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Figure 1. Visual comparison of our method against SOTA fixed scaling and arbitrary scaling Video Super-Resolution (VSR) methods.
Thanks to the long range temporal propagation, our model extracts more information from the input video and achieves significantly higher

quality output frames.

Abstract

Video super-resolution (VSR) methods typically exploit in-
formation across multiple frames to achieve high quality
upscaling, with recent approaches demonstrating impres-
sive performance. Nevertheless, challenges remain, partic-
ularly in effectively leveraging information over long dis-
tances. To address this limitation in VSR, we propose a
strategy for long distance information propagation with a
flexible fusion module that can optionally also assimilate in-
formation from additional high resolution reference images.
We design our overall approach such that it can leverage
existing pre-trained VSR backbones and adapt the feature
upscaling module to support arbitrary scaling factors. Our
experiments demonstrate that we can achieve state-of-the-
art results on perceptual metrics and deliver more visually
pleasing results compared to existing solutions.

1. Introduction

Upscaling low-resolution video content is a fundamental
task in computer vision that has been studied for several
decades. On a high level, there are two different strategies in

which recent deep learning based methods were able to in-
crease the quality: On the one hand by designing better and
larger model architectures, and on the other hand by utiliz-
ing more of the available information. Regarding the sec-
ond point, consider single image super-resolution (SISR)
methods [12, 14, 28, 31, 33] . While they can be used to
upscale a video in a frame-by-frame manner, they will ob-
viously ignore any temporal information in the sequence.
Therefore, methods specifically designed for video super-
resolution (VSR) [3, 4, 25, 26] that take temporal informa-
tion into account achieve results with much higher quality.
Similarly, reference-based super-resolution (RefSR) meth-
ods [30] are able to take high quality reference images into
account to produce results well beyond the capability of
SISR methods.

In this work we propose a novel VSR method with one
main strategy in mind — utilizing all available information to
produce higher quality results in a wide variety of scenarios.
We identify three main areas where current state-of-the-art
VSR methods fall short and individually address them.

First, is the propagation of information over long tem-
poral distances. While techniques like second-order propa-
gation [4] have been shown to greatly improve information



propagation, they still fall short on long video sequences.
This is because alignment errors gradually add up and dilute
the information. Furthermore, this strategy does not prop-
erly handle occlusions and objects going out of frame. Our
method solves this problem by allowing information prop-
agation from any frame in the video to any other frame in
the video. We show that our long range information prop-
agation scheme results in output frames with significantly
improved perceptual quality.

Second, current VSR methods are not able to uti-
lize all available information when high-resolution refer-
ence images are available. Reference VSR methods like
RefVSR [11] made significant advances in this area. How-
ever their considered use case with triple cameras having
different fixed focal lengths is too narrow to cover most
real-world applications. In contrast, our method is able to
inject any number of reference images at any point in the se-
quence by leveraging the same mechanism that we proposed
for the long range information propagation. At the same
time, our method continues to support scenarios where no
references are available. These are crucial differences com-
pared to RefVSR which ultimately make our method appli-
cable to a wider variety of real-world scenarios. Third, the
best performing VSR methods [3, 4, 26] are limited to a
single scaling factor (typically x4). Therefore, we propose
a simple adaptation to enable arbitrary scaling factors. It
only requires minimal training time and is fully compatible
with our long range information propagation scheme. We
show that our approach significantly outperforms existing
arbitrary scaling methods for both in-distribution and out-
of-distribution scaling factors.

Our key contributions can be summarized as follows:

* We enable temporal propagation over arbitrarily long dis-
tances for VSR.

e We design the first VSR method capable of optionally ac-
cepting high quality reference images.

* We obtain state-of-the-art performance for arbitrary scal-
ing in VSR.

2. Related Work

Increasing image resolution and quality is a fundamental
task in computer vision. Hence, there exists a large body
of work on the topic. On a high level existing SR methods
can be distinguished along three main directions. The first
is whether they operate on single images or leverage the
temporal information available in video inputs. The second
is whether they are fixed to a single scaling factors (typically
x4) or support arbitrary (fractional) scaling factors. Finally,
some method are able to use high quality reference images
to help upscale a given low-resolution image.

