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Figure 1. We propose a style transfer method that uses multiple style images and achieves state-of-the-art results. In each case, our result

preserves the content while closely matching the style. Existing methods struggle to achieve both content preservation and high quality

stylization, even the ones using multiple style images such as Dreambooth [31] and BLora [9]. Besides our result, we indicate with (multi)

the methods using multiple images. We highlight in cyan the style image provided for single image based stylization methods.

Abstract

Recent advances in latent diffusion models have enabled ex-

citing progress in image style transfer. However, several key

issues remain. For example, existing methods still struggle

to accurately match styles. They are often limited in the

number of style images that can be used. Furthermore, they

tend to entangle content and style in undesired ways. To

address this, we propose leveraging multiple style images

which helps better represent style features and prevent con-

tent leaking from the style images. We design a method that

leverages both image prompt adapters and statistical align-

ment of the features during the denoising process. With this,

our approach is designed such that it can intervene both

at the cross-attention and the self-attention layers of the

denoising UNet. For the statistical alignment, we employ

clustering to distill a small representative set of attention

features from the large number of attention values extracted

from the style samples. As demonstrated in our experimen-

tal section, the resulting method achieves state-of-the-art

results for stylization.

1. Introduction

Artists are in constant exploration to create new artistic ren-

derings, that can offer fresh and different looks. In this con-

text, image style transfer aims at simplifying style explo-

ration with the objective of allowing faster iteration during

this artistic research phase.

Recently, diffusion based image stylization methods [6,

11, 43] have shown impressive results. For example, image

prompt adaptation methods [43] use style information de-

rived from CLIP-image embeddings. To limit content and

style entanglement, it is possible to use statistical align-

ment [6, 11] of the content and style image during the

denoising process. In the context of multiple style im-



ages, personalization methods such as Dreambooth [31],

Lora [12] or CustomDiffusion [20] can leverage the avail-

able style samples for fine-tuning (albeit with different

strategies). In all these mentioned works, we observe two

issues clearly visible in Figure 1: entanglement of content

and style, and lower quality style transfer.

Building on insights from recent works, we design a

method that achieves both better content preservation and

higher quality stylization, using several style images to ad-

dress the aforementioned problems. Our approach can be

summarized in the following 3 steps: First, we fine-tune

an image prompt adapter model on the style images. To

help disentangle style from content, we compute an aver-

age token vector from the style images that will be used as

prompt for the diffusion model. Second, we distill style fea-

tures from multiple images through a clustering approach.

Finally, we adopt a two-stage strategy to achieve high qual-

ity results with some control on the structural level at which

the stylization happens.

Our contributions are the following:

• A method that combines model adapters and statistics

alignment;

• A solution to scale up to multiple style images;

• State-of-the-art stylization results as demonstrated in our

thorough evaluation, including a user study.

2. Related work

Image style transfer remains a fundamental challenge in

computer vision, aiming to modify the appearance of a con-

tent image based on a given reference. Our discussion here

mostly focuses on recent works, in particular the ones using

latent diffusion models. For a more detailed overview, we

refer to the review on style transfer from Jing et al. [15].

Optimization based stylization. Early works such as

the seminal Gatys style transfer algorithm [10] rely on

inference-time optimization to achieve style transfer. As

this is generally an impractical time and resource consum-

ing process, the field has focused research efforts on fast

zero-shot approaches. Still recent work [19] circled back to

an iterative approach and achieved some of the best style

transfer results.

Using Multiple Images for style transfer. Recent works

have extended NST to incorporate multiple style references,

facilitating better style interpolation and mixing. Some ap-

proaches [14, 23, 40] focus on learning a robust style repre-

sentation capable of blending multiple sources seamlessly.

Others employ generative adversarial networks (GANs)

[17], which, when trained on small datasets, allow for rapid

style adaptation through fine-tuning [18, 26]. Despite their

success in domain-specific applications such as facial styl-

ization, these methods often struggle with generalization

beyond constrained settings. In contrast, diffusion-based

models have emerged as a powerful alternative for achiev-

ing high-quality, diverse style transfer.

Statistical alignment and moment matching. Style rep-

resentation can also be captured through statistical proper-

ties of images. Early work introduced Adaptive Instance

Normalization (AdaIN) [13] and Whitening and Coloring

Transform (WCT) [21], which align the mean and vari-

ance of content and style features to achieve stylization.

