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Abstract

Re-identification of people in surveillance footage must
cope with drastic variations in color, background, viewing
angle and a person’s pose. Supervised techniques are often
the most effective, but require extensive annotation which
is infeasible for large camera networks. Unlike previous
supervised learning approaches that require hundreds of
annotated subjects, we learn a metric using a novel one-
shot learning approach. We first learn a deep texture rep-
resentation from intensity images with Convolutional Neu-
ral Networks (CNNs). When training a CNN using only
intensity images, the learned embedding is color-invariant
and shows high performance even on unseen datasets with-
out fine-tuning. To account for differences in camera color
distributions, we learn a color metric using a single pair
of ColorChecker images. The proposed one-shot learn-
ing achieves performance that is competitive with super-
vised methods, but uses only a single example rather than
the hundreds required for the fully supervised case. Com-
pared with semi-supervised and unsupervised state-of-the-
art methods, our approach yields significantly higher accu-
racy.

1. Introduction
Person re-identification is the task of finding the same

individual across a network of cameras. A successful al-
gorithm must cope with significant appearance changes
caused by variations in color, background, camera view-
point and a person’s pose. Most successful state-of-the-art
approaches employ supervised learning [14, 28, 32–34, 36,
62] and require hundreds of labeled image pairs of people
across each camera pair. Novel deep architectures [2,11,55]
can outperform these approaches, but training them from
scratch requires thousands of labeled image pairs. Fine-
tuning for target camera pairs [60] may help to decrease
the amount of required training data to hundreds of image
pairs. However, annotating hundreds of subjects in each
camera pair is still tedious and does not scale to real-world
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Figure 1: One-Shot Metric Learning. We split metric M
into texture and color components. Deep texture features T
are trained with CNN on intensity images to enforce color
invariance without having to fine-tune. Joint learning on
multiple source datasets (labeled data) increases good gen-
eralization under the Euclidean distance (identity matrix I).
We adapt for color differences specific to target camera pair
(unlabelled data) using a single image of color chart and
learning color metric G for patch color features c.

networks. To overcome this issue, semi-supervised and un-
supervised methods have been proposed [15,26,49,52,58].
Unfortunately, without labeled data, they usually look for
feature invariance, which often reduces discriminativity
and specificity (inability to adapt to camera-pair-specific
changes). This makes them uncompetitive with supervised
techniques. As a result, unsupervised and semi-supervised
methods have received little attention in the research com-
munity because practicality and scalability have not been
the main concern in current benchmark datasets (often lim-
ited to a small number of cameras).

In this paper, we propose a metric learning approach that
scales to large camera networks by employing techniques
similar to one-shot-learning [16]. We assume the metric
learned for a pair of cameras can be split into texture and
color components (see Fig. 1). For texture, we learn a color-
invariant deep representation T that has good generaliza-
tion abilities without fine-tuning. We can achieve this if we



use only intensity images and train a single CNN through
a challenging multi-classification task on multiple datasets.
In contrast, a CNN learned on color images would most
likely require fine-tuning when testing [60], since the train-
ing dataset would have to be extremely large to cover all
possible inter-camera color variations. Fine-tuning still re-
quires a lot of training data, precluding its use with large
camera networks. Instead, we incorporate color into our
model using handcrafted color features that are independent
of texture, and we learn a color metric G for each cam-
era pair using a novel one-shot learning formulation. This
strategy only requires a single example per camera, making
it feasible for large networks. To account for specific dif-
ferences in camera color distributions, we densely sample
patches on registered images of a Macbeth ColorChecker
chart [37] and learn a Mahalanobis metric that directly mod-
els the relationship between color features across a pair of
cameras. Our contributions are:

• We split a metric for person re-identification into tex-
ture and color components. The metric is then learned
on the target camera pair by a novel one-shot metric
learning approach.

• Deep texture features are learned using only inten-
sity images, thus ensuring invariance to color changes.
Such features show high performance on unseen
datasets without fine-tuning and are very competitive
with semi- and unsupervised state-of-the-art methods.

• We adapt for color differences across cameras by
learning a metric locally for patches using a single pair
of images of a ColorChecker chart.

• Spatial variations in a person’s appearance are incorpo-
rated into the color metric by explicitly modeling back-
ground distortions across cameras. When computing a
distance between two images, we accommodate pose
misalignments by defining a linear patch assignment
problem, thus allowing patches to perturb their loca-
tions.

We conduct extensive experiments on five benchmark
datasets. The results illustrate that by combining our deep
texture features with a color metric trained using a single
pair of images, we achieve very competitive performance
with metrics learned from hundreds of examples. We out-
perform semi-supervised and unsupervised approaches and
establish a new state of the art for scalable solutions for re-
identification.

