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Supplementary Material - Multimodal Conditional 3D Face
Geometry Generation

This supplementary document and our supplementary video
provide additional insights into our method and results.

1. Ablation Studies

To validate the benefits of representing the face geometry
as a delta from the template mesh, we train a latent diffusion
model (LDM) on the full vertex map representation and a
second LDM on the delta vertex map representation. We
qualitatively compare both representations in Fig. [T] and can
observe that the delta vertex map representation leads to less
artifacts compared to the full vertex map representation (e.g.on
the eyelids).

/

Fig. 1. Ablation study of the geometry representation. On the left is the
generated geometry when training on the full vertex map representation,
which shows visible artifacts (e.g., on the eyelid). Our proposed training
with the delta vertex maps (right) removes such artifacts.

Next, we validate the benefits of adding geometry data aug-
mentations to our training data. We compare FLAME param-
eter conditioned generations from two LDMs, where one was
trained with and the other was trained without geometry data
augmentations. As we illustrate in Table[I] our generations are
closer to the ground truth geometry (lower vertex-to-vertex er-
ror), when using geometry data augmentations. This result in-
dicates that using geometry data augmentations improves the
models ability to capture unseen identities.

2. Implementation Details

For our dataset, we crop the full head face geometry to allo-
cate more vertices to the face region, representing 50520 face
vertices within each 2562 UV position map. At 256 resolu-
tion we can represent reasonably high-resolution face geometry
while being able to limit our VAE training time to 8 days using
our training dataset of 7752 samples (~1.4 seconds/iteration;

Table 1. We compare the 3D face geometry generated by diffusion models
that were trained with and without 3D data augmentations. We measure
the vertex-to-vertex error (V2V) in mm between FLAME parameter con-
ditioned generations and ground truth geometry on neutral shapes from
our validation set. The model trained using data augmentation is able to
capture unseen identities better. Results are averaged over three different
seeds.

V2V error Mean | Median| Std |
No augmentations 4.093 3.692 2.170
With augmentations ~ 3.757 3.352 2.085

batch size 8). We use a learning rate of 4.5e-6 and a codebook
size of 8192. Note that for training our VAE, we did not use the
data augmentations described in Section |I| as the autoencoder
was already able to reconstruct test geometries with high accu-
racy when trained only on the studio dataset. The vertex error
between reconstructions and the original geometry is usually
below 0.3 millimeters and only very high-frequency details are
lost. We visualize the VAE reconstruction error in Fig.[2| Next,
we train our LDM for 4 days (~1.6 seconds/iteration; batch
size 12) with a learning rate of le-4 and diffusion timesteps
T = 1000. We utilize geometry data augmentations with corre-
sponding FLAME fits during training (+200k samples) to allow
for better generalization across identities during generation. Af-
terwards, we train each set of cross-attention layers with a learn-
ing rate of le-4 for 6 days (~3.3 seconds/iteration; batch size
24) while keeping the LDM frozen. With a probability of 0.05,
we randomly set either ¢y or ¢, or both to their null embed-
dings during training. This step enables classifier-free guidance
at inference. Note that we do not add augmented geometry data
to train the new cross-attention layers because we do not have
access to paired mode-geometry data for modes such as portrait
photos. We use the CLIP ViT-L/14 model [1] to extract 768 di-
mensional CLIP feature vectors as our conditioning representa-
tion for all modalities except the base FLAME parameter con-
ditioning. We visualize the layers that pass our base FLAME
parameter conditioning to the diffusion model in Fig.[3] These
layers are trained jointly with the diffusion model parameters.
Afterwards, the diffusion model and the base conditioning lay-
ers are frozen. For adding a new modality a newly added set of
mode-specific layers are trained (linear layer, layer norm and a
set of cross-attention layers). Sketches, portrait photos, Canny
edges and landmarks are passed through a frozen CLIP image
encoder before reaching their own mode-specific trainable lay-
ers. We train a different set of layers per mode (e.g. one for
sketches, one for portrait photos etc.). Text is passed through
a frozen CLIP text encoder before reaching text-specific train-
able layers (Fig.[3). All training experiments were run on a sin-
gle RTX A6000 GPU. Inference was run on single RTX A6000
GPUs, 3090 GPUs, and 1080 GPUs. Also note that the VAE
and the LDM have to be trained only once and novel condition-
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ing modes can be added by training only the new cross-attention
layers. Unless mentioned otherwise, we generate every result
by running DDPM sampling steps S = 50 with conditioning
strength w = 1. The average time to generate a geometry sam-
ple with our diffusion model is ~6 seconds on a single 3090
GPU. To aid the visual similarity for the comparison with the
state-of-the-art methods, we complete the head by deforming a
template head to match our generated face. We run the CLIP
score evaluation for all methods on full head renders. We align
all 3D faces to the same space, before rendering each with the
same camera. We use the CLIP ViT-B/32 variant for the score
calculation and report the average score for each method.

Fig. 2. The VAE reconstruction error is usually below 0.3 millimeters when
compared to the ground truth geometry. Some high frequency details are
lost after encoding and decoding the original geometry with the VAE due
to VAE compression.
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Fig. 3. Modality injection visualization. Our FLAME parameter base con-
ditioning layers (a) are trained jointly with the diffusion model. After-
wards, both are frozen and only the new mode-specific layers are trained.
Sketches, portrait photos, Canny edges and landmarks are passed through
a frozen CLIP image encoder (b) before reaching their own set of mode-
specific trainable layers (one set of layers per mode). Text is passed through
a frozen CLIP text encoder (c) before reaching a set of text-specific train-
able layers.