Single Image Super-Resolution (SISR) Dong er al. [6]
were among the first to apply deep learning to the task of
image super-resolution. Since then, improvements in net-
work architecture [12, 14, 28, 31, 33] have significantly
increased the resulting image quality. The introduction of
GANSs to SISR by Ledig ef al. [10] has improved the per-
ceptual quality of images and was leveraged [24, 29] to pro-
duce high quality results even for degraded input images. A
variety of model designs were proposed to support arbitrary
scaling factors [5, 7] and geometric transforms [1, 21].

Video Super-Resolution (VSR) While SISR method can
be applied directly to video sequences [20] using the tem-
poral information available in the sequence leads to bet-
ter results [25]. Chan et al. [3] performed extensive ex-
periments to determine the best way to handle the avail-
able temporal information, leading to bidirectional recur-
rent architecture explicitly aligning frames using optical
flow. While this works well over short temporal distances,
it struggles to propagate high quality information over long
temporal distances. A number of methods have been pro-
posed to address this shortcoming. BasicVSR++ [4] intro-
duced second-order propagation where information is prop-
agated from two previous frames. RVRT [13] further ad-
dresses the problem dividing video sequences into shorter
disjoint clips, and each clip is processed using information
from neighboring ones. Recently, IART [26] introduces
implicit alignment, which avoids interpolation errors when
aligning feature maps and results in a noticeable increase
in quality over previous methods. Finally, ST-AVSR [19]
is the first method supporting arbitrary scaling factors for
VSR. The ability to handle arbitrary scaling factors does,
however, come at the cost of noticeable reduction in per-
formance for x4 scaling when compared to fixed scaling
SOTA VSR methods.

Reference-based Super-Resolution (RefSR) Similar to
VSR methods, RefSR methods push beyond the limits of
SISR. Instead of using multiple low-resolution images from
the same video they use high-resolution reference image(s)
to help in the upscaling task. Early methods such as
[2, 8, 34] were limited to using a single reference image
only. Zhang et al. [30] addressed this problem and proposed
a RefSR method capable of utilizing multiple references.
Recently, Lee et al. [11] proposed a dataset that consists
of video clips captured with multiple FOVs simultaneously,
with the narrower FOV frames serving as references for the
wider FOV images. Their proposed method is well adapted
for this constrained setting but does not generalize to other,
more realistic, scenarios. We can also note that a more effi-
cient strategy was introduced [9], to lower its computational
cost.
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Figure 2. Method overview. Starting from a sequence of low-resolution (LR) frames, LR features are extracted, then refined through the
low-resolution iterative propagation (LRIP) module. The upscaling layer upsamples the LR features to the output resolution, obtaining
the high-resolution (HR) features I’ for each frames. After that, the long range reference fusion (LRRF) module injects information from
temporally distant HR feature maps (F}] r<f) or additional reference i image I, ¢/ when available. The output F of the LRRF module is
an enhanced version of the initial HR features. The information is further propagated locally with a high resolution iterative propagation

(HRIP) module, before final decoding of the HR output frame.

3. Method

We propose a VSR method that tackles existing limitations
with long range temporal information propagation. We also
extend it to arbitrary scaling, achieving state-of-the-art re-
sults. We first describe the overall approach, before detail-
ing the core contributions.

An overview of our method is illustrated in Figure 2.
The initial stages of the pipeline are similar to existing VSR
methods [3, 4, 26]. Namely, features are first extracted from
the low-resolution (LR) frames then refined through a low-
resolution iterative propagation (LRIP) module, propagat-
ing information frame-by-frame, back and forth through the
sequence. After this LR processing, the upscaling layer up-
samples the LR features to the output resolution, obtaining
the high-resolution (HR) features. In most VSR methods
this upscaling layer is a pixel-shuffle, limiting the possible
scaling factor, and we modify this to achieve arbitrary scal-
ing.

Contrary, to existing works we do not directly decode
the HR features into the HR images. Instead, we introduce
a long range reference fusion (LRRF) module. The objec-
tive is to inject information from temporally distance HR
feature maps. Indeed, depending on the sequence, further
away frames may contain richer information that is not eas-
ily propagated with the LRIP module. The output of the
long range LRRF module is an enhanced version of the
initial HR features. We note that this module is flexible
and can also fuse information from reference images when

available.

Despite its clear benefits, using the LRRF module for
all the frames is infeasible due to compute and memory
limitations. As a result it is only used for a sparse set of
frames, and the information is further propagated locally
with a high-resolution iterative propagation (HRIP) mod-
ule. Finally each HR feature map is converted to a HR out-
put frame using the image decoding module.

