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We present a new method for multimodal conditional 3D face geometry generation that allows user-friendly
control over the output identity and expression via a number of different conditioning signals. Within a single
model, we demonstrate 3D faces generated from artistic sketches, portrait photos, Canny edges, FLAME face
model parameters, 2D face landmarks, or text prompts. Our approach is based on a diffusion process that

generates 3D geometry in a 2D parameterized UV domain. Geometry generation passes each conditioning
signal through a set of cross-attention layers (IP-Adapter), one set for each user-defined conditioning signal.
The result is an easy-to-use 3D face generation tool that produces topology-consistent, high-quality geometry

with fine-grain user control.

1. Introduction

The creation of 3D facial geometry for digital human characters is
a modeling task that usually requires tremendous artistic skill. Digital
sculpting with 3D modeling tools is a time-consuming and demanding
process, especially when the target is as recognizable as a human
face. This complexity has prompted research into data-driven sculpting
methods [1] and other, more user-friendly, interactive interfaces [2].

Several common morphable 3D face models (e.g. FLAME [3]) sim-
plify the facial modeling task by providing a shape subspace to operate
in, as well as simple parameters to control the identity and expression
geometry without the need for 3D modeling skills, but they are limited
in expressiveness and offer only basic control knobs.

Recent methods can create high quality 3D geometry and textures
from text prompts [4-8] via optimization, leveraging large pre-trained
text-to-image diffusion models [9]. These methods allow layman users
to create 3D faces through natural text descriptions. While this is a
powerful approach, it can still be difficult to achieve a particular output
through text description [10]. Some concepts like the specific curvature
of a face or a unique facial expression are much easier to convey via
sketches, edge contours or portrait photos than through text.

In the image domain, approaches like ControlNet [11] or T2I-
Adapter [12] have demonstrated controllable image generation beyond
text using sketches, images, or edge maps as conditioning signals.
These methods provide users with much more fine-grained control over
the generation process than text-based methods alone. Ye et al. [13]
propose IP-Adapters to control Stable Diffusion [9] with image prompts
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by learning new cross-attention layers. However, image-based methods
are not easy to extend to 3D facial geometry generation.

We present a flexible new method for 3D facial geometry generation
that creates high quality faces from any one of various inputs, including
sketches, 2D landmarks, Canny edges, FLAME face model parameters,
portrait photos and text. Our approach is to train a conditional diffu-
sion model on a high quality 3D facial dataset constructed from high
resolution scans [14] represented in the 2D UV domain. Our model
is trained from scratch, without the need for a pre-trained foundation
model like Stable Diffusion. To condition our model we train one set
of cross-attention layers for each type of conditioning input, following
IP-Adapter [13]. First, the diffusion model learns to inject FLAME
parameters via the original UNet cross-attention layers. We then freeze
the diffusion model while training additional sets of cross-attention
layers (e.g. one for artist sketches, 2D landmarks, portrait photos,
etc.). Our FLAME-conditioned model allows us to re-interpret FLAME-
parameterized faces in a generative sense - providing a space of high
resolution stochastic variations on top of the traditional low resolution
FLAME model.

Our method allows for fast and user-friendly creation of 3D digital
character faces with expressions, generated with a consistent mesh
topology, and controlled by the input mode preferred by the user,
all within a single model. We demonstrate several applications of our
method including sketch-based 3D face modeling, geometry from 2D
facial landmarks, Canny edges, or portrait photos, text-to-3D facial
geometry, and finally, extending the FLAME model space by allowing
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Fig. 1. We propose a novel method for diffusion-based controllable 3D face geometry generation that allows for controlling the results via several conditioning modes: artistic

sketches, portrait photos, Canny edges, FLAME parameters, 2D facial landmarks, and text.

stochastic diffusion sampling conditioned on the same semantic FLAME
parameters (Fig. 1). In summary, we make the following contributions:

» We present a new method for 3D face geometry generation from 6
different types of conditionings (prompts) within a single model.
We propose a comprehensive solution for training such a method
from scratch, with 3D geometry data augmentations and by rep-
resenting 3D geometry as position maps to better fit existing
diffusion pipelines.

