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ABSTRACT
Content authoring of verbal and nonverbal behavior is a limiting
factor when developing agents for repeated social interactions with
the same user. We present PIP, an agent that crowdsources its
own multimodal language behavior using a method we call semi-
situated learning. PIP renders segments of its goal graph into brief
stories that describe future situations, sends the stories to crowd
workers who author and edit a single line of character dialog and
its manner of expression, integrates the results into its goal state
representation, and then uses the authored lines at similar moments
in conversation. We present an initial case study in which the
language needed to host a trivia game interaction is learned pre-
deployment and tested in an autonomous system with 200 users “in
the wild.” The interaction data suggests that the method generates
both meaningful content and variety of expression.

CCS Concepts
•Human-centered computing→ Collaborative and social com-
puting systems and tools; Collaborative and social computing;
Collaborative and social computing systems and tools; •Information
systems→ Crowdsourcing;

Keywords
Long-term human-robot interaction; crowdsourcing;
content authoring; multimodal behavior generation.

1. INTRODUCTION
One of the main characteristics of human conversation is variety

of expression. Even when we interact with people to do the same
activity over and over, the language we use is situated in the mo-
ment and variable in ways that are not necessary to accomplishing
the task. We only need the word hello to effectively greet someone,
for example, but we also use hi in all the same contexts, and good
morning/night, hey, dude, or a simple head nod in situations where
they are appropriate but hello would serve as well. To interact nat-
urally with users over long periods of time, autonomous characters
(social agents) should have this variability of expression, too.

Figure 1: Overview of our semi-situated learning pipeline.

A long-standing barrier to extended human-robot interaction is
the on-going need to author content – what the robot can do, say,
and understand [12]. Insisting on variety of expression would seem
to raise that barrier higher. But while we acknowledge that, as sys-
tem builders, we must author what the character does, we argue that
authoring what it says and understands, with all the requisite variety
of expression, can be left in no small part to the character itself. To
support our position, we present a persistent interactive personality
(PIP) that acquires verbal and non-verbal dialog behaviors using
semi-situated learning, a robot-human pipeline under autonomous
control. In essence, PIP renders segments of its goal graph into
brief stories that describe situations in PIP’s terms, then sends the
stories to crowd workers who author and edit a single line of char-
acter dialog and its manner of expression given that context. In
the final step, PIP integrates the result of the process back into its
goal graph, and uses the elicited language behavior when it is in
conversation with a user in a similar state.

The approach has three main advantages over content-authoring
by the system builder’s hand. First, it produces variation by elicit-
ing language samples from an array of individuals, each of whom



is likely to differ in his/her natural forms of expression from the
others and from the system builder. Second, the language from
those individuals is nevertheless likely to be meaningful in situ be-
cause it is generated by writers who bring human understanding
and experience to a story that is explicitly focused on task-relevant
features. Lastly, it provides a uniform framework for two modes
of agent building: the acquisition of a static set of multimodal lan-
guage behaviors pre-deployment, and the incremental acquisition
of such behaviors over time as repeated interaction with an individ-
ual becomes stale or PIP’s domain of discourse is extended. The
former is useful for rapid prototyping, while the latter is important
for long-term interaction.

After a short discussion of related work, we describe the method
PIP uses to acquire language behaviors in detail. We then present
an initial case study in which the language needed for the inter-
action is learned as a static dialog capability pre-deployment, and
tested in an autonomous system “in the wild.” With that experi-
ence as a concrete basis, we conclude with a discussion of how the
framework allows for a continuum of “situatedness” and our plans
to explore that continuum in the future.

2. RELATED WORK
Research on social robots and agents supporting repeated inter-

actions with the same user has increased in the past years [10, 2,
11, 20, 6]. Typically, engineers, animators or knowledge experts
have been responsible for authoring the agent’s verbal and nonver-
bal behavior, a process that does not scale well when aiming for
variability across interactions that span weeks and months. Crowd-
sourcing has been proven to be a successful approach for acquiring
large amounts of non-expert language data in a variety of tasks [21],
from labeling objects on an image [19] to generating alternate paths
for a narrative [13]. Our approach builds on and extends both these
areas of interest.