More recent techniques extend this paradigm by incorpo-

rating higher-order moments (e.g., skewness and kurtosis)

to enhance fidelity in style transfer [16, 34]. These methods

provide explicit control over style attributes, complement-

ing the implicit representations learned by deep networks.

Diffusion Based. Latent diffusion models (LDMs) [30]

have recently revolutionized style transfer, offering three

primary strategies: customization, adaptation modules, and

feature alignment. Customization techniques, such as

DreamBooth [31] and Custom Diffusion [20], fine-tune all

model parameters to encode new styles, achieving high-

fidelity results at the cost of computational efficiency. Low-

Rank Adaptation (LoRA) [12] mitigates some of these in-

efficiencies by introducing lightweight fine-tuning mech-

anisms. Alternatively, adaptation modules condition pre-

trained diffusion models on external style information. IP-

Adapter [43], for instance, transforms CLIP [29] embed-

dings of style images into inputs compatible with diffusion

models, enabling zero-shot style transfer. However, these

methods often suffer from content leakage, as they struggle

to disentangle content and style effectively.

Feature alignment methods offer a training-free ap-

proach to style transfer by manipulating the self-attention

layers of diffusion models. DIFF-NST [35] and Style Injec-

tion [6] replace attention values from the generated image

with those from a style reference, effectively transferring

texture and color characteristics. StyleAligned [11] refines

this process by incorporating statistical AdaIN operations

within attention layers, ensuring robust style adaptation.

Recent advancements aim to improve content-style dis-

entanglement within diffusion models. BLoRA [9] ex-

plicitly separates content and style representations using

SDXL [28] and LoRA-based fine-tuning. InstantStyle [39]

takes a similar approach but introduces feature decoupling

and targeted injection into specific layers, reducing content

leakage and preserving style fidelity.

3. Multi-Image Style Transfer

Given a set of style images S = {Is
1
, . . . , Isn}, our objective

is to transform a content image Ic into its stylized version
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Figure 2. Overview of the diffusion based stylization method. (Left) Given a content image Ic we extract line art and depth maps to guide

the content during denoising with ControlNets. Style is enforced at the cross and self attention layers. We use the average style embedding

φs, representative attention maps keys and values (Ks

⋆
, V s

⋆
) and an average style image Īs. (Middle) From the set of input style images

{Is1 , . . . , I
s

n
}, we train the image prompt adapter A. The average embedding φs is obtained by interpolating the style image embeddings.

(Right) We use DDIM to invert each style image and extract keys and values for each layer and time step. We use k-means clustering to

reduce the keys and values to a manageable size, keeping the ones closest to the cluster centroid. As keys and values are paired, we perform

the clustering on the values only, and retrieve their matching keys.

Isc , that matches as well as possible the style characteris-

tics while maintaining the original content. Our stylization

method leverages pre-trained diffusion models. Specifically

we use the latent diffusion model proposed by Rombach et

al. [30], where an image I is encoded using a variational

auto-encoder into its latent representation x. Diffusion and

denoising are done on this latent representation, where a de-

noising model is trained to estimate the noise on xt at each

given step t, with τθ transforming the text prompt y and θ

denoting the parameters of the model.

ǫt = ǫθ(xt, τθ(y), t) (1)

We express our stylization problem in the same frame-

work, by making the adjustments needed to the denoising

model, adding both content/style images: Ic, and S

ǫt = ǫsθ(xt, τθ(y), t, Ic,S). (2)

We illustrate the adjustments we make to the denoising

model ǫsθ on the left side of Fig. 2. We use ControlNets to

provide a content related signal to the denoiser using depth

and linart features extracted from Ic. Regarding style, we

provide guidance at 2 different levels: at the cross-attention

level, with an average style prompt embedding φS ; at the

self-attention level with style representative keys K⋆
s and

values V ⋆
s used in the self-attention mechanism, that we

normalize using the average style image Īs. In the next sub-

sections we present these different aspects of the method in

more detail, with corresponding visualizations in Fig 2.

3.1. Prompt Adaptation with Multiple Style Images

With multiple style images, it becomes possible to miti-

gate the issues observed with image adapters. We propose

2 adjustments: First, the fine-tuning of the image prompt

adapter model on the style images. Second, the interpola-

tion of the style image embeddings.