We show that our method supports face generation with ex-
pressions, sketch-based editing for 3D face design, stochastic
variations of details conditioned on low resolution FLAME faces,
generalization to in-the-wild data and dynamic face generation
from videos.

2. Related work

In the following, we present relevant related work on 3D face
geometry generation with diffusion models, as well as on injecting
additional control modes into diffusion models.

2.1. 3D face geometry generation

Recent work uses diffusion models to control the generation of
novel 3D face geometry. ShapeFusion [15] generates face geometry
by running the diffusion process directly on the mesh input vertices.
It allows unconditional and conditional face geometry generation and
supports various editing operations on a given mesh, based on selected
vertices (anchor points). However, it does not support conditioning
signals beyond vertices. 4DFM [16] trains an unconditional diffusion
model on a set of sparse 3D landmarks for facial expression gener-
ation. It can generate dynamic facial expression sequences based on
3D landmarks by retargeting the landmarks to a mesh after the dif-
fusion process. While they support conditioning with different signals
such as expression labels and text, they achieve control via classifier-
guidance [17] which requires training additional classifiers on noisy
data.

Other methods focus on 3D face or head avatars, which can generate
3D geometry and texture. Rodin [18] can generate triplane-based head
geometry with text or image conditioning, but the resulting geometry
is extracted with Marching Cubes [19] and thus not in the same
topology across generations. HeadArtist [6], HeadSculpt [7] and Hu-
manNorm [20] use Deep Marching Tetrahedra [21], text-prompts and
a Score Distillation Loss (SDS) [22] to generate high-quality human
heads. However, the topology of the extracted geometry differs across
samples and generating a single geometry sample takes almost one

hour on a single 3090 GPU. DreamFace [4], FaceG2E [5] and Bergman
et al. [23] propose 3D Morphable Model (3DMM)-based [24] pipelines
that generate topology-consistent 3D face geometry and textures from
text. The geometry is created by optimizing 3DMM parameters using a
SDS loss. During the optimization, the SDS loss uses the feedback from
a pre-trained text-to-image latent diffusion model to update the 3DMM
parameters given a geometry render. DreamFace [4] and FaceG2E [5]
focus on optimizing 3DMM identity parameters and have therefore
difficulties in directly generating facial expressions from text prompts.
However, DreamFace does support generating faces with expressions
from image prompts and FaceG2E results can be imported into the
CG pipeline where facial expressions can be added in a separate step
after the text-based generation. In general, SDS-based methods rely on
the Stable Diffusion (SD) [9] prior which was pre-trained on billions
of images [25] to guide their generations. SDS optimization is usually
much slower in runtime compared to standard diffusion sampling, as it
must backpropagate gradients from a diffusion model to a 3D model via
a differentiable renderer for many optimization steps. Describe3D [26]
can generate 3D face geometry from text-prompts without diffusion, by
mapping CLIP text embeddings to 3DMM shape parameters. However,
it does not support different facial expressions.

In our work, we generate controllable 3D face geometry in a sin-
gle common topology from several different conditioning modes. Our
method natively supports facial expressions and does not rely on SDS
optimization, classifier-guidance or the SD prior.

2.2. Multimodal conditional image generation

Image generation with diffusion models can be controlled with
conditioning modes (prompt types) that are different from text such
as sketches [27], Canny edges [28], RGB images [13], expression
parameters [29] or face shape [30,31]. To control pre-trained diffusion
models with new modes, ControlNet [11] introduces a trainable copy
of the diffusion model’s UNet encoding blocks, which take the new
conditioning as input. The output of the copied model is added to the
skip-connections of the frozen pre-trained diffusion model. A separate
trainable copy of the UNet encoding blocks (361M parameters) is
created per conditioning mode. T2I-Adapter [12] aligns the internal
knowledge of a pre-trained diffusion model with new control modes
by proposing a small adapter network that achieves control similar
to ControlNet, while requiring less parameters (77M). IP-Adapter [13]
injects each conditioning via separate cross-attention layers [32] while
requiring even less parameters (22M). It introduces new cross-attention
layers whose outputs are added to those of the original UNet. Ye
et al. [13] show that the diffusion model follows the added conditioning
signal closely, when it comes through the newly trained cross-attention
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Fig. 2. Our pipeline for diffusion-based controllable 3D face geometry generation which uses a delta UV position map representation AT to generate results. We can control the
results with several conditioning modes (i.e. FLAME parameters c,, sketches ¢;, Canny edges c,, 2D landmarks c;, portrait photos c, and text cs).

