage while training. The training
is performed on 4x RTX 4090 GPUs, and it takes about
3 days for the joint-learning model training, 15 hours for
the inpainting fine-tuning and 2 days for the motion module
training respectively.

7.3. Data Processing
In order to obtain the corresponding depth map for
monoculor in-the-wild datasets, we use an off-the-shelf
face tracking tool [6, 7] to fit a face mesh for each frame
and then render out the depth map. The fitted mesh is
represented by the blendshape weights of a PCA-based face
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Figure 10. Qualitative comparisons with the state-of-the-art methods for monocular depth estimation on studio faces. We also show error
map under facial mask for each sample. Note that here white means no error.

model, which includes 50 eigen faces for identity and 25
for expression. A landmark loss and a photometric loss are
utilized to optimize the weights. To ensure the stability and
smoothness of the tracking on a video sequence, we solve a
global identity code for each clip.

8. More Results

8.1. Depth Estimation

As demonstrated in Sec. 5.3, we apply a mask on the
face skin region while calculating the depth estimation
metrics with ground truth. In Fig. 10, we show more
qualitative results along with the error map under the
mask. Here we set the error range to be -0.1 to 0.1. As
demonstrated in the figure, our method outperforms other
methods for generating depth maps with accurate geometry
under various expressions and poses.

8.2. Image Relighting

One benefit of our joint learning of appearance and depth is
that the facial depth can be used for downstream tasks like
portrait relighting. Fig. 11 illustrates an example where the
generated depth maps are used to compute surface normals
for basic lighting changes in the generated image. Here the

normals are used for rendering a diffuse shading layer that
is multiplied with the image as a post-process.

Image Relit 

Figure 11. Portrait image relighting is possible using our generated
depth map.

9. Ablation Studies
We first evaluate the influence of the ReferenceNet on
the quality of our generated results. We train a version
of our network where we remove the ReferenceNet, and
instead provide the latent reference RGB image as an
additional input to the denoising U-Net. After training, we



jointly generate RGB images and depth maps from multiple
different noise inputs, which are shown in the first row of
Fig. 9. The generations without the ReferenceNet fail to
capture the identity of the reference image, highlighting its
importance in our architecture.

Secondly we also evaluate the importance of training our
method on both studio data with ground truth depth, and
in-the-wild data with pseudo ground truth depth. We first
verify whether our method trained only on studio data can
generalize to unseen in-the-wild identities. As we seen in
the second row of Fig. 9, training only on studio data results
in poor generalization to in-the-wild data and degrades the
visual quality of the generated RGB images. However
training with data from both studio and in-the-wild sources,
results in the best performance as we see in the last row of
the Fig. 9. This is also confirmed by our quantitative results
in Tab. 1.
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