We can note that many SOTA VSR methods use a simi-
lar pipeline but without the LRRF and HRIP modules. This
means our pipeline is fully compatible with existing VSR
methods and can make use of powerful pre-trained LR fea-
ture extraction, upscaling layer, and image decoding. In our
experiments section we use the pre-trained modules from
both BasicVSR++ [4] and IART [26]. We will not discuss
details of LR feature extraction, upscaling layer, and image
decoding in this paper. We instead refer to the respective
method for more details.

3.1. Long Range Reference Fusion (LRRF)

Our long range reference fusion (LRRF) is designed to al-
low information propagation over arbitrarily long distances,
by injecting information from any frame in the video se-
quence into any other frame. As shown in Figure 2 the
LRRF operates on HR feature maps produced by the up-
scaling layer. Given an HR feature map F', it uses an ar-
bitrary number of distant HR feature maps F/*/ ... | F]\}ef
as input and returns a refined HR feature map F.



On a high level the LRRF module operates in two
stages. First, from every reference we obtain a feature map
that is aligned to F'. Second, our multi reference fusion
(Ref-Fusion) module uses the information contained in the
aligned reference feature maps to refine the original feature
map F'

Ere — Ref-Align(F, F*')

X : . (D
F = Ref-Fusion(F, Ffef, e 7FJ7;76f)

Reference Alignment. Given the anchor HR feature map
F and a reference HR feature map F"¢/ (we drop the index
for simplicity), the alignment can be described as
I =D(F)
Iref _ D(Fref)
W = DenseMatching (1, I"*/)
Frel = RefFeatureExtraction(I"/, 1)

2)

To compute the mapping (or warp grid) W, we decode the
HR feature maps into images using the decoder D. These
are not the final images, but they allow using any state-of-
the-art optical flow or image matching method. The aligned
reference feature map Frel is extracted from I7¢ and W
using our RefFeatureExtraction module. The RefFeature-
Extraction module first passes "¢/ to a neural network and
then warps the resulting feature map according to W. The
warping is performed using nearest neighbor sampling. Fur-
ther details are provided in the supplementary material.

Our module is flexible and can easily include additional
reference images (not from the video sequence). In this case
the image 17¢/ is the input, instead of I/,

Note that the design of our Ref-Align module allows it
to extract an aligned feature map Fref of the same spatial
dimensions as F' irrespective of the reference images reso-
lution. Further details regarding the exact architecture used
are provided in supplemental material.

Multi-reference Fusion. Our Ref-Fusion module uti-
lizes the information contained in an arbitrary number of
aligned reference feature maps to refine the anchor feature
map F. We achieve this via a pixel-wise attention mech-
anism that uses the feature map F' to extract queries and
the warped HR reference feature maps £/ ... ,F]Qef to
extract key-value pairs. Further details regarding the exact
architecture used are provided in supplemental material.

3.2. High Resolution Iterative Propagation (HRIP)

Although the LRRF module offers a great degree of flexi-
bility it is relatively expensive to run, especially when many
reference images are provided. To avoid excessive compu-
tational cost we only run the LRRF module for a subset of

high-resolution feature maps. The information contained in
these refined HR feature maps is propagated via our HR it-
erative propagation (HRIP) module. This module operates
similarly to the LRIP module but in a less computationally
expensive manner. Specifically, this means we use first-
order propagation and perform one forward and one back-
ward pass. For comparison, LRIP typically uses second-
order propagation and performs two forward and two back-
ward passes.

3.3. Arbitrary Scaling

We note that the only reason most SOTA VSR methods are
limited to a fixed scaling factor is the implementation of the
upscaling layer. Typically, pixel-shuffle is used to resam-
ple the LR feature maps to HR feature maps. We propose
replacing the pixel-shuffle warp with our arbitrary scaling
module (ASM). The ASM takes an LR feature map F'X
and a warp grid W as input and returns a high resolution
feature map F7%. Similar to arbitrary scaling SISR meth-
ods like LIIF [5] the warp grid W is a mapping from HR
pixel coordinates to the corresponding LR coordinates.

x,y =WI[X,Y]
i3 =yl =]
de,dy=j—x,i—y 3)
¢"RX, Y] = [FH]i, j], dz, dy)
FHE — \f(pHR)

Here, we first warp F'Z® by performing nearest neighbor
sampling according to W. Then, we append the sampling
offset (dx, dy) along the channel dimension which results
in the intermediate HR feature map ¢’%. The final HR
feature map F# 1 is obtained by passing ¢’ ® through the
neural network . Further details regarding \V are provided
in the supplemental material.