layers. In general, adapters can add control with new conditioning
modes even long after the training of the underlying base diffusion
model is concluded. They can also add new conditioning modes for
which only limited paired training data is available, because the un-
derlying diffusion model is frozen, avoiding issues such as catastrophic
forgetting [11,33]. While pre-trained text-to-image diffusion models
understand the RGB image domain and can generate images condi-
tioned on a large variety of input modalities, the domain gap to 3D face
geometry is large. Therefore, many related works use the rather slow
SDS optimization procedure to lift faces into 3D. To allow for faster
inference-time sampling, we train our diffusion model from scratch
using ground truth 3D face data and geometry data augmentations. We
represent 3D face geometry in the 2D UV domain, which enables us
to train a 2D diffusion model that can incorporate new conditioning
modes using IP-Adapters.

3. Multimodal 3D face geometry generation

We propose a novel method for diffusion-based controllable 3D face
geometry generation that allows for controlling the results with several
conditioning modes (i.e. sketches, 2D landmarks, Canny edges, FLAME
parameters, portrait photos and text).

Our method consists of four components: First, we create a dataset
of 3D faces, where each face is represented as a UV position map
describing the vertex positions (Section 3.1). This data representation
can be easily processed with 2D convolutional neural networks. Second,
a variational autoencoder (VAE), which compresses our UV position
map face data into a latent space representation (Section 3.2). Third,
a latent diffusion model (LDM), which learns a non-linear, deep con-
trollable face model in latent space (Section 3.3). Fourth, we learn
mode-specific cross-attention layers (IP-Adapters) with the ability to
transform and inject conditioning modes into the LDM for controllable
3D face geometry generation (Section 3.4). Each of the components is
explained in the following and visualized in Fig. 2.

3.1. Dataset and geometry representation

To represent our face geometries, we generate a novel dataset based
on the 3D scan data acquired by Chandran et al. [14], where all
faces are stabilized and in topological correspondence. In total, we use
323 identities in our training dataset, where each identity shows 24
different facial expressions (7752 examples). The full dataset contains
341 identities and we randomly choose around 5% (all expressions of
18 identities) as a validation set. We subtract a template face shape T

from all faces in the dataset and thus represent each individual face as
a delta from the template face. The computed delta representation AT
reduces artifacts in the generated 3D face geometry, when compared to
the full face representation. We transform each delta face into a vertex
delta position map in UV space, which is suitable for being processed
by neural networks [34-36]. This representation records the x, y, z
coordinates of the face geometry within a 3-channel image, similar to
traditional color texture maps, but instead of an RGB value at each pixel
we store the x, y, z delta values. To improve generalization, we augment
our existing geometry training data by synthetic identities which we
generate via identity interpolation (50k examples) and by mixing face
parts of different identities together [37] (150k examples). Adding
the augmentations during LDM training improves the generalization
to novel identities when conditioning on the FLAME parameters. We
kindly refer to our supplementary material for ablation studies on the
geometry representation and the use of geometry data augmentations.
Combining original and augmented data leads to a total training dataset
size of 207 752 examples. Thus our training dataset is slightly larger in
size compared to related 2D image diffusion models that specialize on
human faces (e.g. 30k images for the CelebA-HQ [38] face LDM [9], or
the 70k images for the Diffusion Autoencoder in Preechakul et al. [39]),
but still much smaller than the datasets required to train general
foundation diffusion models that can represent various objects beyond
faces. According to Kadkhodaie et al. [40] diffusion models trained on
around 100k samples provide evidence of strong generalization in the
face domain. We use the parameter space of a common 3D morphable
face model (FLAME [3]) as a base conditioning because we can fit
FLAME to the scan data and to the augmented data and thus generate a
large dataset of paired geometry-FLAME parameter data. Additionally,
we create paired training data for several conditioning modes that only
have limited paired data available. For example, portrait photos are
only available for the scans from the dataset of Chandran et al. [14],
but not for the augmentation data. However, it is possible to inject
new modalities with limited paired data by training new cross attention
layers while keeping the LDM frozen as shown by Ye et al. [13] (and
described in Section 3.4).