One of the pioneer systems exploring the use of crowdsourc-
ing for interactive characters is the Restaurant Game [16], a vir-
tual world where human players interacted in pairs, with one in the
role of waiter and the other as a customer avatar. Using the human
player logs, the authors built a plan network – a statistical model
that encodes contextual patterns of behavior and language – and
used it to generate an artificial agent that mimics human behav-
ior in a restaurant setting [17]. The same approach was followed
by Breazeal et al. [3] to drive the behavior of a robot in a coop-
erative problem-solving activity. The autonomous robot behavior,
generated from data collected from humans performing the task,
was compared to the behavior produced by a human operating the
robot in a user study. The authors found that participants rated
both robot conditions favorably. There are two important features
that distinguish these works from ours. First, both systems require
at least two players interacting simultaneously and completing an
entire task, while in our case each crowd worker is assigned to a
small unit of a task and can perform asynchronously with respect
to the other workers. Second, while the focus here is on learning
sequences of actions that an agent can take, our work assumes pre-
defined action sequences and focuses on the process of obtaining
variability of expressive behavior in a given situation.

The use of crowdsourcing methods has also been explored in
spoken dialog systems [7, 22]. One such example is Chorus [9],
a conversational assistant that provides online help based on the
combined efforts of multiple crowd workers interacting with a user
in real-time. Chorus is presented as a collaborative reasoning sys-
tem because it allows crowd workers to add new responses to user
questions, select the top responses (from among those provided by
other workers), or remove responses that do not fit the flow of the

conversation. More relevant to our work, Mitchell et al. created a
pipeline for generating paraphrases from an existing corpus of di-
alog using crowdsourcing [15]. An evaluation of the paraphrases
showed that crowd workers were able to provide diverse alterna-
tives, still suited to the dialog context. We extend this idea with an
architecture that allows the agent to crowdsource its entire dialog
content from scratch.

While many authors have used crowdsourcing methods for ver-
bal dialog-related tasks, less attention has been given to ways of
authoring an agent’s nonverbal behavior. An exception is Rossen
and Lok, who investigated the authoring of both verbal and nonver-
bal content using crowd-based methods [18]. They developed an
authoring tool that facilitates collaborative development of virtual
humans by two groups of end-users: domain experts (educators)
and domain novices (students). This is one of the few examples
where crowdsourced data supported the integration of animations
and emotional behavior in a dialogue system. However, experts
are still the main content authors and editors, while our system is
intended for non-expert crowd workers who contribute to a larger,
autonomously-controlled agent functionality.

3. AN ARCHITECTURE FOR
SEMI-SITUATED LEARNING

PIP generates its own language capability off-line by systemat-
ically exploring goal-state descriptions of the situations it might
find itself in, recasting those descriptions into a story form that is
easy for people to understand, and crowdsourcing the production
of a meaningful dialog line at the end of each narrative. Despite its
context-dependence, the learning is only semi-situated because the
character’s state at the moment it speaks the line is likely to include
more information than the narrative expressed. Nevertheless, by
using goal-specific features to generate the story and human crowd
workers to author the dialog, the character’s resulting language be-
havior tends to be both meaningful in the moment and globally
coherent.

In this section we describe PIP’s process in detail, left-to-right
and top-to-bottom through Figure 1. We begin with a description
of the internal representation it needs to generate narratives, then
progress through the three autonomously-controlled pipeline com-
ponents: dialog authoring, dialog editing, and nonverbal behavior
authoring.

