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 A B S T R A C T

We present a new method for multimodal conditional 3D face geometry generation that allows user-friendly 
control over the output identity and expression via a number of different conditioning signals. Within a single 
model, we demonstrate 3D faces generated from artistic sketches, portrait photos, Canny edges, FLAME face 
model parameters, 2D face landmarks, or text prompts. Our approach is based on a diffusion process that 
generates 3D geometry in a 2D parameterized UV domain. Geometry generation passes each conditioning 
signal through a set of cross-attention layers (IP-Adapter), one set for each user-defined conditioning signal. 
The result is an easy-to-use 3D face generation tool that produces topology-consistent, high-quality geometry 
with fine-grain user control.
1. Introduction

The creation of 3D facial geometry for digital human characters is 
a modeling task that usually requires tremendous artistic skill. Digital 
sculpting with 3D modeling tools is a time-consuming and demanding 
process, especially when the target is as recognizable as a human 
face. This complexity has prompted research into data-driven sculpting 
methods [1] and other, more user-friendly, interactive interfaces [2].

Several common morphable 3D face models (e.g. FLAME [3]) sim-
plify the facial modeling task by providing a shape subspace to operate 
in, as well as simple parameters to control the identity and expression 
geometry without the need for 3D modeling skills, but they are limited 
in expressiveness and offer only basic control knobs.

Recent methods can create high quality 3D geometry and textures 
from text prompts [4–8] via optimization, leveraging large pre-trained 
text-to-image diffusion models [9]. These methods allow layman users 
to create 3D faces through natural text descriptions. While this is a 
powerful approach, it can still be difficult to achieve a particular output 
through text description [10]. Some concepts like the specific curvature 
of a face or a unique facial expression are much easier to convey via 
sketches, edge contours or portrait photos than through text.

In the image domain, approaches like ControlNet [11] or T2I-
Adapter [12] have demonstrated controllable image generation beyond 
text using sketches, images, or edge maps as conditioning signals. 
These methods provide users with much more fine-grained control over 
the generation process than text-based methods alone. Ye et al. [13] 
propose IP-Adapters to control Stable Diffusion [9] with image prompts 
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by learning new cross-attention layers. However, image-based methods 
are not easy to extend to 3D facial geometry generation.

We present a flexible new method for 3D facial geometry generation 
that creates high quality faces from any one of various inputs, including 
sketches, 2D landmarks, Canny edges, FLAME face model parameters, 
portrait photos and text. Our approach is to train a conditional diffu-
sion model on a high quality 3D facial dataset constructed from high 
resolution scans [14] represented in the 2D UV domain. Our model 
is trained from scratch, without the need for a pre-trained foundation 
model like Stable Diffusion. To condition our model we train one set 
of cross-attention layers for each type of conditioning input, following 
IP-Adapter [13]. First, the diffusion model learns to inject FLAME 
parameters via the original UNet cross-attention layers. We then freeze 
the diffusion model while training additional sets of cross-attention 
layers (e.g. one for artist sketches, 2D landmarks, portrait photos, 
etc.). Our FLAME-conditioned model allows us to re-interpret FLAME-
parameterized faces in a generative sense - providing a space of high 
resolution stochastic variations on top of the traditional low resolution 
FLAME model.

Our method allows for fast and user-friendly creation of 3D digital 
character faces with expressions, generated with a consistent mesh 
topology, and controlled by the input mode preferred by the user, 
all within a single model. We demonstrate several applications of our 
method including sketch-based 3D face modeling, geometry from 2D 
facial landmarks, Canny edges, or portrait photos, text-to-3D facial 
geometry, and finally, extending the FLAME model space by allowing 
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Fig. 1. We propose a novel method for diffusion-based controllable 3D face geometry generation that allows for controlling the results via several conditioning modes: artistic 
sketches, portrait photos, Canny edges, FLAME parameters, 2D facial landmarks, and text.
stochastic diffusion sampling conditioned on the same semantic FLAME 
parameters (Fig.  1). In summary, we make the following contributions:

• We present a new method for 3D face geometry generation from 6 
different types of conditionings (prompts) within a single model.

• We propose a comprehensive solution for training such a method 
from scratch, with 3D geometry data augmentations and by rep-
resenting 3D geometry as position maps to better fit existing 
diffusion pipelines.

• We show that our method supports face generation with ex-
pressions, sketch-based editing for 3D face design, stochastic 
variations of details conditioned on low resolution FLAME faces, 
generalization to in-the-wild data and dynamic face generation 
from videos.

2. Related work

In the following, we present relevant related work on 3D face 
geometry generation with diffusion models, as well as on injecting 
additional control modes into diffusion models.

2.1. 3D face geometry generation

Recent work uses diffusion models to control the generation of 
novel 3D face geometry. ShapeFusion [15] generates face geometry 
by running the diffusion process directly on the mesh input vertices. 
It allows unconditional and conditional face geometry generation and 
supports various editing operations on a given mesh, based on selected 
vertices (anchor points). However, it does not support conditioning 
signals beyond vertices. 4DFM [16] trains an unconditional diffusion 
model on a set of sparse 3D landmarks for facial expression gener-
ation. It can generate dynamic facial expression sequences based on 
3D landmarks by retargeting the landmarks to a mesh after the dif-
fusion process. While they support conditioning with different signals 
such as expression labels and text, they achieve control via classifier-
guidance [17] which requires training additional classifiers on noisy 
data.

Other methods focus on 3D face or head avatars, which can generate 
3D geometry and texture. Rodin [18] can generate triplane-based head 
geometry with text or image conditioning, but the resulting geometry 
is extracted with Marching Cubes [19] and thus not in the same 
topology across generations. HeadArtist [6], HeadSculpt [7] and Hu-
manNorm [20] use Deep Marching Tetrahedra [21], text-prompts and 
a Score Distillation Loss (SDS) [22] to generate high-quality human 
heads. However, the topology of the extracted geometry differs across 
samples and generating a single geometry sample takes almost one 
2 
hour on a single 3090 GPU. DreamFace [4], FaceG2E [5] and Bergman 
et al. [23] propose 3D Morphable Model (3DMM)-based [24] pipelines 
that generate topology-consistent 3D face geometry and textures from 
text. The geometry is created by optimizing 3DMM parameters using a 
SDS loss. During the optimization, the SDS loss uses the feedback from 
a pre-trained text-to-image latent diffusion model to update the 3DMM 
parameters given a geometry render. DreamFace [4] and FaceG2E [5] 
focus on optimizing 3DMM identity parameters and have therefore 
difficulties in directly generating facial expressions from text prompts. 
However, DreamFace does support generating faces with expressions 
from image prompts and FaceG2E results can be imported into the 
CG pipeline where facial expressions can be added in a separate step 
after the text-based generation. In general, SDS-based methods rely on 
the Stable Diffusion (SD) [9] prior which was pre-trained on billions 
of images [25] to guide their generations. SDS optimization is usually 
much slower in runtime compared to standard diffusion sampling, as it 
must backpropagate gradients from a diffusion model to a 3D model via 
a differentiable renderer for many optimization steps. Describe3D [26] 
can generate 3D face geometry from text-prompts without diffusion, by 
mapping CLIP text embeddings to 3DMM shape parameters. However, 
it does not support different facial expressions.