3.2. Variational autoencoder

To reduce the computational requirements for the diffusion model,
we downsample our 256> UV position map data by a factor of four
into a 642 latent space using a variational autoencoder (VAE) [41]
consisting of an encoder £ and a decoder D. We train the VAE from
scratch following the autoencoder loss function and architecture as it is
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presented in related work [9,42]. Specifically, we use the VQ-GAN [42]
autoencoder loss:

Lyag = Lrec + Loan + Ereg' 1

L,,. consists of a pixel-wise L1 loss and a LPIPS [43] perceptual loss.
It compares the input UV position maps to the reconstructions through
the VAE. L,y evaluates inputs x and reconstructions D(€(x)) with a
patch-based discriminator [44] and L,,, employs a codebook loss which
serves as a latent space regularizer. Please refer to Esser et al. [42] for
more details.

3.3. Latent diffusion model

Next, we train a latent diffusion model (LDM) [9], that learns to
generate latent UV position maps z = £(x). To train the LDM, a forward
diffusion process is defined as a Markov chain, which noises the latents
z following a fixed noise schedule of T uniformly sampled timesteps.
At the last time step 7', the distribution is Gaussian. We can directly
sample z, at an arbitrary timestep ¢ by:

z,(2y, €) = \/Ezo +v1-ae

where 1 — @, describes the variance of the noise and @, := []._, o,
according to a fixed noise schedule.

We learn to predict the noise e that was added to a noisy latent
image z, following Ho et al. [45]:

€~ N(O,I), )

2
Lrpm =By cprenon (€ = €9z, c0.013] 5 3

where ¢ is the timestep, ¢y = p,(y) is a FLAME parameter conditioning
and €y(z;,¢,t) is the UNet [46] neural network with parameters 6.
The FLAME conditioning ¢, is obtained by fitting FLAME to the face
geometry encoded in z, and mapping it through a MLP p(y).

During inference (reverse diffusion process) we generate latent 2D
UV position maps from the model distribution. We start from z; ~
N'(0,1) and iteratively compute less noisy latents until we reach a
clean latent sample z,. Sampling following DDPM [45] or DDIM [47]
computes z,_; from z, based on the UNet output.

3.4. Multimodal conditional generation

To control the generations with additional conditioning modes
(beyond the FLAME parameters c,), we train different sets of cross-
attention layers, following IP-Adapter [13]. The LDM itself is kept
frozen. In this way, we can integrate novel conditioning modes post-
LDM training even with limited paired mode-geometry data. We train
one set for each of the following conditioning modes: sketches c,,
Canny edges c¢,, 2D landmarks c¢;, portrait photos ¢, and text cs.
The output of the new cross-attention layers is added to the outputs
of the existing LDM cross-attention layers, thereby injecting the new
conditioning signal into the generation process:

Z = Attention(Q, K, V) + Attention’(Q.K/ , V'), C)]

where Q are the intermediate UNet query features, K and V are keys
and values for our FLAME conditioning ¢, and K/, V! are keys and
values for the newly injected modality c,,.

K=¢,-W,V=¢,-W,

! ! ! ! (5)
K, =¢u- Wk,m’Vm =¢, W,

Here, W;c,m and W, = represent the newly added weights that are
updated during training.

Prior to passing each of the above-mentioned conditioning modes
to the cross-attention layers, we pass each of them through CLIP [48]
and extract a 768 dimensional global CLIP feature vector, which serves
as our conditioning representation. Following IP-Adapter, we train
a small projection network consisting of one linear layer and layer
normalization, designed to project the CLIP feature vector into several
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extra context tokens before injecting it into the cross-attention layers.
We use 16 tokens for each of our conditionings to allow for meaningful
attention computation.