3.1 Generating Narratives for the Pipeline
Crowd-sourced dialog needs an underlying representation of its

internal structure to be successfully associated with valid agent
goals and employed in the proper context [17]. As a conversational
agent, PIP has a goal state graph that both outlines the high-level
steps of an interaction between itself and a user and specifies vari-
ables whose values drive transitions between those steps. To elicit
language that will be useful in situ we add meta-information to the
nodes in the goal state graph that makes explicit the set of con-
textual variables that should be represented in the crowd workers’
narrative as well as the text strings to be used in composing it. The
meta-information comes in two forms:

• Synopsis: unparameterized text that is used to summarize a
conversational goal and appended to the narrative as-is. The
root node of the graph contains a special synopsis, the expo-
sition, which gives the initial description of the setting where
the story takes place and relevant information about the peo-
ple involved. In the example narrative at the top of Figure
1, the exposition corresponds to the first sentence, “Martin is
running a trivia booth at the company picnic.”



In non-root graph nodes, the synopsis is a generic encapsu-
lation of goal information that helps to move the story to the
point where dialog is needed. In Figure 1, the sentence “A
few people walk up to the booth and Martin greets them,” is a
synopsis of the greet multiple players goal (detailed in Figure
3). Note that the synopsis does not specify exactly what Mar-
tin said in greeting or what state variables PIP would have
used to choose that dialog line; it only establishes that the
greeting step has been accomplished.

• Narrative template: a node-specific data structure that is used
to generate the portion of the narrative for which a dialog line
is to be elicited. The template is instantiated by binding each
of its contextual variables to a specific value and adding the
associated text to the story. The second paragraph in Figure
1 shows one instantiation of the narrative template for the
goal single out player. The sentence “Only one person can
play at a time, so Martin chooses Akira, who has played be-
fore, and invites him to play, saying...” describes the goal
in story terms and includes the phrase “who has played be-
fore,” which is associated with the values one and more for
the variable num_interactions. Num_interactions can also
take the value 0, which would instantiate the string “who has
never played before” in the template instead. Note that each
goal in the graph can have multiple templates and each tem-
plate can have multiple contextual variables.

In this example, taken from the version of PIP described below,
we chose to collapse two possible values for num_interactions
into a single template option. This is one example of why the learn-
ing that occurs is semi-situated – when PIP speaks a line elicited at
this node, the state will not only record whether the user has played
once or more than once, that nominative value will have been de-
rived from data that indicates how many times the user has played.
The content author, on the other hand, knows only that previous
play has occurred. Although consistency is maintained, to the ex-
tent that the distinction might have made a difference in what the
author wrote, potential, meaningful variability is lost.

More broadly, the degree of “situatedness” in the narrative will
always need to be traded off against the combinatorics of acqui-
sition as a system-building decision. To use the meta-information
we give it to acquire dialog, PIP does a repeated, top-down graph
traversal from the root node, for paths with length greater than or
equal to one. Each partial path generates either a single narrative (if
the template of the final node has no contextual variables) or mul-
tiple narratives (one for each possible combination of contextual
variables and their values). In cases where the graph’s combina-
torics are small enough and it is desirable for all the character’s
dialog to be determined in advance, the traversal can be exhaus-
tive. This is the approach we took in the case study, giving PIP a
relatively small number of templates per node, each of which was
predicated on a relatively small number of state variables and val-
ues. As a contribution to the eventual dialog capability, this amount
of content authoring was minimal.

Although our approach is intended to expand the dialog possi-
bilities offline, it is not necessary that it do so all at once. Because
each path produces a narrative that begins with the exposition and
continues synopsis-by-synopsis to a particular point in the interac-
tion, PIP can also acquire its dialog functionality incrementally by
expanding depth-first over a subset of the templates at each node.
At any given point in time, the resulting system would be func-
tional but have less variation of expression available to it. In theory,
expanding incrementally could also mean expanding opportunisti-
cally, a point we return to when discussing future work.

3.2 Crowdsourcing Dialog
Every narrative that is generated by the above procedure is sent

into the crowd worker pipeline shown at the right in Figure 1. Cur-
rently, PIP uses the API for Amazon Mechanical Turk (AMT) to
automatically manage the requests and results of the Human In-
telligence Tasks (HITs) that correspond to dialog authoring, dialog
editing, and nonverbal behavior authoring. To elicit dialog that is as
natural sounding as possible, narratives are written with PIP identi-
fied as “Martin” and not as a robot. In addition, the templates ran-
domly assign a name to the other character from a set that has been
chosen to counterbalance for possible cultural and gender effects
in the language. When parsing the dialog authoring results, PIP
replaces any repetition of the story characters’ names with agent
and user tags. Given this general structure, we turn to the tasks
themselves.