In our work, we generate controllable 3D face geometry in a sin-
gle common topology from several different conditioning modes. Our 
method natively supports facial expressions and does not rely on SDS 
optimization, classifier-guidance or the SD prior.

2.2. Multimodal conditional image generation

Image generation with diffusion models can be controlled with 
conditioning modes (prompt types) that are different from text such 
as sketches [27], Canny edges [28], RGB images [13], expression 
parameters [29] or face shape [30,31]. To control pre-trained diffusion 
models with new modes, ControlNet [11] introduces a trainable copy 
of the diffusion model’s UNet encoding blocks, which take the new 
conditioning as input. The output of the copied model is added to the 
skip-connections of the frozen pre-trained diffusion model. A separate 
trainable copy of the UNet encoding blocks (361M parameters) is 
created per conditioning mode. T2I-Adapter [12] aligns the internal 
knowledge of a pre-trained diffusion model with new control modes 
by proposing a small adapter network that achieves control similar 
to ControlNet, while requiring less parameters (77M). IP-Adapter [13] 
injects each conditioning via separate cross-attention layers [32] while 
requiring even less parameters (22M). It introduces new cross-attention 
layers whose outputs are added to those of the original UNet. Ye 
et al. [13] show that the diffusion model follows the added conditioning 
signal closely, when it comes through the newly trained cross-attention 
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Fig. 2. Our pipeline for diffusion-based controllable 3D face geometry generation which uses a delta UV position map representation 𝛥T to generate results. We can control the 
results with several conditioning modes (i.e. FLAME parameters c0, sketches c1, Canny edges c2, 2D landmarks c3, portrait photos c4 and text c5).
layers. In general, adapters can add control with new conditioning 
modes even long after the training of the underlying base diffusion 
model is concluded. They can also add new conditioning modes for 
which only limited paired training data is available, because the un-
derlying diffusion model is frozen, avoiding issues such as catastrophic 
forgetting [11,33]. While pre-trained text-to-image diffusion models 
understand the RGB image domain and can generate images condi-
tioned on a large variety of input modalities, the domain gap to 3D face 
geometry is large. Therefore, many related works use the rather slow 
SDS optimization procedure to lift faces into 3D. To allow for faster 
inference-time sampling, we train our diffusion model from scratch 
using ground truth 3D face data and geometry data augmentations. We 
represent 3D face geometry in the 2D UV domain, which enables us 
to train a 2D diffusion model that can incorporate new conditioning 
modes using IP-Adapters.

3. Multimodal 3D face geometry generation

We propose a novel method for diffusion-based controllable 3D face 
geometry generation that allows for controlling the results with several 
conditioning modes (i.e. sketches, 2D landmarks, Canny edges, FLAME 
parameters, portrait photos and text).

Our method consists of four components: First, we create a dataset 
of 3D faces, where each face is represented as a UV position map 
describing the vertex positions (Section 3.1). This data representation 
can be easily processed with 2D convolutional neural networks. Second, 
a variational autoencoder (VAE), which compresses our UV position 
map face data into a latent space representation (Section 3.2). Third, 
a latent diffusion model (LDM), which learns a non-linear, deep con-
trollable face model in latent space (Section 3.3). Fourth, we learn 
mode-specific cross-attention layers (IP-Adapters) with the ability to 
transform and inject conditioning modes into the LDM for controllable 
3D face geometry generation (Section 3.4). Each of the components is 
explained in the following and visualized in Fig.  2.

3.1. Dataset and geometry representation

To represent our face geometries, we generate a novel dataset based 
on the 3D scan data acquired by Chandran et al. [14], where all 
faces are stabilized and in topological correspondence. In total, we use 
323 identities in our training dataset, where each identity shows 24 
different facial expressions (7752 examples). The full dataset contains 
341 identities and we randomly choose around 5% (all expressions of 
18 identities) as a validation set. We subtract a template face shape 𝐓
3 
from all faces in the dataset and thus represent each individual face as 
a delta from the template face. The computed delta representation 𝛥𝐓
reduces artifacts in the generated 3D face geometry, when compared to 
the full face representation. We transform each delta face into a vertex 
delta position map in UV space, which is suitable for being processed 
by neural networks [34–36]. This representation records the x, y, z 
coordinates of the face geometry within a 3-channel image, similar to 
traditional color texture maps, but instead of an RGB value at each pixel 
we store the x, y, z delta values. To improve generalization, we augment 
our existing geometry training data by synthetic identities which we 
generate via identity interpolation (50k examples) and by mixing face 
parts of different identities together [37] (150k examples). Adding 
the augmentations during LDM training improves the generalization 
to novel identities when conditioning on the FLAME parameters. We 
kindly refer to our supplementary material for ablation studies on the 
geometry representation and the use of geometry data augmentations. 
Combining original and augmented data leads to a total training dataset 
size of 207752 examples. Thus our training dataset is slightly larger in 
size compared to related 2D image diffusion models that specialize on 
human faces (e.g. 30k images for the CelebA-HQ [38] face LDM [9], or 
the 70k images for the Diffusion Autoencoder in Preechakul et al. [39]), 
but still much smaller than the datasets required to train general 
foundation diffusion models that can represent various objects beyond 
faces. According to Kadkhodaie et al. [40] diffusion models trained on 
around 100k samples provide evidence of strong generalization in the 
face domain. We use the parameter space of a common 3D morphable 
face model (FLAME [3]) as a base conditioning because we can fit 
FLAME to the scan data and to the augmented data and thus generate a 
large dataset of paired geometry-FLAME parameter data. Additionally, 
we create paired training data for several conditioning modes that only 
have limited paired data available. For example, portrait photos are 
only available for the scans from the dataset of Chandran et al. [14], 
but not for the augmentation data. However, it is possible to inject 
new modalities with limited paired data by training new cross attention 
layers while keeping the LDM frozen as shown by Ye et al. [13] (and 
described in Section 3.4).