At inference time, we can control the 3D face geometry generation
with any of the modes using the respective set of cross-attention layers
and classifier-free guidance [49]. The strength of the conditioning
signal can be increased by increasing the hyperparameter w:

€y(z,, ¢, €, 1) = WEY(Z,, €y, €, 1) + (1 — W)EY(2,, 1) (6)

To condition only on a newly added mode or to generate geometry
unconditionally, the FLAME conditioning ¢, is set to its null embedding.
Additionally, for unconditional generation, the new cross-attention in
Eq. (4), which feeds ¢, to the diffusion model, is simply not added
to the original attention. Our full method pipeline is visualized in Fig.
2. For more implementation details, please refer to our supplementary
material.

4. Results

We now show several results and applications of our new mul-
timodal conditional 3D face geometry generation method. We begin
by demonstrating control over the generated facial geometry using
FLAME’s identity and expression parameters (Section 4.1). We then
demonstrate multimodal conditioned geometry generation by guiding
the denoising process using sketches, sparse 2D landmarks, Canny
edges, portrait photos and text. We evaluate the effectiveness of these
different modalities in guiding the generated geometry in Section 4.2.
We also compare our method to the state-of-the-art related work both
on text and image prompts in Section 4.2. In addition to using different
conditioning modes, we show how one can also spatially restrict the
guidance to a particular face region to perform precise geometry edits
in Section 4.3. We can also generate dynamic facial performances by
guiding our model from video inputs and demonstrate that our method
can produce facial animations that are stable across time (Section 4.4).
Finally, we discuss the limitations of our method in Section 4.5.

4.1. Identity and expression conditioning

The base conditioning used to train our geometry generator are the
identity and expression parameters from the FLAME model [3]. We
use 300 identity parameters (f), 100 expression parameters (y) and
3 jaw pose (0) parameters. We combine these FLAME parameters into
a 403-dimensional conditioning vector which we pass through a 3-layer
MLP with Leaky ReLU activation functions prior to injecting it into the
diffusion model via cross-attention.

Recollect that we do not use the geometry from the FLAME model
itself to train our diffusion model. Instead we fit the FLAME model
to the high quality facial geometry from Chandran et al. [14] only
to obtain identity and expression parameters, and train the diffusion
model directly on the geometry captured by Chandran et al.

We visualize geometries generated by our model for unseen FLAME
parameters in Fig. 3. As our underlying mesh topology is different from
FLAME and represents ~10-times more vertices, it can express a greater
level of detail that is not present in the lower resolution FLAME mesh.
This high resolution detail is captured and reproduced by the denoising
process. Therefore, by simply varying the noise seed, one can obtain
variations of the FLAME-conditioned geometry, each of which contain
different mid/high frequency details.

Disentangling Identity and Expression. Our diffusion model also
preserves the disentanglement between facial identity and expression
that is present in FLAME. In Fig. 4, we show how a smooth interpolation
of FLAME’s identity and expression coefficients results in a smooth, yet
nonlinear, interpolation of our generated geometry. We can observe
that the facial expression remains fixed when interpolating between
identities, and vice versa (please also refer to the supplemental video).
To eliminate the randomness in the generation, we used the same
initial noise to generate the interpolated geometries along with DDIM
sampling [47].
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Fig. 3. Changing the noise seed while conditioning on the FLAME parameters does not
affect the identity and expression of the generated geometry, but only the stochastic
details that are added on top. Our model can capture richer geometric detail that is
not present in the original FLAME mesh, while still respecting FLAME’s identity and
expression parameters. Each row shows a different set of FLAME parameters, with the
corresponding FLAME mesh visualized in the first column.

Ours

Ours

Fig. 4. Identity and expression disentanglement. Traversing the first dimension in
FLAME’s identity space leads to smooth changes in our generated face geometry (rows
1 and 2). Similarly a linear interpolation of FLAME’s expression parameters results in
a smooth, yet nonlinear, interpolation of facial expression as seen in rows 3 and 4.
Please refer to our supplementary video to see the complete interpolation.