Dialog Authoring: The first task, dialog authoring, consists
of reading the narrative and writing a single line of dialog at the
prompt at the end (e.g.,“Martin says:”). To increase variability of
expression, tasks are constrained such that a worker can provide
only one line of dialog for a given narrative. PIP has one system
parameter that determines how many different workers should re-
ceive the authoring task, and another parameter for how many dif-
ferent lines for the same story should be bundled together for the
editing phase.

Dialog Editing: In the second stage of the pipeline, editors judge
the quality of authored dialog lines. In particular, a new group of
workers is tasked to read the same narrative the authors saw, and
for each dialog line either flag it as “nonsensical” or rate it on a
scale from 1 (“makes sense, but I wouldn’t say this”) to 5 (“I would
totally say this”). As a quality check on the editors’ performance, a
truly nonsensical utterance is inserted into the authored lines in ev-
ery set. If a worker fails to mark that nonsensical utterance as such,
his/her judgments are excluded and another worker is recruited un-
til the desired number of editors is met.

After obtaining the required number of valid judgments, PIP pro-
cesses the results before generating the final set of HITs. The sys-
tem only passes along those dialog lines that: (1) were considered
as nonsensical by no more than one editor, and (2) have an aver-
age score greater than 2. In pilot tests of the pipeline, we found
that three judges were enough to get both reasonable agreement on
the utterances to discard and reasonable quality on the utterances
to keep.

Nonverbal Behavior Generation: The final step of the pipeline
elicits information that can be used by PIP to program its nonverbal
behavior when speaking editor-approved dialog. In particular, we
ask multiple crowd workers to assign both a point of emphasis and
an emotion to each line, given the same narrative context in which
the line was authored.

To elicit a point of emphasis, nonverbal authors are asked to read
the dialog line out loud to themselves and mark the word in the sen-
tence that received the most verbal emphasis. Although PIP does
not currently program its own prosody, it can use the information
resulting from these HITs to self-program subtler gestural indica-
tors, like blinks and eyebrow movements, that are correlated with
verbal emphasis [5].

Nonverbal authors are also asked to select the emotion that would
best match the dialog line in context. They do so from a long drop-
down list of possibilities – excited, happy, smug, surprised, bored,
confused, skeptical, embarrassed, concerned, sad, and neutral (in
case none of the other emotions seems suitable) – in order to exploit
the variability of expressive behavior our robot affords.

Once the scheduled number of workers completes the task, sim-
ple rules are used to map the results to nonverbal behaviors. If the



Figure 2: PIP interacting with a player during the trivia game in the
3-day office deployment.

most commonly chosen emphasis placement receives at least 75%
of the selections, an emphasis gesture is added to that location and
performed at the appropriate time during speech synthesis. If there
is no dominant word but the two most commonly chosen locations
are adjacent and form a noun/adjective or verb/adverb pair, and if
the two words together receive at least 75% of the participant selec-
tion, an emphasis gesture is added to span the phrase. Otherwise,
no emphasis is added to the dialog line.

Similarly, if the most commonly chosen emotion receives at least
70% of worker selections, the dialog line is annotated with the emo-
tion and PIP adopts the corresponding expression when the line is
uttered. Otherwise, if the two most commonly chosen emotions
have the same valence (e.g., concerned and sad), and if the two
emotions together receive at least 70% of the selections, the ex-
pression with the highest percentage is added. If neither of these
two conditions is satisfied, the expression remains neutral.

In both the pilot study that established the validity of the nonver-
bal tasks [4] and the case study presented in the next section, we
found that a set of 10 workers was sufficient for the emphasis and
emotional expressions to converge almost 100% of the time using
the specified thresholds of 75% and 70%, respectively. Varying the
thresholds might lead to a different optimal number of workers for
this task.