3.2. Variational autoencoder

To reduce the computational requirements for the diffusion model, 
we downsample our 2562 UV position map data by a factor of four 
into a 642 latent space using a variational autoencoder (VAE) [41] 
consisting of an encoder  and a decoder . We train the VAE from 
scratch following the autoencoder loss function and architecture as it is 
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presented in related work [9,42]. Specifically, we use the VQ-GAN [42] 
autoencoder loss: 
VAE = rec + GAN + reg. (1)

𝑟𝑒𝑐 consists of a pixel-wise L1 loss and a LPIPS [43] perceptual loss. 
It compares the input UV position maps to the reconstructions through 
the VAE. 𝐺𝐴𝑁  evaluates inputs 𝑥 and reconstructions ((𝑥)) with a 
patch-based discriminator [44] and 𝑟𝑒𝑔 employs a codebook loss which 
serves as a latent space regularizer. Please refer to Esser et al. [42] for 
more details.

3.3. Latent diffusion model

Next, we train a latent diffusion model (LDM) [9], that learns to 
generate latent UV position maps 𝐳 = (𝐱). To train the LDM, a forward 
diffusion process is defined as a Markov chain, which noises the latents 
𝐳 following a fixed noise schedule of 𝑇  uniformly sampled timesteps. 
At the last time step 𝑇 , the distribution is Gaussian. We can directly 
sample 𝐳𝑡 at an arbitrary timestep 𝑡 by: 

𝐳𝑡(𝐳0, 𝝐) =
√

𝛼̄𝑡𝐳0 +
√

1 − 𝛼̄𝑡𝝐 𝝐 ∼  (𝟎, 𝐈), (2)

where 1 − 𝛼̄𝑡 describes the variance of the noise and 𝛼̄𝑡 ∶=
∏𝑡

𝑠=1 𝛼𝑠
according to a fixed noise schedule.

We learn to predict the noise 𝝐 that was added to a noisy latent 
image 𝐳𝑡 following Ho et al. [45]: 

𝐿𝐷𝑀 = E𝐳0 ,𝐜0 ,𝑡,𝝐∼ (𝟎,𝐈)
[

‖𝝐 − 𝝐𝜃(𝐳𝑡, 𝐜0, 𝑡)‖22
]

, (3)

where 𝑡 is the timestep, 𝐜0 = 𝝆𝜙(𝐲) is a FLAME parameter conditioning 
and 𝝐𝜃(𝐳𝑡, 𝐜0, 𝑡) is the UNet [46] neural network with parameters 𝜃. 
The FLAME conditioning 𝐜0 is obtained by fitting FLAME to the face 
geometry encoded in 𝐳𝐭 and mapping it through a MLP 𝝆𝜙(𝐲).

During inference (reverse diffusion process) we generate latent 2D 
UV position maps from the model distribution. We start from 𝐳𝑇 ∼
 (𝟎, 𝐈) and iteratively compute less noisy latents until we reach a 
clean latent sample 𝐳0. Sampling following DDPM [45] or DDIM [47] 
computes 𝐳𝑡−1 from 𝐳𝑡 based on the UNet output.

3.4. Multimodal conditional generation

To control the generations with additional conditioning modes 
(beyond the FLAME parameters 𝐜0), we train different sets of cross-
attention layers, following IP-Adapter [13]. The LDM itself is kept 
frozen. In this way, we can integrate novel conditioning modes post-
LDM training even with limited paired mode-geometry data. We train 
one set for each of the following conditioning modes: sketches 𝐜1, 
Canny edges 𝐜2, 2D landmarks 𝐜3, portrait photos 𝐜4 and text 𝐜5. 
The output of the new cross-attention layers is added to the outputs 
of the existing LDM cross-attention layers, thereby injecting the new 
conditioning signal into the generation process: 
𝐙 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐,𝐊,𝐕) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛′(𝐐,𝐊′

𝑚,𝐕
′
𝑚), (4)

where 𝐐 are the intermediate UNet query features, 𝐊 and 𝐕 are keys 
and values for our FLAME conditioning 𝐜0 and 𝐊′

𝑚, 𝐕′
𝑚 are keys and 

values for the newly injected modality 𝐜𝑚. 
𝐊 = 𝐜0 ⋅𝐖𝑘,𝐕 = 𝐜0 ⋅𝐖𝑣,

𝐊′
𝑚 = 𝐜𝑚 ⋅𝐖′

𝑘,𝑚,𝐕
′
𝑚 = 𝐜𝑚 ⋅𝐖′

𝑣,𝑚

(5)

Here, 𝐖′
𝑘,𝑚 and 𝐖′

𝑣,𝑚 represent the newly added weights that are 
updated during training.

Prior to passing each of the above-mentioned conditioning modes 
to the cross-attention layers, we pass each of them through CLIP [48] 
and extract a 768 dimensional global CLIP feature vector, which serves 
as our conditioning representation. Following IP-Adapter, we train 
a small projection network consisting of one linear layer and layer 
normalization, designed to project the CLIP feature vector into several 
4 
extra context tokens before injecting it into the cross-attention layers. 
We use 16 tokens for each of our conditionings to allow for meaningful 
attention computation.

At inference time, we can control the 3D face geometry generation 
with any of the modes using the respective set of cross-attention layers 
and classifier-free guidance [49]. The strength of the conditioning 
signal can be increased by increasing the hyperparameter 𝑤: 
𝝐̂𝜃(𝐳𝑡, 𝐜0, 𝐜𝑚, 𝑡) = 𝑤𝝐𝜃(𝐳𝑡, 𝐜0, 𝐜𝑚, 𝑡) + (1 −𝑤)𝝐𝜃(𝐳𝑡, 𝑡) (6)

To condition only on a newly added mode or to generate geometry 
unconditionally, the FLAME conditioning 𝐜0 is set to its null embedding. 
Additionally, for unconditional generation, the new cross-attention in 
Eq. (4), which feeds 𝐜𝑚 to the diffusion model, is simply not added 
to the original attention. Our full method pipeline is visualized in Fig. 
2. For more implementation details, please refer to our supplementary 
material.

4. Results

We now show several results and applications of our new mul-
timodal conditional 3D face geometry generation method. We begin 
by demonstrating control over the generated facial geometry using 
FLAME’s identity and expression parameters (Section 4.1). We then 
demonstrate multimodal conditioned geometry generation by guiding 
the denoising process using sketches, sparse 2D landmarks, Canny 
edges, portrait photos and text. We evaluate the effectiveness of these 
different modalities in guiding the generated geometry in Section 4.2. 
We also compare our method to the state-of-the-art related work both 
on text and image prompts in Section 4.2. In addition to using different 
conditioning modes, we show how one can also spatially restrict the 
guidance to a particular face region to perform precise geometry edits 
in Section 4.3. We can also generate dynamic facial performances by 
guiding our model from video inputs and demonstrate that our method 
can produce facial animations that are stable across time (Section 4.4). 
Finally, we discuss the limitations of our method in Section 4.5.