Fine-tuning the Projection Network. The image adapter

model [43] takes as input an image, extracts the correspond-

ing CLIP-embedding and then trains a projection network A
to learn the mapping into a sequence of 4 tokens, with di-

mensions matching the one for text. In the fine-tuning stage

we train the model on the style images only, for roughly 100
steps, minimizing the following loss

LA = E
Is

i
∈S

||ǫ− ǫAθ (xt, τθ(y), t, x
s
i )||

2 (3)

with ǫAθ indicating the denoiser consisting of the original

model ǫθ and the image projection modules. The model is

trained to reconstruct the style images (Isi ∈ S) , updating

only the projection module parameters.

Interpolation of the Style Image Embeddings. Fine-

tuning helps better capture the style features, but doesn’t

address the issue of style and content entanglement. We

observe that the different style images share the same style

while the content varies. Hence, by averaging the corre-

sponding embeddings we keep the shared property (i.e. the

style) while the differences are toned down (i.e. the con-

tent). During the stylization of any content image Ic, we

will use the average features sequence φs:

φs =
∑

Is

i
∈S

1

n
A(Isi ) (4)

The middle part of Figure 2 illustrates this process.



3.2. Feature Alignment with Multiple Images

Although we are able to address content entanglement

thanks to our proposed changes, this is not sufficient to

achieve high quality stylization as the image prompting

doesn’t capture all the aspects of the style. As a result, we

also consider the statistics of the deep features. Contrary

to existing works [6, 11] we use multiple images which re-

quires solving a few technical challenges.

Single image style injection and normalization. Let’s

start with a single style image Iis, similarly to existing align-

ment methods [6, 11]. Style injection is achieved by first

using DDIM inversion to obtain the denoising features for a

fixed number of steps T , then injecting the features at each

time step t during image stylization.

In the image synthesis pipeline illustrated in Figure 2, the

injection of the style features is done in the self-attention

layers during the denoising process. More specifically, at

every self-attention layer and every time step t, we can mod-

ify the attention as follows:

Attention(Q̂t
c, [K̂

t
c Ki,t

s ], [Vc V i,t
s ]). (5)

The keys Ki,t
s and values V i,t

s are obtained during the

inversion of the style image Iis. Whereas content queries

Qt
c and keys Kt

c, are obtained in the current denoising step

t, then normalized using the adaptive normalization [13]

Q̂t
c = AdaIN(Qt

c, Q
i,t
s ) and K̂t

c = AdaIN(Kt
c,K

i,t
s ). (6)

For simplicity, we drop the time step t in the following

equations from our notation as the same operations are ap-

plied independently of t.

Multi-image style injection. A naive extension to multi-

ple images would be to adjust the attention layer as:

Attention(Q̂c, [K̂c K1

s . . .K
n
s ], [Vc V 1

s . . . V n
s ]). (7)

This is however unfeasible, as the attention values extracted

from the diffusion generation process for a single image

over 50 time steps adds up to almost 7GB of data, without

even considering the increase in computations.

Given all attention values extracted from all style im-

ages, our solution is to rely on clustering to pick the most

unique vectors, for some lower number of total vectors. We

use KMeans clustering [24] to cluster values {V 1

s , . . . , V
n
s }.

After clustering, we sample the value vector v closest to

each centroid, and select the matching key k. The result is a

new set of keys K⋆
s and values V ⋆

s which represent the style

better than a single image while being as compact

Attention(Q̂c, [K̂c K⋆
s ], [Vc V ⋆

s ]). (8)

In practice, we aim to have a number of clusters that

matches the target number of vectors found in a single im-

age (the typical count varies across the UNet), to compress

only the most important and unique style concepts from

across all style images. This is not a hard limit, and future

experiments scaling the number of clusters can be explored.

We perform GPU-accelerated clustering of attention values

from each UNet layer, each timestep, and attention head,

separately. This separation enables strong parallelization.

Normalization through an average style image. When

we scale up to multiple images, the normalization process

needs to account for the attention values from all the style

images. The distribution of attention values from multiple

images can be multimodal, and computing a mean across

these different groups of features results in a value which

falls outside the distribution of any individual image, and

produces failed or sub-optimal results.

An effective solution to resolve this issue is to instead

use an average style image generated with our multi-image

prompt adapter. Providing only the average style feature

embedding φs, and no other guidance for the generation

process, produces an average style image Īs with random

content. The content depicted in Īs is unimportant; how-

ever the attention values do fall within the same single dis-

tribution, while covering a wider range of the style (albeit

less than in the clustered values). We can extract the statis-

tics from these attention values, for use in the normalization

and alignment.