The end product of the pipeline is a set of annotated, human-
authored dialog lines that are associated with the goal that gener-
ated them and indexed by the values of a subset of the state vari-
ables for that goal. The annotations include both the nonverbal
directions for expression and the average score from the editing
phase. Under the assumption that higher scores are associated with
more natural sounding utterances, PIP uses that information as part
of its policy in selecting a line from the alternatives available when
in conversation. In the next section we explore the results of semi-
situated learning in practice.

4. CASE STUDY
To provide a proof-of-concept for the semi-situated approach, we

have implemented a repeated-interaction scenario in which most of
PIP’s behavior was authored by the crowd. In the scenario, PIP
plays the role of a trivia game host. The game consists of players
listening to a brief audio clip and trying to guess which of a small
set of movies the clip corresponds to in order to win a point for their
team. The interactions are short, and the competitive aspect of the
game was chosen to motivate players to come back and interact
with the character multiple times.

4.1 Quizmaster PIP and the Trivia Game
PIP was embodied in a Furhat robot head [1] atop a stationary

wooden form (see Figure 2). The Microsoft Kinect V2 and far-
field RFID antenna behind PIP enable the character to track and
recognize individual users, a critical ability given our goal of re-
peated interactions and our use of contextual variables that depend
on them. The identification subsystem matches a skeleton tracked
by the Kinect to a unique RFID tag worn by the user [14], allowing
PIP to recognize in a few seconds individuals in a group of up to six
people with 95% average accuracy. A near-field RFID antenna is
hidden under the area of PIP’s stand marked by the green felt tray;
it reads the passive RFID tags in the cards used to play the game.

The interaction’s flow can be read from the graph in Figure 3.
When PIP recognizes one or more players nearby, it invites one of
them to play. If the person has never played before, PIP continues
by explaining the game and asking her/him to pick up a set of five
movie cards from the tray (with repeat players no instructions are
given and the prompt to pick up the cards is used only if a long pe-
riod elapses without activity). The character then randomly selects
a movie quote, apprises the player of its difficulty level, and plays
the clip.1 When the user places a card on the tray, PIP provides
feedback on the answer. If the player’s guess leads to changes in
the overall team scores (e.g., a different team has taken the lead),
PIP calls attention to the fact before saying goodbye to the current
player. If there are other players waiting nearby, PIP invites one of
them to go next.

The choice to use RFID-tagged cards rather than voice input was
deliberate. The interaction was intended to be deployed in multiple
locations, at least two of which were known to be far noisier than
current automatic speech recognition can handle accurately with-
out a close-talk microphone. Thus the current case study explores
our approach to dialog acquisition only for PIP’s side of the con-
versation; we return to the question of its role in anticipating the
user’s language in the Conclusion.

4.2 Language Acquisition
Quizmaster PIP’s verbal and nonverbal behaviors were predi-

cated on the goal state graph and contextual variables presented
in Figure 3. After we defined the synopses and templates for each
node, PIP generated dialog authoring HITs through exhaustive graph
traversal, with each narrative sent to ten AMT workers. The elicited
dialog lines were separated into two sets of five and each set sent
with its narrative to three new workers for the editing phase of the
pipeline. Lines not eliminated during editing were then passed,
with their narrative, to ten workers who authored the nonverbal em-
phasis and emotion annotations. Recruited AMT workers were at
least 18 years old and were registered in the United States in order
to increase the likelihood of acquiring language from native En-
glish speakers. Workers were compensated 20¢ per HIT. The aver-
1The 170 quotes available in the game were categorized as easy
or hard based on an online survey conducted to sort the quotes by
difficulty.