4.1. Identity and expression conditioning

The base conditioning used to train our geometry generator are the 
identity and expression parameters from the FLAME model [3]. We 
use 300 identity parameters (𝜷), 100 expression parameters (𝝍) and 
3 jaw pose (𝜽) parameters. We combine these FLAME parameters into 
a 403-dimensional conditioning vector which we pass through a 3-layer 
MLP with Leaky ReLU activation functions prior to injecting it into the 
diffusion model via cross-attention.

Recollect that we do not use the geometry from the FLAME model 
itself to train our diffusion model. Instead we fit the FLAME model 
to the high quality facial geometry from Chandran et al. [14] only 
to obtain identity and expression parameters, and train the diffusion 
model directly on the geometry captured by Chandran et al.

We visualize geometries generated by our model for unseen FLAME 
parameters in  Fig.  3. As our underlying mesh topology is different from 
FLAME and represents ∼10-times more vertices, it can express a greater 
level of detail that is not present in the lower resolution FLAME mesh. 
This high resolution detail is captured and reproduced by the denoising 
process. Therefore, by simply varying the noise seed, one can obtain 
variations of the FLAME-conditioned geometry, each of which contain 
different mid/high frequency details.
Disentangling Identity and Expression. Our diffusion model also 
preserves the disentanglement between facial identity and expression 
that is present in FLAME. In Fig.  4, we show how a smooth interpolation 
of FLAME’s identity and expression coefficients results in a smooth, yet 
nonlinear, interpolation of our generated geometry. We can observe 
that the facial expression remains fixed when interpolating between 
identities, and vice versa (please also refer to the supplemental video). 
To eliminate the randomness in the generation, we used the same 
initial noise to generate the interpolated geometries along with DDIM 
sampling [47].
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Fig. 3. Changing the noise seed while conditioning on the FLAME parameters does not 
affect the identity and expression of the generated geometry, but only the stochastic 
details that are added on top. Our model can capture richer geometric detail that is 
not present in the original FLAME mesh, while still respecting FLAME’s identity and 
expression parameters. Each row shows a different set of FLAME parameters, with the 
corresponding FLAME mesh visualized in the first column.

Fig. 4. Identity and expression disentanglement. Traversing the first dimension in 
FLAME’s identity space leads to smooth changes in our generated face geometry (rows 
1 and 2). Similarly a linear interpolation of FLAME’s expression parameters results in 
a smooth, yet nonlinear, interpolation of facial expression as seen in rows 3 and 4. 
Please refer to our supplementary video to see the complete interpolation.

4.2. Multimodal conditioning

Beyond the underlying FLAME-based control, we introduce addi-
tional conditioning modes to control our diffusion model following 
Section 3.4. We now discuss the results of facial geometry generation 
by conditioning our diffusion model on sketches, sparse 2D landmarks, 
Canny edges, portrait RGB photos and text. Geometries generated for 
different conditionings from each of these additional modes are shown 
in Fig.  5.
Quantitative Comparison. While our generated geometry follows the 
identity and expression seen in the input conditioning signal, the degree 
to which the conditioning signal constrains the generated geometry 
5 
Fig. 5. Multimodal conditional generation results on our validation dataset, including 
conditioning on portrait images, sketches, FLAME parameters, Canny edges, 2D land-
marks and text. The FLAME parameter inputs are visualized as meshes. Our model 
captures the facial identity and expression across all conditioning modes. We use 
classifier-free guidance of 𝑤 = 1, except for some text-prompts where we use 𝑤 = 3 for 
even stronger facial expressions.

varies from mode to mode. We evaluate the effectiveness of each of our 
conditioning modes in guiding the generated geometry towards ground 
truth scans, by computing the Euclidean error between the generated 
geometry and the ground truth geometry for each conditioning mode. 
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Table 1
We report the vertex-to-vertex error (V2V) to the original scanned geometry in mm on 
our validation set of 432 shapes for generations from different types of conditioning 
signals. Conditions that are more descriptive of the end facial geometry like FLAME 
parameters, and portrait images achieve a lower error than others. Results are averaged 
over three different seeds.
 V2V error Mean ↓ Median ↓ Std ↓  
 2D landmarks 6.390 5.950 1.945 
 Canny edges 6.007 5.701 1.672 
 Sketch 5.521 5.106 1.792 
 Portrait photo 5.207 4.942 1.471 
 FLAME parameters 5.008 4.737 1.498 

Table 2
We report the CLIP score (ViT-B/32) for text-to-geometry generation to related work. 
We prompt each method with 10 text prompts specifying a neutral expression. 
Additionally, we compare the average inference-time per sample between different 
methods on a single 3090 GPU. *Describe3D inference-time is measured on a single 
1080 GPU and DreamFace-V2 results are exported from their web interface (N/A). We 
run FaceG2E fast for only 15/200 optimization steps to match the inference-time of 
our method for comparison. The best score per column is marked in bold and the 
second-best score is underlined.
 Method CLIP (ViT-B/32) ↑ Time ↓ 
 Describe3D [26] 32.69 80.62* 
 DreamFace-V2 [4] 33.85 N/A  
 FaceG2E fast [5] 32.41 6.07  
 FaceG2E [5] 35.03 42.87  
 Ours 34.15 5.48  

Fig. 6. Comparison to related work on text-to-geometry generation with neutral 
expression prompts. We sample from our model using classifier-free guidance 𝑤 = 3.

In Table  1, we report the vertex-to-vertex (V2V) error of 432 shapes 
from our validation set for each type of conditioning. We observe 
that conditioning signals that are more descriptive, such as FLAME 
parameters or portrait photos, obtain a lower error when compared to 
signals that are less descriptive of the final geometry (2D landmarks, 
Canny edges and sketches). Please refer to our supplementary material 
for error maps on our validation set.