2. Related work
Supervised re-identification Most successful person re-
identification techniques are based on supervised learning.
They usually employ metric learning [2, 14, 28, 32, 33, 62]

that uses training data to search for effective distance func-
tions to compare people across different cameras. Many
supervised machine learning algorithms have been consid-
ered for learning a robust metric. This includes feature se-
lection by Adaboost [21], feature ranking by RankSVMs
[45] and feature learning by convolution neural networks
[2, 32, 51, 55, 60]. Although these deep convolution neural
networks can be very effective, they often require thousands
of image pairs to pre-train the architecture and hundreds of
image pairs to fine-tune the network to a particular camera
pair [55,60]. To cope with insufficient data, data augmenta-
tion often has to be employed together with triplet embed-
dings [11].

Among all of these metric learning approaches, Maha-
lanobis distance functions [13, 22, 28, 54] received the most
attention in the re-identification community [8]. Köstinger
et al. [28] proposed a very effective and efficient KISS
metric learning that uses a statistical inference based on a
likelihood-ratio test of two Gaussian distributions model-
ing positive and negative pairwise differences between fea-
tures. As this learning has an effective closed-form solution,
many approaches have extended this work by introducing
discriminative linear [34, 41] and non-linear [40, 56] sub-
space embeddings. Mahalanobis-like metric learning usu-
ally requires less training data than deep models (i.e. hun-
dreds of labeled image pairs).

Recently, a trend of learning similarity measures for
patches [4,47,48,64] has emerged. Bak et al. [4] shows that
learning metrics for patches might also effectively multi-
ply the amount of training data (multiple patches may share
the same metric). As a result, patch metrics can be learned
on smaller amounts of labeled images (e.g. using 60 im-
age pairs to infer an effective metric). However, annotat-
ing 60 subjects in each camera pair still does not scale to
real-world scenarios, where a moderately-sized surveillance
camera network can easily have hundreds of cameras.
Unsupervised re-identification Semi-supervised and un-
supervised techniques have been proposed to avoid the scal-
ability issue. Unsupervised approaches often focus on de-
signing handcrafted features [5, 7, 12, 15, 53] that should
be robust to changes in imaging conditions. One can fur-
ther weight these features by incorporating unsupervised
salience learning [52, 58] that looks for features that are far
from the common distribution. Transfer learning has also
been applied to re-identification [25, 63]. These methods
learn the model using large labeled datasets (e.g. fashion
photography datasets [49]) and transfer the discriminative
knowledge to the unlabeled target camera pair.

Dictionary learning and sparse coding [1, 19, 35] have
also been studied in context of re-identification. Dictionary
learning derives from unsupervised settings, thus it can di-
rectly be applied to utilize unlabeled data to learn camera-
invariant representations. To keep the dictionary discrim-



inative, graph Laplacian regularization is often introduced
either to keep visually similar people close in the projected
space [26,27] or to perform cross-dataset transfer by multi-
task learning [42]. Although the Laplacian regularization
significantly helps, it is not sufficient to fully explore the
discriminative space. As dictionary learning is prone to fo-
cus on invariant representations, there is still a considerable
performance gap relative to supervised learning approaches.
One-shot learning One-shot learning aims at learning a
task from one or very few training examples [16]. Usually,
it involves a knowledge transfer either by model parame-
ters [17] or by shared features [6]. In this work, we propose
a one-shot metric learning approach where one part of the
metric (texture) is transferred directly to the target dataset.
The second part (color) is learned using patch-based metric
learning. In contrast to the existing approaches that learn a
metric from images of people, we learn a color metric using
a single pair of Macbeth ColorChecker chart images [37].
This effectively reduces the amount of training data to a sin-
gle example.

3. Method
Mahalanobis metric learning generates a metric M that
measures the squared distance between feature vectors xi
and xj

d2(xi,xj) = (xi − xj)
TM(xi − xj). (1)

Köstinger [28] showed an effective closed-form solution
(the KISS metric) to learn M. In this paper, we propose
to split the metric M into independent texture and color
components, which is equivalent to enforcing a block di-

agonal structure: M =

[
I 0
0 G

]
, where the identity matrix

I corresponds to the Euclidean distance between deep tex-
ture features (Sec. 3.1) and G is a color metric (Sec. 3.2)
that is inferred using a single pair of images. In this con-
text, we rewrite Eq. (1) and define the distance between two
bounding box images i and j as

d2(i, j) = (1− γ)||Ti − Tj ||2 + γΦ2(ci, cj ; G), (2)

where Ti and Tj are our deep texture features extracted
after converting i and j to intensity images, ci and cj
are color features extracted from color images and Φ is a
Mahalanobis-like metric. Hyper-parameter γ ∈ [0, 1] con-
trols the importance of color relative to texture.