Figure 3: PIP’s goal state graph for the trivia game (left) including the number for the contextual variables used to generate narratives in the
table at the top-right. Dashed lines represent conversational goals with language that was not authored by the crowd (some error handling
nodes omitted for clarity). The right side contains an example of a semi-situated narrative generated by traversing the colored path through
the graph to the node respond to answer. Below the narrative, some of the language behaviors produced at the end of the pipeline for that
story. The line “That’s right” was rejected in the editing phase; all the other lines were added to PIP’s behavioral repertoire.

age HIT completion time was 1.5 minutes, irrespective of phase of
the pipeline.

As shown by the dashed lines in Figure 3, we authored the dia-
log lines in the goals related to the rules of the game and the use of
the cards to communicate. We did this to make sure that all players
received the same, correct information about how to play. The goal
state graph also includes two nodes, omitted for clarity, that per-
form error handling related to the tracking system. Their language
was also hand-authored by us.

The right side of Figure 3 continues the explanation of how the
pipeline works in a concrete situation. One of the semi-situated nar-
ratives that workers read when authoring behaviors for the respond
to answer node appears in the middle. This particular version is
predicated on the case where the player answered most of the pre-
vious questions correctly (last_few_answers_result = right) but
answers the current question incorrectly (answer = wrong). The
first paragraph of the generated narrative contains the exposition
obtained from the root node. The second paragraph aggregates the
synopses of the greet multiple players, single out player and inform
question difficulty nodes (skipping inform rules and ask to pick up
cards because the player will have played before). Finally, the third
paragraph includes an instantiation of the respond to answer tem-
plate, with the values of the contextual variables shown in boldface.
The table below the narrative contains a sample of the multimodal
behaviors authored by the crowd-worker pipeline. Note that where
a dialog author used the story character’s name in her/his response,

the “<user>” tag is substituted. The fourth line is rejected based on
average editor score, but the remaining lines become part of Quiz-
master PIP’s repertoire, and will be considered for speech synthesis
when PIP needs to acknowledge a wrong answer by a player who
got the last few questions right. Like this example, most of the
crowdsourced utterances in PIP’s repertoire were elicited with nar-
ratives instantiating history-dependent context variables. Table 1
provides additional examples and gives a sense of both the coher-
ence of the resulting dialogs and how PIP’s language changes over
repeated interactions.

Exhaustive traversal of the quiz game’s graph elicited 680 crowd-
sourced lines of language behavior. A total of 48 (7%) were elimi-
nated either during editing by crowd workers or post-editing by PIP
on the basis of average score. The remaining 632 were combined
with 84 sentences we created for the instruction goals and related
error-handling behaviors. The resulting set of 716 lines of dialog
constituted PIP’s language capability for the three deployments. Of
course, PIP’s language behavior in conversation depends on both its
stored dialog lines and its policy for selecting among the possibili-
ties. Because we expected that PIP would be approached by small
groups in all of the venues, we implemented a policy that cycled
through the ranked lines available in each goal state to make it un-
likely that observers would hear the same dialog when their turn
came to play.



Table 1: An example of how PIP’s language changes as a function of the history of interactions with a user. The table shows the verbal and
nonverbal behaviors employed by PIP in each goal state while interacting with a user the first, second, and fifth times.

1st interaction
goal state context variables behavior
greet single player num_interactions = zero < neutral > Hello, do you want to play a round of trivia?
inform rules ∗ I will play a dialogue line from one of the movies in these cards and your goal is to guess

which movie. When you know the answer, place the card on the tray.
inform question difficulty difficulty = easy < happy > Let’s start with an easy one!

last_question_difficulty = null
last_question_result = null
player_team = winning

respond to question answer = right < excited > You got it, < user >!
summarize scores last_few_answers = null < player_team > blowing all the competition out of the water and is ahead!

player_team = winning
goodbye num_players = one < happy > Good job, < user >.

2nd interaction
goal state context variables behavior
greet single player num_interactions = one < surprise > Back again, < user > ?
ask to pick up cards∗ < look_down > Please pick up all the cards.
inform question difficulty difficulty = hard < excited > You’re gonna have to try hard for this one!

last_question_diffulty = easy
last_question_result = win
player_team = winning

respond to question answer = wrong < happy > Well, you can’t win them all I suppose!
last_few_answers = right

summarize scores player_team = losing < player_team > needs to step up!
goodbye num_players = one < smug > Better luck next time.