Next, we compare our method to the state-of-the-art related work 
methods. First, we look at the text conditioning mode, because prompts 
from this mode are most commonly supported by related work. We 
compare our method to Describe3D [26], DreamFace [4] and two 
variants of FaceG2E [5], over 10 different text prompts. We report 
the average CLIP score (ViT-B/32) between the CLIP embeddings from 
the text prompt and the CLIP embeddings extracted from the rendered 
generated face geometry. Specifically, we evaluate text prompts that 
6 
Fig. 7. Comparison to related work on text-to-geometry generation with expression 
prompts.

specify varied identities all with a neutral expression, because neutrals 
are supported by all methods. Each prompt is prepended with ‘‘A 
shaded, textureless 3D face model of ’’, although for legibility, we shorten 
the text prompts when we add them to figures (e.g. Figs.  6 and 7). 
Please refer to our supplementary material for the exact text prompts. 
Among the compared methods, our method has the second highest CLIP 
score on text prompts that specify a neutral expression (Table  2).
Qualitative Comparison. We first show qualitative comparisons to 
state-of-the-art text-to-geometry methods on neutral text prompts in 
Fig.  6. Our method produces realistic faces that are subjectively on 
par with other techniques. Furthermore, it is important note that our 
method also natively supports generating faces with expressions by pro-
viding an expression description in the text prompt. This is a situation 
that other methods struggle with, as shown in Fig.  7.

Second, besides text prompts, DreamFace and our method also 
support RGB image prompts (Fig.  8). Our method achieves results com-
parable to DreamFace without relying on SDS optimization as part of 
the geometry generation. Note, that to aid the visual comparisons with 
previous methods, we complete the head in our results by deforming a 
template head to match our generated face. Despite training on purely 
studio data, we show how our model responds to conditionings derived 
from in-the-wild data in Fig.  9. For direct visual comparison with the 
identity and facial expression in the conditioning signal, we overlay 
the generated meshes onto validation images from whom the respective 
conditionings were extracted in Fig.  10.
Combining Two Conditionings. As our method involves learning 
additional modes of conditioning on top of an underlying FLAME con-
ditioned diffusion model, we can also use more than one conditioning 
signal at inference time to guide the generation. In Fig.  11, we show 
how combining both FLAME parameter and portrait image conditioning 
lowers the vertex error on a validation sample, as the denoising UNet 
now has access to more information about the desired identity and 
expression. Note that only our base conditioning (FLAME parameters) 
is present when training any one of the other modalities cross-attention 
layers. Therefore, we can expect complementary results only when 
combining the FLAME parameter conditioning with another modality.
Inference time. We show that our method has significant inference-
time benefits over its competitors that are mainly based on SDS op-
timization. It has the fastest average inference speed per sample on 
text-to-geometry generation, because once it is trained, it can directly 
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Fig. 8. Image prompt to face geometry generation. Comparison between DreamFace [4] 
and our method on in-the-wild test data.

Fig. 9. Generation using conditioning signals obtained from in-the-wild test data 
(Portrait images top row, Canny edge maps bottom row). Our model produces 
reasonable facial geometry from in-the-wild conditions despite being trained only on 
studio data.

Fig. 10. We overlay our generated meshes on top of the images that display the 
identities (and expressions) from whom the respective conditioning signals were 
extracted. We show results for FLAME and portrait photo conditioning.
7 
Fig. 11. Multimodal conditioning using portrait photo and FLAME parameter condi-
tioning separately and simultaneously. The first row shows the conditioning inputs. The 
second row shows the generated face geometry. The third row shows the error map 
when compared with the original geometry from our validation set.

sample 3D faces from the diffusion model. This setup alleviates the need 
for compute intensive iterative SDS optimization of a 3D face represen-
tation. Specifically, our method is more than seven times faster than 
its closest competitor FaceG2E (5.48 s vs. 42.87 s). To compare results 
with similar inference speeds, we run FaceG2E fast for approximately 
the same time as our own method and evaluate the CLIP score results 
(see Table  2).
Controlling the Conditioning Strength. To control the strength 𝑤
of the guiding condition, we make use of classifier-free guidance [49] 
following Eq. (6). Increasing the guidance strength increases the effect 
that the input conditioning (prompt) has on the resulting geometry. 
Stronger guidance can lead to increased level of detail in the generated 
face geometry and greater resemblance with the input prompt. For 
example, in Fig.  12, the expression of the generated geometry of the 
subject in the first row displays stronger wrinkles, and a closer match 
to the portrait image when setting 𝑤 = 3 compared to setting it to 
𝑤 = 1. Unless specified differently, we use 𝑤 = 1 for all our conditional 
generation results.

4.3. Geometry editing

The latent space of our autoencoder preserves the spatial layout of 
the original UV position map, much like how the latent space of the 
image autoencoder in text-to-image models [9] preserves the spatial 
layout of the encoded image. As a consequence, by masking regions in 
the latent UV position map corresponding to regions we wish to modify, 
and by denoising the masked regions, one can apply intuitive edits to 
particular regions of the facial geometry. Please refer to RePaint [50] 
for more details on the masking process. Even when using masks with 
sharp boundaries, the denoising process can take care of smoothly 
interpolating at the mask boundaries. We show results of guiding the 
editing of facial geometry with user conditions in  Fig.  13. Specifically, 
we show an interactive sketching workflow (∼6 s/sample), where an 
artist can progressively edit a generated geometry by modifying one 
region at a time.

4.4. Dynamic generation

Although our model is only trained with static face shapes, we 
find that it can generate temporally stable 3D facial geometries when 
conditioned on per-frame FLAME parameters derived from animation 
sequences or on CLIP embeddings obtained from individual frames from 
in-the-wild videos. In Fig.  14, we show the generated 3D face geometry 
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Fig. 12. By varying the guidance strength 𝑤, we can control the extent to which 
our conditioning signals affect the generated geometry. Setting 𝑤 = 0 results in 
unconditional generation, while 𝑤 ≥ 1 results in conditional generation.

Fig. 13. Conditional generation from an input sketch (a), followed by local edits of 
the mouth (b, c), the face shape (d) and the nose (e). The masks used to constrain the 
region of modification are shown in the insets.

produced by our method when conditioned on various signals derived 
from videos. To demonstrate the use of sketches as dynamic condition-
ing, we use a recent face reconstruction technique [51] to track the 
facial geometry in 3D from an in-the-wild video and then render out 
2D sketches using a hand-painted texture map. We identify that the 
only pre-processing required to obtain dynamically stable generations 
from CLIP embeddings is to temporally smooth them before using them 
as the conditioning signal. To further ensure stable generations across 
time, we use the same noise seed and DDIM sampling.