Enabling arbitrary scaling for a fixed scale VSR method
by replacing the upscaling layer with our proposed ASM
has the main advantage of faster training time. For in-
stance, ST-AVSR [19] requires 5 days training time, while
our ASM can be trained in less than 24hours by starting
from a pre-trained VSR backbone (like BasicVSR [4] or
IART [26]). Moreover, replacing the fixed scale upscaling
layer with our ASM is fully compatible with our long range
information propagation scheme.

4. Experiments & Results

We provide details about the models, the number of pa-
rameters and exact training setting in supplementary ma-
terial. In this section we focus on the evaluation of the
method with qualitative and quantitative comparisons and
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Figure 3. Visual results for x4 VSR. We compare our method against BasicVSR++ [4], RVRT [13], and IART [26]. Our method produces
noticeably sharper results, containing more details and finer lines.

ablations. We used datasets commonly used for VSR eval-
uation: REDS [16], Vimeo [27] and Vid4 [15]. For qual-
itative evaluation we additionally include sequences from
DAVIS [17] and our own dataset.

For our method there are several ways to set up the
long-range propagation. For simplicity we pick a subset of
frames as key-frames. The Ref-Fusion module only refines
the HR feature map for the key-frames. Unless specifically
mentioned we use the following: On REDS we pick every
10th frame as a key-frame starting with the 5th; On Vimeo
we pick frames 1, 4, and 7 as key-frames; On Vid4 we sub-
divide the input video into chunks of 5 frames, and pick the
center frames as a key-frame.

4.1. Qualitative Results

For this, we show results with our method trained using
IART as a backbone. Starting with fixed x4 scaling, we
compare against state-of-the-art methods: BasicVSR++ [4],
RVRT [13] and IART [26]. The results are presented in Fig-

ure 3. We can clearly see the benefits of long range informa-
tion propagation, as our method produces results of higher
visual quality, with crisper details and finer lines.

In Figure 4 we show visual results for arbitrary scaling
factors. The first, second and, third rows correspond to scal-
ing factors x3.25, x4, and x5.5. In all cases our method
clearly outperforms existing arbitrary scaling methods. This
demonstrates the benefits of leveraging a strong pre-trained
VSR backbone.

4.2. Quantitative Evaluation

As the quality of the results in VSR continuously improve
and reach higher quality levels, it becomes more challeng-
ing to perform quantitative evaluation, as simple metrics
such as PSNR and SSIM are limited. LPIPS [32] seems
to better correlate with the perceived quality, for our task.
This is illustrated in Figure 5. For this x4 upscale result on
REDS, we provide visual comparison to the ground truth
along PSNR and LPIPS evaluation. Our results are clearly



Figure 4. Visual results for arbitrary scaling VSR. The first, second, and third row show results for scaling factors x3.25, x4, and x5.5
respectively. Our method clearly produces sharper, more visually appealing results compared to both LIIF [5] and ST-AVSR [19].

sharper and better match the ground truth images and the
LPIPS metric is lower. However this is not reflected in
PSNR values.

In our quantitative evaluation we show both metrics.
The evaluation is done for both fixed x4 VSR and arbi-
trary scaling VSR. The results for fixed x4 VSR are pre-
sented in Table 1. Here, our method is evaluated using
both BasicVSR++ [4] and IART [26] as a backbone. The
results show that even with the computationally more effi-
cient BasicVSR++ backbone our method outperforms ex-

isting methods on both Vimeo and Vid4 on the LPIPS met-
ric. Using IART backbone, our method outperforms exist-
ing methods on all datasets on the LPIPS metric.