5th interaction
goal state context variables behavior
greet multiple players known_players = true < exited > Hey guys, ready to test your trivia knowledge?
single out num_interactions = multiple < happy > < user >, would you like to play again?
ask to pick up cards ∗ When you’re ready, pick up the cards.
inform question difficulty difficulty = easy < excited > You should be able to help your team with this one.

last_question_difficulty = hard
last_question_result = lost
player_team = losing

respond to question answer = right < excited > Right again, < user > !
last_few_answers = right

summarize scores player_team = winning < player_team > has just taken the lead!
goodbye num_players = multiple < excited > Let’s keep this party rolling, who wants to go next?

4.3 System Deployment
PIP hosted the quiz game in three separate locations: an office

contest and two public events. In the office deployment, the game
was available for repeated interactions over three days. The public
events consisted of half-day research showcases in different places
with non-overlapping attendees. No audio or video was recorded
and no personally identifying information collected; anyone who
wanted to play simply picked an RFID tag to use for the duration
of the deployment period. Each tag was associated with a fictional
name and a color that represented one of the teams so that PIP could
address each player personally when a dialog line required it. Most
players interacted with PIP alone or in groups of two.

We calculated statistics separately for each type of environment
based on the interaction logs. Office data was generated by 41
unique players, with an average of 8.4 interactions per player (SD=
8.2), and a 36.8 second mean length of interaction (SD = 10.3).
About 90% of office players returned to play again; the distribution
of number of plays can be seen in Figure 4a. The public deploy-
ments were, not surprisingly, quite different, with 160 unique play-

ers across the two locations averaging 2.1 rounds each (SD = 1.1),
and 44.5 second mean length of play (SD= 21.3). With many other
projects to see and a limited time in which to see them, only 62.5%
of showcase attendees chose to play more than once. The distribu-
tion of return rate appears in Figure 4b.

Although our purpose in creating a contest was to encourage re-
peat play, we were far more successful in the office environment
than we had expected. As a result, it was inevitable that some users
in that deployment would experience repeated utterances, given
that there were at most ten alternatives in a goal state. Figure 5
shows how users experienced a decay in the variability of expres-
sion as the number of times they played increased. Players at the
public events heard almost entirely unique language each time they
played, even though there was often significant delay between their
games. Moreover, despite the fact that the more competitive play-
ers in the office environment did hear individual lines repeated, no
player ever heard exactly the same dialog twice.



(a) Office.

(b) Public events.

Figure 4: Number of players (Y axis) as a function of how many
times they interacted with Quizmaster PIP (X axis) in the different
deployments. Note that the units on the axes are not the same across
locations.

4.4 Observations and Discussion
We could have used the time between the acquisition of PIP’s di-

alog behavior and its use in public to sort through the crowdsourced
results, eliminate utterances we did not like, and elicit additional
ones.2 Instead, we made the conscious choice to send PIP into the
wild with only what semi-situated learning provided. Nevertheless,
a post hoc analysis of the pipeline’s results showed that, for the quiz
game’s goal state graph, the process was both more and less critical
than we would like it to be.

On inspection we felt that only 17 of the 48 utterances rejected by
the editing phase were unusable. While the overall yield of 93% is
still excellent (and well beyond the level typically associated with
Mechanical Turk [8]), the questions remain of whether and how
the parameter settings could be improved and, more importantly,
whether and how they might be automatically derived, given a new
interaction task and goal state graph.

A small percent of over-constraint has no impact on the user’s
experience, but even a small percent of under-constraint can. We
use narratives to take advantage of the normative social knowledge
that our authors have – knowledge that they use in deciding which
features of the story to articulate when they write a line of dia-
log. In some cases, however, such knowledge introduces language
that is in conflict with PIP’s goal state. We found three examples,
stemming from two distinct sources. The first type is exemplified

2Certainly, had we known that people would play 20 or 30 times
we would have increased the number of workers requested and/or
the number of templates we wrote.