4.5. Limitations and future work

As limitations, we identify that our model can produce geometric 
artifacts for extreme expressions, especially when controlled using 
FLAME’s jaw pose parameters. This problem is mainly a data limitation 
and could be resolved by sourcing a larger dataset of extreme expres-
sions, by oversampling expressions during training or by weighting the 
loss towards focusing more on extreme expressions. Additionally, we 
identify a limitation of extremely similar CLIP-based conditionings for 
left/right mirrors of asymmetrical face expressions, leading to a direc-
tion ambiguity in the geometry output. We refer to our supplementary 
material for further discussion and visualization of these failure cases. 
Beyond addressing those limitations, future work could incorporate 
8 
Fig. 14. Dynamic geometry generation results given sketch, landmark, FLAME param-
eters or portrait photos from 4 different input videos as conditionings. Our results 
change smoothly across time while maintaining a consistent identity rather well.

facial appearance information into our method, enabling multimodal 
control over 3D faces with corresponding texture.

5. Conclusion

We propose a new framework for 3D facial geometry generation 
based on a latent diffusion model that can be guided using multiple 
types of conditionings (prompts). Our conditional geometry genera-
tor operates in a latent geometry space. It can produce high quality 
geometry at comparably fast inference speeds using a UV position 
map representation. It can be seamlessly conditioned on hand-drawn 
sketches, 2D landmarks, Canny edges, FLAME-parameters, RGB por-
trait photos and text; resulting in a comprehensive facial geometry 
generator that supports many applications. For example, stochastic 
detail variation in the generated geometry or local geometry edits. We 
train our model from scratch on only static face shapes captured in 
a studio setting and yet demonstrate that our model can generalize 
reasonably to in-the-wild conditioning signals, and can also generate 
facial performances when conditioned on frames from video data.

CRediT authorship contribution statement

Christopher Otto: Conceptualization, Data curation, Formal analy-
sis, Investigation, Software, Validation, Visualization, Writing – original 
draft, Writing – review & editing, Project administration. Prashanth 
Chandran: Conceptualization, Data curation, Formal analysis, Inves-
tigation, Software, Validation, Visualization, Writing – original draft, 
Writing – review & editing, Project administration. Sebastian Weiss: 
Conceptualization, Data curation, Formal analysis, Investigation, Soft-
ware, Validation, Visualization, Writing – original draft, Writing – 
review & editing, Project administration. Markus Gross: Conceptual-
ization, Project administration, Supervision. Gaspard Zoss: Concep-
tualization, Data curation, Formal analysis, Investigation, Software, 
Validation, Visualization, Writing – original draft, Writing – review 
& editing, Project administration. Derek Bradley: Conceptualization, 
Data curation, Formal analysis, Investigation, Software, Validation, 
Visualization, Writing – original draft, Writing – review & editing, 
Project administration, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.



C. Otto et al. Computers & Graphics 132 (2025) 104325 
Appendix A. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.cag.2025.104325.

Data availability

The authors do not have permission to share data.

References

[1] Gruber A, Fratarcangeli M, Zoss G, Cattaneo R, Beeler T, Gross M, Bradley D. 
Interactive sculpting of digital faces using an anatomical modeling paradigm. 
Comput Graph Forum 2020;93–102. http://dx.doi.org/10.1111/cgf.14071.

[2] Kim H-J, Öztireli AC, Shin I-K, Gross M, Choi S-M. Interactive generation 
of realistic facial wrinkles from sketchy drawings. Comput Graph Forum 
2015;34(2):179–91. http://dx.doi.org/10.1111/cgf.12551.

[3] Li T, Bolkart T, Black MJ, Li H, Romero J. Learning a model of facial shape 
and expression from 4D scans. ACM Trans Graph (ToG) (Proc SIGGRAPH Asia) 
2017;36(6):194:1–194:17, URL https://doi.org/10.1145/3130800.3130813.

[4] Zhang L, Qiu Q, Lin H, Zhang Q, Shi C, Yang W, Shi Y, Yang S, Xu L, Yu J. 
DreamFace: Progressive generation of animatable 3D faces under text guidance. 
ACM Trans Graph ( ToG) 2023;42(4). http://dx.doi.org/10.1145/3592094.

[5] Wu Y, Meng Y, Hu Z, Li L, Wu H, Zhou K, Xu W, Yu X. Text-guided 3D face 
synthesis – from generation to editing. 2023, arXiv, arXiv:2312.00375.

[6] Liu H, Wang X, Wan Z, Shen Y, Song Y, Liao J, Chen Q. HeadArtist: Text-
conditioned 3D head generation with self score distillation. In: ACM SIGGRAPH 
2024 conference papers. SIGGRAPH ’24, New York, NY, USA: Association for 
Computing Machinery; 2024, http://dx.doi.org/10.1145/3641519.3657512.

[7] Han X, Cao Y, Han K, Zhu X, Deng J, Song Y-Z, Xiang T, Wong K-YK. 
HeadSculpt: Crafting 3D head avatars with text. In: Oh A, Naumann T, 
Globerson A, Saenko K, Hardt M, Levine S, editors. Advances in neu-
ral information processing systems. Vol. 36, Curran Associates, Inc.; 2023, 
p. 4915–36, URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
0fb98d483fa580e0354bcdd3a003a3f3-Paper-Conference.pdf.

[8] Wang D, Meng H, Cai Z, Shao Z, Liu Q, Wang L, Fan M, Shan Y, Zhan X, Wang Z. 
HeadEvolver: Text to head avatars via locally learnable mesh deformation. 2024, 
arXiv preprint arXiv:2403.09326.

[9] Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution im-
age synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition. CVPR, 2022, p. 
10684–95.

[10] Koley S, Bhunia AK, Sekhri D, Sain A, Chowdhury PN, Xiang T, Song Y-Z. 
It’s all about your sketch: Democratising sketch control in diffusion models. 
In: Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. CVPR, 2024, p. 7204–14.

[11] Zhang L, Rao A, Agrawala M. Adding conditional control to text-to-image 
diffusion models. In: Proceedings of the IEEE/CVF international conference on 
computer vision. ICCV, 2023, p. 3836–47.

[12] Mou C, Wang X, Xie L, Wu Y, Zhang J, Qi Z, Shan Y, Qie X. T2I-adapter: Learning 
adapters to dig out more controllable ability for text-to-image diffusion models. 
2023, arXiv, arXiv:2302.08453.

[13] Ye H, Zhang J, Liu S, Han X, Yang W. IP-adapter: Text compatible image prompt 
adapter for text-to-image diffusion models. 2023, arXiv, arXiv:2308.06721.

[14] Chandran P, Bradley D, Gross M, Beeler T. Semantic deep face models. In: 
2020 international conference on 3D vision. 3DV, Los Alamitos, CA, USA: 
IEEE Computer Society; 2020, p. 345–54. http://dx.doi.org/10.1109/3DV50981.
2020.00044, URL https://doi.ieeecomputersociety.org/10.1109/3DV50981.2020.
00044.