Q̂c = AdaIN(Qc, Q̄
s) and K̂c = AdaIN(Kc, K̄

s) (9)

where Q̄s and K̄s the queries and keys obtained when gen-

erating the average style image Īs, respectively.

In addition to the first two moments, higher orders such

as skewness and kurtosis can be used. Finally, we also align

the statistics of the latents at each timestep with the statistics

of the latents from Īs. This improves style and color quality.

3.3. High Resolution and Texture Quality

In addition to the core aspects of the method, there are a few

key points to take into consideration to achieve best quality

results on high resolution output images.

High Resolution Output. We use Stable Diffusion as our

core model. It can be used to generate almost arbitrary res-

olutions and aspect ratios. However, scaling the images to

higher resolutions, such as 1024px and larger, can lead to

tiling artifacts (in part due to the fact that it is trained at a

resolution of 512px). To avoid this issue, we can rely on the

timestep-based content disentanglement described by Wu et

a. [42], and focus only the first few timesteps on generating

the image structure. We can use a lower resolution for this,



Figure 3. Visualization of the effect of our two-stage approach. (a)

Starting from the set of style images, (b) the first stage (in low res-

olution) produces an initial stylized output however texture details

are missing. (c) The second stage helps to add much more detail

from the style images.

Figure 4. It is possible to control the scale of the textures in the

syle transfer output, through scaling the style images used in the

cross-attention. In this example, Starry Night painting is used as

style source. Changing the scale of the style image crops (from

left to right), has a clear effect on the brush strokes texture.

targeting 512px on the shortest side. We can then either spa-

tially resize the latents and resume the rest of the timesteps,

or first generate the image in lower resolution then scale up

and add details through an image-to-image operation. As

illustrated in Figure 3, this process avoids tiling artifacts,

while allowing the later timesteps to add the lower level

stylistic and textural details of a higher resolution image.

We use ControlNet depth and LineArt inputs computed sep-

arately for the lower and higher resolution content images,

during this process, to accurately condition the structure for

each appropriate resolution.

Better Texture Quality. The CLIP embeddings require

the input image to be downsampled, but stylistic details are

lost in such a rescaling operation. To remedy this issue, we

instead opt to compute our final embedding from a num-

ber of patches extracted from the high resolution images.

Thus treating each as a separate style image, in our multi-

image pipeline. In addition to this, the selection of image

crops offers a control over the scale of the style information.

Smaller crops can guide the stylization to focus more on the

low level textural details of a style such as brush strokes

and lines, whereas larger crops can place more importance

on the structural components of items depicted in the style

image. Fig. 4 visualises this effect, where varying the sizes

of the crops can account for such artistic intent.

4. Experiments

4.1. Implementation Details.

We use Stable Diffusion v1.5 for all our experiments, but we

show in supplementary material that our method generalizes

to other backbones. We use the standard ControlNet depth

and LineArt. Our fine-tuning of the IPAdapter [43] takes

about 3 to 5 minutes, depending on the number of style im-

ages (can be any number). We use the GPU-accelerated

Faiss library for clustering, and we implement heavy par-

allelization, allowing us to run several concurrent instances

on the same RTX 4090. This takes under half an hour for

a dozen style images and varies depending on their aspect

ratios. Once models and data are loaded, stylization on the

same machine elapses roughly 16 seconds, also depending

on the aspect ratio.

4.2. Data and Metrics.

We construct a mini dataset for use in testing neural style

transfer quality. We form this test set from 50 content im-

ages and 200 style images across 15 style groups. Previ-

ous style datasets such as BAM [41], BBST-4M [33], and

WikiArt [36], big or small, are either not licensed openly,

not available, or contain style images not grouped into style-

consistent groupings. We compose this dataset from images

that are completely public domain, or from personal images

for both content and style sets.

We use 5 automated metrics for quantitative experi-

ments, computed between each stylized image compared to

each of the style images in their respective styles, and av-

eraged. We use SIFID [37] to measure patch-based style

similarity, computed as an FID score between only a pair of

images. We use Chamfer distance to measure colour simi-

larity, normalized by the number of pixels to avoid varying

image resolution skewing the results. We also use two style

embeddings, CSD [38], and ALADIN [32], for measuring

the similarity of style in a model’s embedding space. In all

cases a lower value is preferable. Finally, we use similarity

in DINOv2 [1] space - this time a higher value is preferable.