4.2. Multimodal conditioning

Beyond the underlying FLAME-based control, we introduce addi-
tional conditioning modes to control our diffusion model following
Section 3.4. We now discuss the results of facial geometry generation
by conditioning our diffusion model on sketches, sparse 2D landmarks,
Canny edges, portrait RGB photos and text. Geometries generated for
different conditionings from each of these additional modes are shown
in Fig. 5.

Quantitative Comparison. While our generated geometry follows the
identity and expression seen in the input conditioning signal, the degree
to which the conditioning signal constrains the generated geometry
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Fig. 5. Multimodal conditional generation results on our validation dataset, including
conditioning on portrait images, sketches, FLAME parameters, Canny edges, 2D land-
marks and text. The FLAME parameter inputs are visualized as meshes. Our model
captures the facial identity and expression across all conditioning modes. We use
classifier-free guidance of w = 1, except for some text-prompts where we use w =3 for
even stronger facial expressions.

Output

varies from mode to mode. We evaluate the effectiveness of each of our
conditioning modes in guiding the generated geometry towards ground
truth scans, by computing the Euclidean error between the generated
geometry and the ground truth geometry for each conditioning mode.
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Table 1

We report the vertex-to-vertex error (V2V) to the original scanned geometry in mm on
our validation set of 432 shapes for generations from different types of conditioning
signals. Conditions that are more descriptive of the end facial geometry like FLAME
parameters, and portrait images achieve a lower error than others. Results are averaged
over three different seeds.

V2V error Mean | Median | Std |
2D landmarks 6.390 5.950 1.945
Canny edges 6.007 5.701 1.672
Sketch 5.521 5.106 1.792
Portrait photo 5.207 4.942 1.471
FLAME parameters 5.008 4.737 1.498

Table 2

We report the CLIP score (ViT-B/32) for text-to-geometry generation to related work.
We prompt each method with 10 text prompts specifying a neutral expression.
Additionally, we compare the average inference-time per sample between different
methods on a single 3090 GPU. *Describe3D inference-time is measured on a single
1080 GPU and DreamFace-V2 results are exported from their web interface (N/A). We
run FaceG2E fast for only 15/200 optimization steps to match the inference-time of
our method for comparison. The best score per column is marked in bold and the
second-best score is underlined.

Method CLIP (ViT-B/32) 1 Time |
Describe3D [26] 32.69 80.62*
DreamFace-V2 [4] 33.85 N/A
FaceG2E fast [5] 32.41 6.07
FaceG2E [5] 35.03 42.87
Ours 34.15 5.48

Describe3D

Text Prompt DreamFace FaceG2E fast FaceG2E

african man,
neutral expression|

old woman,
neutral
expression

middle-aged
asian person,
neutral expression|

woman,

high cheekbones,
defined jawline,
straight nose,

neutral expression

man
chubby face,
wide forehead,
wide nose,
neutral expression|

Fig. 6. Comparison to related work on text-to-geometry generation with neutral
expression prompts. We sample from our model using classifier-free guidance w = 3.

In Table 1, we report the vertex-to-vertex (V2V) error of 432 shapes
from our validation set for each type of conditioning. We observe
that conditioning signals that are more descriptive, such as FLAME
parameters or portrait photos, obtain a lower error when compared to
signals that are less descriptive of the final geometry (2D landmarks,
Canny edges and sketches). Please refer to our supplementary material
for error maps on our validation set.