[15] Potamias RA, Ploumpis MTS, Zafeiriou S. ShapeFusion: A 3D diffusion model for 
localized shape editing. 2024, arXiv, arXiv:2403.19773.

[16] Zou K, Faisan S, Yu B, Valette S, Seo H. 4D facial expression diffusion model. 
ACM Trans Multimed Comput Commun Appl 2024. http://dx.doi.org/10.1145/
3653455.

[17] Dhariwal P, Nichol A. Diffusion models beat GANs on image synthesis. In: 
Ranzato M, Beygelzimer A, Dauphin Y, Liang P, Vaughan JW, editors. Advances 
in neural information processing systems (neurIPS). Vol. 34, Curran Associates, 
Inc.; 2021, p. 8780–94.

[18] Wang T, Zhang B, Zhang T, Gu S, Bao J, Baltrusaitis T, Shen J, Chen D, Wen F, 
Chen Q, Guo B. RODIN: A generative model for sculpting 3D digital avatars 
using diffusion. In: Proceedings of the IEEE/CVF conference on computer vision 
and pattern recognition. CVPR, 2023, p. 4563–73.

[19] Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface 
construction algorithm.. In: SIGGRAPH. ACM; 1987, p. 163–9.

[20] Huang X, Shao R, Zhang Q, Zhang H, Feng Y, Liu Y, Wang Q. Humannorm: Learn-
ing normal diffusion model for high-quality and realistic 3d human generation. 
2024.
9 
[21] Shen T, Gao J, Yin K, Liu M-Y, Fidler S. Deep marching tetrahedra: a hybrid 
representation for high-resolution 3D shape synthesis. In: Advances in neural 
information processing systems. NeurIPS, 2021.

[22] Poole B, Jain A, Barron JT, Mildenhall B. DreamFusion: Text-to-3D using 2D 
diffusion. In: The eleventh international conference on learning representations. 
ICLR, 2023.

[23] Bergman AW, Yifan W, Wetzstein G. Articulated 3D head avatar generation using 
text-to-image diffusion models. 2023, arXiv, arXiv:2307.04859.

[24] Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. In: 
Proceedings of the 26th annual conference on computer graphics and interactive 
techniques. SIGGRAPH ’99, USA: ACM Press/Addison-Wesley Publishing Co.; 
1999, p. 187–94. http://dx.doi.org/10.1145/311535.311556.

[25] Schuhmann C, Beaumont R, Vencu R, Gordon CW, Wightman R, Cherti M, 
Coombes T, Katta A, Mullis C, Wortsman M, Schramowski P, Kundurthy SR, 
Crowson K, Schmidt L, Kaczmarczyk R, Jitsev J. LAION-5B: An open large-
scale dataset for training next generation image-text models. In: Thirty-sixth 
conference on neural information processing systems datasets and benchmarks 
track. 2022.

[26] Wu M, Zhu H, Huang L, Zhuang Y, Lu Y, Cao X. High-fidelity 3D face generation 
from natural language descriptions. In: Proceedings of the IEEE/CVF conference 
on computer vision and pattern recognition. CVPR, 2023, p. 4521–30.

[27] Voynov A, Aberman K, Cohen-Or D. Sketch-guided text-to-image diffusion 
models. In: ACM SIGGRAPH 2023 conference proceedings. SIGGRAPH ’23, New 
York, NY, USA: Association for Computing Machinery; 2023, http://dx.doi.org/
10.1145/3588432.3591560.

[28] Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal 
Mach Intell 1986;PAMI-8(6):679–98.

[29] Kirschstein T, Giebenhain S, Nießner M. DiffusionAvatars: Deferred diffusion for 
high-fidelity 3D head avatars. In: Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition. CVPR, 2024, p. 5481–92.

[30] Ding Z, Zhang X, Xia Z, Jebe L, Tu Z, Zhang X. DiffusionRig: Learn-
ing personalized priors for facial appearance editing. In: Proceedings of the 
IEEE/CVF conference on computer vision and pattern recognition. CVPR, 2023, 
p. 12736–46.

[31] Gu J, Gao Q, Zhai S, Chen B, Liu L, Susskind J. Control3Diff: Learning 
controllable 3D diffusion models from single-view images. Int Conf 3D Vis ( 
3DV) 2024.

[32] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, 
Polosukhin I. Attention is all you need. In: Proceedings of the 31st international 
conference on neural information processing systems. NIPS ’17, Red Hook, NY, 
USA: Curran Associates Inc.; 2017, p. 6000–10.

[33] Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, 
Milan K, Quan J, Ramalho T, Grabska-Barwinska A, Hassabis D, Clopath C, 
Kumaran D, Hadsell R. Overcoming catastrophic forgetting in neural net-
works. Proc Natl Acad Sci 2017;114(13):3521–6. http://dx.doi.org/10.1073/
pnas.1611835114.

[34] Feng Y, Wu F, Shao X, Wang Y, Zhou X. Joint 3D face reconstruction and dense 
alignment with position map regression network. In: Proceedings of the European 
conference on computer vision. ECCV, 2018.

[35] Otto C, Naruniec J, Helminger L, Etterlin T, Mignone G, Chandran P, Zoss G, 
Schroers C, Gross M, Gotardo P, Bradley D, Weber R. Learning dynamic 
3D geometry and texture for video face swapping. Comput Graph Forum 
2022;41(7):611–22. http://dx.doi.org/10.1111/cgf.14705.

[36] Gu X, Gortler SJ, Hoppe H. Geometry images. ACM Trans Graph 
2002;21(3):355–61.

[37] Funkhouser T, Kazhdan M, Shilane P, Min P, Kiefer W, Tal A, Rusinkiewicz S, 
Dobkin D. Modeling by example. In: ACM SIGGRAPH 2004 papers. SIGGRAPH 
’04, New York, NY, USA: Association for Computing Machinery; 2004, p. 652–63. 
http://dx.doi.org/10.1145/1186562.1015775.

[38] Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of GANs for im-
proved quality, stability, and variation. In: International conference on learning 
representations. ICLR, 2018.

[39] Preechakul K, Chatthee N, Wizadwongsa S, Suwajanakorn S. Diffusion autoen-
coders: Toward a meaningful and decodable representation. In: Proceedings of 
the IEEE/CVF conference on computer vision and pattern recognition. CVPR, 
2022, p. 10619–29.

[40] Kadkhodaie Z, Guth F, Simoncelli EP, Mallat S. Generalization in diffusion 
models arises from geometry-adaptive harmonic representations. In: The twelfth 
international conference on learning representations. ICLR, 2024.

[41] Kingma DP, Welling M. Auto-Encoding Variational Bayes. In: 2nd international 
conference on learning representations. ICLR, 2014.