The evaluation for arbitrary scaling is performed on the
REDS dataset with a variety of in-distribution and out-of-
distribution scaling factors (our model was trained with
scaling factor between x1.5 and x4.5). The results are
shown in Table 2, comparing against the AS-VSR method
ST-AVSR [19] the SISR method LIIF [5]. The pub-
licly available checkpoints for ST-AVSR were trained with-



REDS Vimeo Vid4

PSNR1 LPIPS| | PSNRT LPIPS| | PSNRT LPIPS |
BasicVSR [CVPR 21] 31.52 0.152 36.16 0.077 27.30 0.184
IconVSR [CVPR21] 3191 0.143 36.26 0.073 27.48 0.172
BasicVSR++ [CVPR 22] 32.41 0.119 36.57 0.072 27.81 0.162
RVRT [NeurIPS 22] 33.03 0.116 36.83 0.068 2791 0.161
IART [CVPR 24] 33.20 0.105 37.05 0.067 28.01 0.158
Ours (BasicVSR++) 32.02 0.107 3591 0.065 27.40 0.136
Ours (IART) 32.83 0.097 36.45 0.059 27.64 0.134

Table 1. Numeric evaluation for x4 VSR on a variety of datasets. For each dataset we report PSNR and LPIPS. The best and second best
result are highlighted bold and underlined respectively. Our method using IART as a backbone produces significantly better LPIPS than
existing methods. Even with the much computationally more efficient BasicVSR++ backbone our method outperforms existing methods

in terms of LPIPS on Vimeo and Vid4.

x2.5 x3.25 x4 x5.5 x8
PSNRT LPIPS) | PSNRT LPIPS| | PSNR1T LPIPS| | PSNR{1 LPIPS| | PSNR1 LPIPS |
LIIF [CVPR 21] 32.50 0.134 30.27 0.209 28.91 0.261 27.07 0.346 25.51 0.439
ST-AVSR (no aa) 31.12 0.215 28.31 0.298 27.80 0.368 26.09 0.483 24.77 0.592
ST-AVSR [ECCV 24] 35.07 0.069 29.59 0.139 30.55 0.189 27.89 0.270 26.38 0.377
Ours (BasicVSR++) 36.29 0.033 33.54 0.075 31.67 0.113 29.41 0.192 26.64 0.299
Ours (IART) 36.63 0.030 33.82 0.069 32.36 0.103 29.72 0.181 26.66 0.279

Table 2. Numeric evaluation for a variety of scaling factors on the REDS dataset. For each scaling factor we report PSNR and LPIPS.
The best and second best result are highlighted bold and underlined respectively. Independent of the backbone, our method significantly

outperforms existing arbitrarily scaling methods across the board.

I[ART Ours GT
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Figure 5. Visual illustration of the differences between PSNR and
LPIPS. Our method produces sharper, more visually appealing re-
sults than IART. LPIPS [32] seems to better correlate with this
perceived quality.

out applying anti-aliasing to images before downsampling.
This deviates from standard practice used by other meth-
ods. For a fair comparison we retrain ST-AVSR using the
publicly available code with anti-aliasing applied. We al-
ways report the results for both the original version S7-
AVSR (original) and our re-trained version ST-AVSR. The re-
sults show that our re-trained version of ST-AVSR performs

significantly better than the publicly available version. Ir-
respective of the backbone and scaling factors, our method
performs best.

4.3. Ablation Study

Training Procedure for the LRRF module. Training a
model for long range temporal propagation is challenging:
training on clips containing hundreds of frames is not com-
putationally feasible. To tackle this challenge we investigate
different options to generate distant reference images.

The first option is referred to as “’self referential” (or
”Self”). Here, the reference are created by the model: the
input clip is first upscaled using the backbone without our
additional modules. Randomly selected frames from this
initial upscaled sequence are then injected at randomly cho-
sen key-frames. The second is referred to as HQ-references
or "HQ”. Here, reference images are generated by down-
scaling frames from the ground truth clip. Further details
regarding the generation of reference images are provided
in supplemental material.

We train four different version of our method. All vari-
ants are trained on the REDS dataset using clips of length
12. For this experiment we use BasicVSR++ [4] as a back-
bone, with all the backbone parameters kept frozen during
training. The first variant (No Ref) only contains a HRIP
module and no LRRF module. The second variant (Self)
contains both a HRIP and LRRF module and is trained us-
ing self-referential references. For the third variant (Self +



(a) Training setup for LRRF.

(b) Optical flow methods in HRIP.

(c) Effect of arbitrary scaling layer.

| PSNRT  LPIPS | | PSNRT LPIPS | | PSNRT LPIPS |
Baseline 32.41 0.119 Baseline 32.41 0.119 BasicVSR++ 32.41 0.119
No Ref 32.28 0.129 SpyNet 32.12 0.110 + Arbitrary Scaling (AS) 32.13 0.129
Self 32.23 0.126 RAFT 32.02 0.107 + Long Range Propagation + AS 31.67 0.113
Self + HQ 32.15 0.126 PDCNetPlus 32.04 0.106
HQ 32.04 0.106

Table 3. Ablation Study. Evaluation of the different components of the method. See text for details.