Fig. 4. Unconditional face shape editing (inpainting). In the top row, the
nose is kept fixed, while we sample the remaining regions unconditionally.
In the bottom row, we sample the nose region unconditionally while keep-
ing the other regions fixed.

3. Exact Text Prompts

Table [2] lists the exact text prompts used for the CLIP score
comparison and the figures in the main document.

4. Additional Geometry Editing Results

Further mask-based editing of facial geometries using our
model is shown in Fig. [ In the top row of Fig. ] we mask
the nose region of the latent position map, such that it remains
fixed throughout the multiple steps of denoising. We then gen-
erate multiple geometry samples by varying the initial noise in-
put to the diffusion model. The noise predicted at each denois-
ing step is multiplied with the nose mask before being fed as
input to the denoising UNet for the next time step. This denois-
ing procedure leads to generations where the generated samples
all share the same nose shape, but vastly differing facial identi-
ties. In the bottom row of Fig.[] we show the result of inverse
masking, where the face shape is held fixed while allowing the
nose shape to change. Our model produces meaningful results
in both cases.

5. Additional Quantitative and Qualitative Results

For the base FLAME parameter conditioning, we visualize
the error maps to the ground truth scanned geometry in Fig. [3]
Next, we compare the text-to-geometry generation results of
HeadArtist [2] and HumanNorm [3] with our method. Both
are based on Deep Marching Tetrahedra [4] and SDS optimiza-
tion [5] and can represent face parts beyond the skin. The ex-
tracted face geometries differ in topology and optimizing for
one sample takes around one hour on a 3090 GPU. In contrast,
our method’s inference speed is 1000-times faster on a 3090
GPU and produces results in a single common topology.

6. Failure Cases

We do observe geometric artifacts around the mouth region
for extreme expressions (Figure [6] column 2), due to limited
extreme expressions in our training data. Additionally, the gen-
erated face geometry can open the mouth to the wrong side
when conditioning with CLIP embeddings (Figure [6] column
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Table 2. The exact text prompts used in the comparison to the related work methods. Prompts 1 - 10 specify a neutral expression, while prompts 11 - 20
specify other facial expressions.

Nr. Text prompt

A shaded, textureless 3D face model of an African woman with a neutral expression.

A shaded, textureless 3D face model of an overweight man with a neutral expression.

A shaded, textureless 3D face model of an old woman with a neutral expression.

A shaded, textureless 3D face model of a middle-aged Asian person with a neutral expression.

A shaded, textureless 3D face model of a middle-aged Caucasian woman with a neutral expression.
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A shaded, textureless 3D face model of a woman with high cheekbones, a defined jawline, and a straight
nose with a neutral expression.

7 A shaded, textureless 3D face model of a young woman with a round face, big eyes and small mouth with
a neutral expression.

8 A shaded, textureless 3D face model of a man with a chubby face, a wide forehead and a wide nose with
a neutral expression.

9 A shaded, textureless 3D face model of a young African man with a neutral expression.

10 A shaded, textureless 3D face model of a young Asian man with a neutral expression.

11 A shaded, textureless 3D face model of a smiling overweight man.

12 A shaded, textureless 3D face model of an overweight man shouting angrily.

13 A shaded, textureless 3D face model of a sad Caucasian man.

14 A shaded, textureless 3D face model of a middle-aged Asian person with a kiss face expression.

15 A shaded, textureless 3D face model of a smiling African woman.

16 A shaded, textureless 3D face model of a woman with high cheeckbones, a defined jawline, and a straight
nose. Her mouth is opened to the side.

17 A shaded, textureless 3D face model of an angry Caucasian man.

18 A shaded, textureless 3D face model of a man with a chubby face, a wide forehead and a wide nose with
a big smile on his face.

19 A shaded, textureless 3D face model of a young African man with a closed eyes facial expression.

20 A shaded, textureless 3D face model of a young Asian man with a very surprised facial expression. His
eyes and mouth are wide open and the eyebrows raised.
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Fig. 5. Error maps on our validation set. The first row shows the FLAME
mesh as generated by the FLAME face model from the input FLAME pa-
rameters. The second row shows the generated geometry from our model
conditioned on the respective FLAME parameters. The third row visual-
izes the error from our conditional generations to the original scanned ge-
ometry in our validation set. The first four columns are various identities,
while the last five columns are different expressions of the same subject.
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Fig. 6. Failure cases. Our results can display geometric artifacts around the
mouth area for extreme expressions (column 2) and sometimes incorrect
mouth opening sides when conditioned on CLIP embeddings (column 4).
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Fig. 7. Qualitative comparison with the text-to-geometry generation ability
of HeadArtist and HumanNorm [3]. For legibility, we shortened the
text prompt. Please refer to Table]for the exact text prompts.

3 and 4). We identify that this behavior occurs, when the CLIP
embeddings for both mouth opening directions (left/right) are
extremely similar (cosine similarity close to 1). Thus, this be-
havior is caused by the similarity of specific conditionings and
not by the diffusion model.
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