[42] Esser P, Rombach R, Ommer B. Taming transformers for high-resolution image 
synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and 
pattern recognition. CVPR, 2021, p. 12873–83.

[43] Zhang R, Isola P, Efros AA, Shechtman E, Wang O. The unreasonable effec-
tiveness of deep features as a perceptual metric. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition. CVPR, 2018.

[44] Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional 
adversarial networks. In: 2017 IEEE conference on computer vision and pattern 
recognition. CVPR, 2017, p. 5967–76. http://dx.doi.org/10.1109/CVPR.2017.
632.

https://doi.org/10.1016/j.cag.2025.104325
http://dx.doi.org/10.1111/cgf.14071
http://dx.doi.org/10.1111/cgf.12551
https://doi.org/10.1145/3130800.3130813
http://dx.doi.org/10.1145/3592094
http://arxiv.org/abs/2312.00375
http://dx.doi.org/10.1145/3641519.3657512
https://proceedings.neurips.cc/paper_files/paper/2023/file/0fb98d483fa580e0354bcdd3a003a3f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0fb98d483fa580e0354bcdd3a003a3f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0fb98d483fa580e0354bcdd3a003a3f3-Paper-Conference.pdf
http://arxiv.org/abs/2403.09326
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb9
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb9
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb9
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb9
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb9
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb9
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb9
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb10
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb10
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb10
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb10
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb10
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb10
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb10
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb11
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb11
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb11
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb11
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb11
http://arxiv.org/abs/2302.08453
http://arxiv.org/abs/2308.06721
http://dx.doi.org/10.1109/3DV50981.2020.00044
http://dx.doi.org/10.1109/3DV50981.2020.00044
http://dx.doi.org/10.1109/3DV50981.2020.00044
https://doi.ieeecomputersociety.org/10.1109/3DV50981.2020.00044
https://doi.ieeecomputersociety.org/10.1109/3DV50981.2020.00044
https://doi.ieeecomputersociety.org/10.1109/3DV50981.2020.00044
http://arxiv.org/abs/2403.19773
http://dx.doi.org/10.1145/3653455
http://dx.doi.org/10.1145/3653455
http://dx.doi.org/10.1145/3653455
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb17
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb17
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb17
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb17
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb17
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb17
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb17
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb18
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb18
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb18
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb18
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb18
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb18
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb18
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb19
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb19
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb19
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb20
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb20
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb20
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb20
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb20
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb21
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb21
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb21
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb21
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb21
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb22
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb22
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb22
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb22
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb22
http://arxiv.org/abs/2307.04859
http://dx.doi.org/10.1145/311535.311556
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb25
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb26
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb26
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb26
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb26
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb26
http://dx.doi.org/10.1145/3588432.3591560
http://dx.doi.org/10.1145/3588432.3591560
http://dx.doi.org/10.1145/3588432.3591560
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb28
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb28
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb28
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb29
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb29
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb29
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb29
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb29
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb30
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb30
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb30
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb30
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb30
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb30
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb30
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb31
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb31
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb31
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb31
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb31
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb32
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb32
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb32
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb32
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb32
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb32
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb32
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb34
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb34
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb34
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb34
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb34
http://dx.doi.org/10.1111/cgf.14705
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb36
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb36
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb36
http://dx.doi.org/10.1145/1186562.1015775
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb38
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb38
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb38
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb38
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb38
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb39
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb39
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb39
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb39
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb39
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb39
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb39
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb40
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb40
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb40
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb40
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb40
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb41
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb41
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb41
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb42
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb42
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb42
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb42
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb42
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb43
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb43
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb43
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb43
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb43
http://dx.doi.org/10.1109/CVPR.2017.632
http://dx.doi.org/10.1109/CVPR.2017.632
http://dx.doi.org/10.1109/CVPR.2017.632


C. Otto et al. Computers & Graphics 132 (2025) 104325 
[45] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. In: Larochelle H, 
Ranzato M, Hadsell R, Balcan M, Lin H, editors. Advances in neural information 
processing systems (neurIPS). Vol. 33, Curran Associates, Inc.; 2020, p. 6840–51.

[46] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical 
image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. 
Medical image computing and computer-assisted intervention – MICCAI 2015. 
Cham: Springer International Publishing; 2015, p. 234–41.

[47] Song J, Meng C, Ermon S. Denoising diffusion implicit models. In: International 
conference on learning representations. ICLR, 2021.

[48] Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, 
Mishkin P, Clark J, Krueger G, Sutskever I. Learning transferable visual models 
from natural language supervision. In: Meila M, Zhang T, editors. Proceedings 
of the 38th international conference on machine learning. PMLR, Proceedings of 
machine learning research, vol. 139, PMLR; 2021, p. 8748–63.

[49] Ho J, Salimans T. Classifier-free diffusion guidance. In: NeurIPS 2021 workshop 
on deep generative models and downstream applications. 2021.
10 
[50] Lugmayr A, Danelljan M, Romero A, Yu F, Timofte R, Van Gool L. RePaint: 
Inpainting using denoising diffusion probabilistic models. In: Proceedings of the 
IEEE/CVF conference on computer vision and pattern recognition. CVPR, 2022, 
p. 11461–71.

[51] Chandran P, Zoss G, Gotardo P, Bradley D. Continuous landmark detection 
with 3D queries. In: 2023 IEEE/CVF conference on computer vision and pattern 
recognition. CVPR, Los Alamitos, CA, USA: IEEE Computer Society; 2023, p. 
16858–67.

http://refhub.elsevier.com/S0097-8493(25)00166-9/sb45
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb45
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb45
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb45
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb45
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb46
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb46
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb46
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb46
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb46
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb46
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb46
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb47
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb47
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb47
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb48
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb48
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb48
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb48
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb48
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb48
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb48
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb48
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb48
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb49
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb49
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb49
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb50
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb50
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb50
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb50
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb50
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb50
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb50
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb51
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb51
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb51
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb51
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb51
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb51
http://refhub.elsevier.com/S0097-8493(25)00166-9/sb51

	Multimodal Conditional 3D Face Geometry Generation
	Introduction
	Related Work
	3D Face Geometry Generation
	Multimodal Conditional Image Generation

	Multimodal 3D Face Geometry Generation
	Dataset and Geometry Representation
	Variational Autoencoder
	Latent Diffusion Model
	Multimodal Conditional Generation

	Results
	Identity and Expression Conditioning
	Multimodal Conditioning
	Geometry Editing
	Dynamic Generation
	Limitations and Future Work

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Supplementary data
	Data availability
	References