4.3. Comparisons

We compare against a large range of stylization techniques,

some based on diffusion while others are not, and some

using a single style image, while others can use many.

Among the techniques not using diffusion we can men-

tion NNST [19], AdaAttn [22] or SANet [27]. Among

the diffusion methods we compare with IPAdapter [43],

StyleAligned [11] and StyleInject [6], and also with other

recent works such as InST [46] and StyleID [5]. Some

methods are able to leverage multiple style images, like

Dreambooth [31] and BLoRA [9].

For methods using multiple style images (including

ours), the entire set is used. For methods using a single style
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Figure 5. Qualitative results comparison of our method, compared to some of the baselines. Besides ours, we indicate with (multi) the

methods using multiple images. For the methods using a single style image, we highlight with a colored rectangle the style image that was

provided.

image, there is the question of which style to select for each

content. To better represent the performance of these sin-

gle image style transfer methods, we consider all possible

combination of style and content images. However, since



Method SIFID ↓ Chamfer ↓ CSD ↓ ALADIN ↓ DINO ↑
IPAdapter [43] 3.427 83.632 1.091 1.109 0.654

StyleAligned [11] 3.988 8.716 1.326 1.362 0.597

NNST [19] 4.152 136.210 1.165 1.228 0.622

DIFF-NST [35] 6.315 130.956 1.254 1.291 0.600

CAST [45] 2.535 10.172 1.273 1.275 0.558

NeAT [33] 2.808 8.282 1.239 1.278 0.567

StyleID [5] 2.798 139.146 1.222 1.224 0.599

MCCNet [7] 2.592 6.830 1.264 1.274 0.570

StyTr2 [8] 3.136 137.742 1.202 1.213 0.616

PAMA [25] 2.759 8.400 1.238 1.283 0.603

SANet [27] 3.541 6.289 1.227 1.252 0.601

AdaAttn [22] 3.724 10.747 1.277 1.278 0.613

ContraAST [2] 2.836 6.699 1.226 1.233 0.592

AdaIN [13] 2.677 6.450 1.265 1.326 0.576

InST [46] 7.032 97.497 1.179 1.227 0.614

S2Wat [44] 3.104 133.548 1.223 1.243 0.595

Dreambooth [31] 5.303 306.707 1.391 1.376 0.571

BLoRA [9] 2.870 40.799 1.120 1.118 0.658

BLoRA (multi) [9] 2.512 30.257 1.119 1.097 0.666

InstantStyle [39] 4.479 64.331 1.150 1.107 0.668

Ours 2.040 17.042 1.088 1.054 0.680

Table 1. Quantitative metrics comparing our method against base-

lines. Chamfer values are scaled ×10
−3 for clarity.

this would be too computationally involved, we randomly

subsample 10% of these combinations. The objective is to

average out the effect of the particular style image selected,

and better represent the performance of each method.

Quantitative Evaluation. We present the results of the

quantitative evaluation in Table 1. We use several metrics

(Sec. 4.2) to evaluate the performance of the different meth-

ods. From the evaluation it is clear that ours performs best.

It is also interesting to point to the case of BLoRA [9],

which can use a single or multiple style images. Here the

usage of multiple style images improves the performance

which reinforces our message that having access to multi-

ple style images helps to better capture the style. In the case

of Dreambooth [31], the training process itself is less sta-

ble and no single training setting (learning rate, number of

steps, etc.) is able to achieve good results on all the styles.

For this evaluation we have selected a setting that performs

well on a few style groups and used it for all the rest. The

Chamfer metric measures color matching and we argue it is

less important for the style transfer task. This is confirmed

next in the qualitative results and the user study.

Qualitative Results. In Figure 5 we show a variety of

content images stylized according to different sets of style

images. Our method is the only approach that performs

well across this wide variety of styles and content. Using

multiple style images helps capture the style, but this is not

sufficient as it can be observed from the results of BLoRA

(multi) [9] or Dreambooth [31]. Of note is the performance

of NNST [19] on styles that are mostly operating on low-

level features, with degradation on examples that need a

better semantic understanding of the content and style.