HQ) we using both self-referential and HQ references. Fi-
nally, the fourth variant is trained using only HQ references.
The results for all four variants are shown in Table 3a, in-
cluding the unmodified BasicVSR++ model as a baseline.
As the (HQ) setup leads to the best LPIPS evaluation, it is
the option we use everywhere.

Optical Flow Method. Our HRIP module requires opti-
cal flow to align neighboring frames. We investigate three
methods for this task. The first option is SpyNet [18] which
is used by the BasicVSR++ [4] backbone. This option is
computationally the cheapest. The second is RAFT [22],
adding more compute and extra parameters (the added pa-
rameters are frozen). The third option is, PDCNetPlus [23].
This is the most computationally expensive option.

The results are shown in Table 3b. All variants are
trained on REDS with clips of length 12 and using HQ-
references. Our conclusion is to select RAFT as the best
choice. It performs almost as well as PDCNetPlus while
being significantly less expensive to run.

Arbitrary Scaling Module. We add the capability to sup-
port arbitrary scaling factors to existing fixed x4 VSR
methods by replacing the upscaling layer. Naturally, we
evaluate how this change affects performance for x4 scal-
ing. We use BasicVSR++ as a starting point and replace
its upscaling layer with our arbitrary scaling module. Next,
we use AS-BasicVSR++ as a backbone and train our LRRF
module on top. We evaluate all three methods on REDS
for x4 scaling (see Table 3c). We can see that the gener-
alization to arbitrary scaling comes at the cost of reduced
performance on the specialized x4 task, however the ad-
dition of long distance propagation largely compensate for
this, resulting in our arbitrary scaling method largely out-
performing its original backbone.

Computational Cost & Key-Frame Density Our
method achieves long distance information propagation
by injecting information from multiple distance reference
images at given key-frames. Throughout our evaluation
we have chosen the simple strategy of selecting key and
reference frames at regular intervals. In Table 4 we evaluate
how the density of selected key and reference frames
affects our methods quality and computational cost. For
large numbers of references the LRRF module becomes
the main computational bottleneck and we provide a more
detailed computational cost evaluation of this module in

References LRRF HRIP PSNR?T LPIPS| Time Mem
(Number) (frequency) [s/f] [GB]

o Sref every 1 32.74 0.096 235 31.1
£ Sref every 5 v 32.69 0.096 1.93 22.0
5 10 ref every 10 v 32.83 0.097 1.91 254
3 20 ref every 20 v 32.88 0.095 1.90 34.4
20 ref every 5 v 32.72 0.094 2.39 36.2

1ART N/A N/A N/A 33.20 0.105 1.18 125
» T Sref every 1 32.10 0.107 1.22 31.0
5 % Sref every 5 v 31.92 0.105 0.80 22.0
© é 20 ref every 5 v 31.95 0.102 1.26 36.2
BVSR++ N/A N/A N/A 32.41 0.119 0.05 12.5

Table 4. Performance and computational cost on the REDS dataset
(100 frames per clip). The option with the smallest memory (high-
lighted) still outperforms IART and BasicVSR++.

isolation in the supplementary material. We can see that
in all configurations our method clearly outperforms its
backbone in perceptual quality. Note that injecting a sparse
set of reference images at a dense set of key-frames (5 ref,
every 5) is a viable option in terms of quality and uses the
least amount of GPU memory which is the main limiting
factor in practice. This means that for short and medium
length sequences we are abel to employ our simplistic
scheme of selecting reference and key frames at regular
intervals. For long sequences, where previous method
were not able to propagate any information, our methods
performance can be optimized by intelligently selecting
suitable reference images for each key-frame and we
look forward to future methods proposing such selection
schemes.

5. Conclusion

In this work we have proposed a novel VSR method ca-
pable of propagating temporal information over long dis-
tances through a Long Range Reference Fusion module.
By design, this module naturally allows to also leverage
high resolution reference images when available. By fur-
ther designing our approach such that it can use pre-trained
VSR backbones and extending it with arbitrary scaling
functionality, we obtain a very flexible method that is ap-
plicable to a wide range of real world scenarios while
also being efficient to train and reaching state-of-the-art re-
sults.
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