Figure 5: The average number of crowd-authored behaviors that
users heard repeated as a function of the number of trivia games
they played (note that the X axis is non-linear).

by the crowdsourced line, “Attention everyone, that is the man to
beat.” In this case, the author did exactly what we wanted – picking
up on a narrative detail (the gender of the non-Martin character) –
and the editors agreed with the detail when validating the line in
the same story context. Ultimately the line is problematic, how-
ever, because we chose not to encode gender as a context variable
in the templates to avoid having to detect or collect that informa-
tion about the players. Without the contextual variable, the line is
inadvertently generalized across all players, and used regardless of
the interacting player’s actual gender. The second source of mis-
situatedness is exemplified by the lines, “Sorry, you can only try
once” and “I’m sorry, you can only play 2 times max!” In this
case, the author added information that was relevant to a contextual
variable (num_interactions), normative enough to be accepted by
the editors, but simply not true. Although altogether these kinds
of utterances constitute less than half a percent of PIP’s repertoire,
additional oversight, either prior to use or by the player, would be
required to remove them.

5. CONCLUSIONS AND FUTURE WORK
We have presented a narrative-based approach to authoring dia-

log behavior and demonstrated through an initial case study that it
generates both meaningful content and variety of expression. The
image of PIP we are working toward is one where a highly task-
specific, goal-directed interaction is just one capability among many
and, more importantly, interleaved with more natural social dis-
course. While we consider these preliminary results promising we
acknowledge that our method could be extended in at least three
important ways.

First, the choice to avoid speech input was intentional but tem-
porary. Indeed, one of the potential advantages to semi-situated
learning is that it can be used to elicit dialog for the user as well as
the robot. We intend to explore whether user dialog authored via
the same pipeline can form the basis of a lexical semantic model to
augment automatic speech recognition. We know from The Restau-
rant Game that this is likely to be useful in a well-specified, goal-
constrained task; we are interested in whether it can be accom-
plished autonomously and incrementally as well as whether it will
work for a more diffuse conversational context like social chit chat.

Second, our experience with Quizmaster PIP makes it clear that
some dialog is likely to make it through the pipeline that reflects
distinctions that are missing from the context variables in the tem-
plate or the state. The result will be speech that is at odds with



the situation in which it is uttered. Although this occurred very
rarely in the case study, the particular instances we encountered
are part of a larger theoretical problem. Just because a contextual
variable is articulated in the narrative does not guarantee that the
author will generate a dialog line that depends on it. Yet the pro-
cess described in this paper will assume that the author did so, stor-
ing it away as a function of the instantiated variables that elicited
it. In general, then, the indexical terms associated with a dialog
line may be broader or narrower than the line’s actual applicability
in the interaction space. This suggests that PIP could use its situ-
ated experiences – which always occur with its entire state space
instantiated – to modify the indices over time. We are explor-
ing augmenting the current pipeline with a combination of active
hypothesis-testing and user-controlled negative reinforcement. Hy-
pothesis testing would broaden PIP’s selection policy, allowing it to
choose a line in a state that does not match its indices (can it use
the line more generally?) as well as track the state variables where
it has and has not received negative feedback (should it use the line
more restrictively?). The same hypothesis-testing extension could
also be used off-line with the second phase of the pipeline, embed-
ding a dialog line authored under one contextual value in a narrative
that varies that value and letting editors judge the line’s goodness.

Finally, the length and range of interactions we want PIP to be
able to engage in is much broader than the one presented in our case
study. While the trivia game deployments discussed here used ex-
haustive graph traversal over a small set of templates and state fea-
tures, in a sufficiently large state space and/or over longer periods
of time PIP should be able to expand its graph more opportunisti-
cally. This could be done incrementally (by sending new HITs out
every night) or as a function of experience (biasing expansion to
the areas of the graph where most of the interaction seems to be
taking place). An optimization function that allows PIP to use its
resources (money, moments of actual interaction) to best effect is a
clear direction for future work.
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