Figure 6. Preference scores of our method, compared to each base-

line. Besides Ours, Dreambooth and BLoRA use multiple style

images.

User Study. For the user study, we select a subset of the

most relevant techniques to present them for comparison.

We select primarily diffusion based techniques, but also

NNST [19], a strong traditional technique. We present a

private team of 23 diverse workers with a labeling task,

where a selection of real style images is shown, alongside

a shuffled pair of stylization results. One from our own

method, and one from a baseline method. We addition-

ally show the real content image being stylized, for context.

We ask users to examine the style images, both stylized im-

ages, and to select the stylized image which best matches

the style for all the real style images shown. In supple-

mentary material, we show a screenshot of an example task

shown to a worker. Figure 6 displays the user preference of

our method, compared to baselines. Our work outperforms

all other methods. It is interesting to note the good perfor-

mance of NNST [19] in this user study. This illustrates that

the metrics (Table 1) do not cover all aspects of the problem.

Users tend to favor NNST [19] when the low level features

of the style are well preserved, which works well with many

of the styles present in this user study.

4.4. Ablation Study

Clustering. As mentioned previously, the clustering step

is necessary as the statistical alignment process does not

scale well, and is limited to around 3 images on a single

GPU with 24GB of VRAM. Still, we would like to eval-

uate any difference or loss in quality due to using the se-

lected values from clustering instead of using all the avail-

able attention data. To make this comparison possible, we

apply the stylization using dynamic loading of attention val-

ues from disk for use in the concatenation step of K and V
self-attention values. Of course, this step introduces an ex-

tremely unpractical amount of disk reading overhead. For

a small set of 9 style images and using an RTX 4090 GPU,

this dynamic process needs around 9 minutes and 40 sec-

onds on average for stylizing one image. When using clus-

tered values takes around 14 seconds. Figure 7 shows that

the clustering strategy has little effect on the style transfer



Figure 7. The left-most column shows the content. While being

significantly faster (14s vs 10min), the style transfer using atten-

tion clustering (middle) has very negligible impact compared to

dynamic loading (right-most).

Content and Style Images Ours (Full) Ours (Adapter-only) Ours (Statistics-only)

Figure 8. Ablation of cross-attention (adapter-based) and self-

attention (statistics-based) components

Figure 9. Comparison of stylization using either a single source

style image, or several. In the single image case, content entangle-

ment can emerge through the erroneous insertion of content from

the style images into the results (here, an animal). On the bottom

row, we see a far narrower range of colors and brush stroke com-

pared to the range contained in the style group as a whole.

results, while being much faster at inference time.

Self-attention vs Cross-attention. We describe our

method as having two main components. First, cross-

attention components, using an image adapter module to

inject style features into the diffusion model. Second, a self-

attention component using statistics alignment and concate-

nation on the self-attention values. Both components play a

valuable role, as we visualize in Fig 8. The statistics com-

ponent more heavily affects the global appearance of the

Figure 10. The weight of the LineArt ControlNet can be used to

control deformation, when used together with depth ControlNet.

A lower strength leads to higher deformation, which may be desir-

able for certain styles.

image, not as heavily dependent on the content, whereas

the adapter component more heavily modifies the depicted

content. Together, the global style of the image is more

thoroughly stylized, while also modifying the content.

Benefits of Using Multiple Style images. Our strategy of

image adaptation and feature alignment is applicable with

single image stylization. However using multiple style im-

ages, is always beneficial (Fig. 9). We avoid content entan-

glement in the results and achieve higher stylization quality.

ControlNet Strength for deformation. ControlNet af-

fects the visual style elements in a stylized image. The im-

portance weight of this auxiliary conditioning can expose

artistic controls over the stylization process to artists. For

example, as shown in Fig 10, a lower strength LineArt Con-

trolNet can result in favorable output when used together

with a ”deformed” style such as Picasso’s cubism.

5. Discussion

We propose a model-agnostic diffusion-based style transfer

technique that leverages multiple source style images. We

avoid entanglement issues and encode more style variance

from a wider range of style examples. We show in the quan-

titative evaluation metrics and user studies that our method

is state-of-the-art. We already show initial results with the

larger SDXL [28] model. Others, such Pixart-α(-σ) [3, 4],

could be tested.

A key identified limitation of both our technique and the

other methods in literature is the lack of control over more

specific or specialized aspects of the stylization, such as line

work. This is an interesting and important future direction

of research.
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