Next, we compare our method to the state-of-the-art related work
methods. First, we look at the text conditioning mode, because prompts
from this mode are most commonly supported by related work. We
compare our method to Describe3D [26], DreamFace [4] and two
variants of FaceG2E [5], over 10 different text prompts. We report
the average CLIP score (ViT-B/32) between the CLIP embeddings from
the text prompt and the CLIP embeddings extracted from the rendered
generated face geometry. Specifically, we evaluate text prompts that
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Describe3D

Text Prompt DreamFace FaceG2E fast FaceG2E Ours

african man,
closed eyes

overweight man,
shouting
angrily

middle-aged
asian person,
kiss face
expression

woman,
high cheekbones,
defined jawline,
straight nose,
mouth opened
to the side

man
chubby face,
wide forehead,
wide nose,
big smile

Fig. 7. Comparison to related work on text-to-geometry generation with expression
prompts.

specify varied identities all with a neutral expression, because neutrals
are supported by all methods. Each prompt is prepended with “A
shaded, textureless 3D face model of ”, although for legibility, we shorten
the text prompts when we add them to figures (e.g. Figs. 6 and 7).
Please refer to our supplementary material for the exact text prompts.
Among the compared methods, our method has the second highest CLIP
score on text prompts that specify a neutral expression (Table 2).

Qualitative Comparison. We first show qualitative comparisons to
state-of-the-art text-to-geometry methods on neutral text prompts in
Fig. 6. Our method produces realistic faces that are subjectively on
par with other techniques. Furthermore, it is important note that our
method also natively supports generating faces with expressions by pro-
viding an expression description in the text prompt. This is a situation
that other methods struggle with, as shown in Fig. 7.

Second, besides text prompts, DreamFace and our method also
support RGB image prompts (Fig. 8). Our method achieves results com-
parable to DreamFace without relying on SDS optimization as part of
the geometry generation. Note, that to aid the visual comparisons with
previous methods, we complete the head in our results by deforming a
template head to match our generated face. Despite training on purely
studio data, we show how our model responds to conditionings derived
from in-the-wild data in Fig. 9. For direct visual comparison with the
identity and facial expression in the conditioning signal, we overlay
the generated meshes onto validation images from whom the respective
conditionings were extracted in Fig. 10.

Combining Two Conditionings. As our method involves learning
additional modes of conditioning on top of an underlying FLAME con-
ditioned diffusion model, we can also use more than one conditioning
signal at inference time to guide the generation. In Fig. 11, we show
how combining both FLAME parameter and portrait image conditioning
lowers the vertex error on a validation sample, as the denoising UNet
now has access to more information about the desired identity and
expression. Note that only our base conditioning (FLAME parameters)
is present when training any one of the other modalities cross-attention
layers. Therefore, we can expect complementary results only when
combining the FLAME parameter conditioning with another modality.

Inference time. We show that our method has significant inference-
time benefits over its competitors that are mainly based on SDS op-
timization. It has the fastest average inference speed per sample on
text-to-geometry generation, because once it is trained, it can directly
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Image
Prompt

DreamFace Ours

Fig. 8. Image prompt to face geometry generation. Comparison between DreamFace [4]
and our method on in-the-wild test data.

Fig. 9. Generation using conditioning signals obtained from in-the-wild test data
(Portrait images top row, Canny edge maps bottom row). Our model produces
reasonable facial geometry from in-the-wild conditions despite being trained only on
studio data.

FLAME conditioning Portrait photo conditioning

Fig. 10. We overlay our generated meshes on top of the images that display the
identities (and expressions) from whom the respective conditioning signals were
extracted. We show results for FLAME and portrait photo conditioning.
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Fig. 11. Multimodal conditioning using portrait photo and FLAME parameter condi-
tioning separately and simultaneously. The first row shows the conditioning inputs. The
second row shows the generated face geometry. The third row shows the error map
when compared with the original geometry from our validation set.

sample 3D faces from the diffusion model. This setup alleviates the need
for compute intensive iterative SDS optimization of a 3D face represen-
tation. Specifically, our method is more than seven times faster than
its closest competitor FaceG2E (5.48 s vs. 42.87 s). To compare results
with similar inference speeds, we run FaceG2E fast for approximately
the same time as our own method and evaluate the CLIP score results
(see Table 2).

Controlling the Conditioning Strength. To control the strength w
of the guiding condition, we make use of classifier-free guidance [49]
following Eq. (6). Increasing the guidance strength increases the effect
that the input conditioning (prompt) has on the resulting geometry.
Stronger guidance can lead to increased level of detail in the generated
face geometry and greater resemblance with the input prompt. For
example, in Fig. 12, the expression of the generated geometry of the
subject in the first row displays stronger wrinkles, and a closer match
to the portrait image when setting w = 3 compared to setting it to
w = 1. Unless specified differently, we use w = 1 for all our conditional
generation results.

4.3. Geometry editing

The latent space of our autoencoder preserves the spatial layout of
the original UV position map, much like how the latent space of the
image autoencoder in text-to-image models [9] preserves the spatial
layout of the encoded image. As a consequence, by masking regions in
the latent UV position map corresponding to regions we wish to modify,
and by denoising the masked regions, one can apply intuitive edits to
particular regions of the facial geometry. Please refer to RePaint [50]
for more details on the masking process. Even when using masks with
sharp boundaries, the denoising process can take care of smoothly
interpolating at the mask boundaries. We show results of guiding the
editing of facial geometry with user conditions in Fig. 13. Specifically,
we show an interactive sketching workflow (~6 s/sample), where an
artist can progressively edit a generated geometry by modifying one
region at a time.

4.4. Dynamic generation

Although our model is only trained with static face shapes, we
find that it can generate temporally stable 3D facial geometries when
conditioned on per-frame FLAME parameters derived from animation
sequences or on CLIP embeddings obtained from individual frames from
in-the-wild videos. In Fig. 14, we show the generated 3D face geometry
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Mode  Input w=0

Portrait

Edges

Landmarks

Fig. 12. By varying the guidance strength w, we can control the extent to which
our conditioning signals affect the generated geometry. Setting w = 0 results in
unconditional generation, while w > 1 results in conditional generation.
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Fig. 13. Conditional generation from an input sketch (a), followed by local edits of
the mouth (b, c), the face shape (d) and the nose (e). The masks used to constrain the
region of modification are shown in the insets.

produced by our method when conditioned on various signals derived
from videos. To demonstrate the use of sketches as dynamic condition-
ing, we use a recent face reconstruction technique [51] to track the
facial geometry in 3D from an in-the-wild video and then render out
2D sketches using a hand-painted texture map. We identify that the
only pre-processing required to obtain dynamically stable generations
from CLIP embeddings is to temporally smooth them before using them
as the conditioning signal. To further ensure stable generations across
time, we use the same noise seed and DDIM sampling.

4.5. Limitations and future work

As limitations, we identify that our model can produce geometric
artifacts for extreme expressions, especially when controlled using
FLAME’s jaw pose parameters. This problem is mainly a data limitation
and could be resolved by sourcing a larger dataset of extreme expres-
sions, by oversampling expressions during training or by weighting the
loss towards focusing more on extreme expressions. Additionally, we
identify a limitation of extremely similar CLIP-based conditionings for
left/right mirrors of asymmetrical face expressions, leading to a direc-
tion ambiguity in the geometry output. We refer to our supplementary
material for further discussion and visualization of these failure cases.
Beyond addressing those limitations, future work could incorporate

Computers & Graphics 132 (2025) 104325

Fig. 14. Dynamic geometry generation results given sketch, landmark, FLAME param-
eters or portrait photos from 4 different input videos as conditionings. Our results
change smoothly across time while maintaining a consistent identity rather well.

facial appearance information into our method, enabling multimodal
control over 3D faces with corresponding texture.

5. Conclusion

We propose a new framework for 3D facial geometry generation
based on a latent diffusion model that can be guided using multiple
types of conditionings (prompts). Our conditional geometry genera-
tor operates in a latent geometry space. It can produce high quality
geometry at comparably fast inference speeds using a UV position
map representation. It can be seamlessly conditioned on hand-drawn
sketches, 2D landmarks, Canny edges, FLAME-parameters, RGB por-
trait photos and text; resulting in a comprehensive facial geometry
generator that supports many applications. For example, stochastic
detail variation in the generated geometry or local geometry edits. We
train our model from scratch on only static face shapes captured in
a studio setting and yet demonstrate that our model can generalize
reasonably to in-the-wild conditioning signals, and can also generate
facial performances when conditioned on frames from video data.
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