3.1. Texture dissimilarity

Perception of color is very susceptible to illumination
changes. Even deep features [55, 60] learned on thousands
of identities from multiple re-identification datasets require
fine-tuning on unseen datasets. In contrast to these ap-
proaches, we are interested in a representation that does
not require fine-tuning and can be applied directly to any

camera pair. To achieve color-invariance, we drop the color
information and convert all training images to single inten-
sity channel images. We adopt the CNN model from [55]
and train it from scratch using only intensity images to
obtain highly robust color-invariant features for person re-
identification. This model learns a set of high-level feature
representations through challenging multi-class identifica-
tion tasks, i.e., classifying a training image into one of m
identities. As the generalization capabilities of the learned
features increase with the number of classes predicted dur-
ing training [50], we need m to be relatively large (e.g. sev-
eral thousand). As a result, we merge publicly available
datasets into a single set of identities and train the network
as joint single-task learning (JSTL) [55]. When it is trained
to classify a large number of identities and configured to
keep the dimension of the last hidden layer relatively low
(e.g., setting the number of dimensions for fc7 to 256 [55]),
such CNNs form compact and highly robust texture rep-
resentations for re-identification. In the rest of the paper,
we refer to our neural network trained using only intensity
images as JSTLI and the features extracted from fc7 layer
as T . We found that directly using the Euclidean distance
on such trained features is very effective; thus, we com-
pute the dissimilarity score between Ti and Tj using `2 dis-
tance. In Sec. 4.2, we show that this texture representation
has good generalization capabilities without fine-tuning and
achieves competitive performance with semi- and unsuper-
vised methods that utilize color information.

3.2. Color dissimilarity

In this section, we show how to learn a color metric using
a single pair of images. We then allow this metric to vary
spatially to cope with pose changes between images.

3.2.1 One-shot learning

Let cAi and cBj be the pair of color features extracted from
two different cameras A and B. Typically [28], the space
of pairwise differences cij = cAi − cBj is divided into
positive pairwise set c+ij when i and j contain the same
person, and c−ij otherwise. Learning the KISS metric in-
volves computing two covariance matrices: Σ+ for posi-
tive pairwise differences (Σ+ = (c+ij)(c

+
ij)

T ) and Σ− for
negative pairwise differences (Σ− = (c−ij)(c

−
ij)

T ). From
the log-likelihood ratio, the Mahalanobis metric becomes
G = (Σ+)−1− (Σ−)−1 and measures the squared distance
between two features ci and cj

Φ2(ci, cj ; G) = (ci − cj)
TG(ci − cj) (3)

= cTij
[
(Σ+)−1 − (Σ−)−1

]
cij . (4)

Covariance Σ−: In practice, a set of negative examples
can be generated by randomly selecting subjects’ features
from cameras A and B [28]. Even in the rare circumstance
where a randomly generated pair of features corresponds to



the same individual, the odds of this happening frequently
are nearly impossible.

Covariance Σ+: Supervision is required for obtaining the
set of positive pairwise examples c+ij , thus computing Σ+.
We design separate foreground and background terms to fa-
cilitate learning. Let color features extracted in camera A
be

cAi = µi + σAi + εAi , (5)

where µi is an implicit variable that refers to the i-th iden-
tity, σAi denotes variations of µi, and εAi corresponds to
background distortion. The corresponding feature extracted
for the same individual from camera B is cBj = µi + σBj +

εBj (where µj = µi because it is the same identity). Most
approaches ignore foreground/background separation and
assume metric learning will learn to identify and discard
background features. In contrast, we explicitly model back-
ground distortions by ε. Computing positive pairwise dif-
ferences we obtain

c+ij = cAi − cBj

= σAi − σBj + εAi − εBj
= ∆σij + ∆εij . (6)

We assume that ∆σ and ∆ε follow two different indepen-
dent Gaussian distributionsN (0,Σσ) andN (0,Σε), where
Σσ and Σε are unknown covariance matrices. The covari-
ance of positive pairwise differences then becomes

Σ+ = Σ+
σ + Σ+

ε . (7)

To compute Σ+
ε , we only need background images for a par-

ticular camera pair; thus, this information can be acquired
without human supervision. For computing Σ+

σ , we propose
to use a ColorChecker calibration chart that holds informa-
tion on color distribution in a given camera.

ColorChecker for Re-ID Driven by the idea that a good
metric can be computed on the level of patches [4, 48], we
design a new ColorChecker chart in such a way that corre-
sponding patches across cameras can be used as different
data points to compute c+ij , thus obtaining Σ+

σ (Eq. 7). The
standard Macbeth ColorChecker Chart [37] (see Fig. 2(a))
consists of color patches similar to natural objects, such as
human skin, foliage, and flowers. The chart was designed
to evaluate color reproduction processes by comparing the
resulting images to the original chart.

Our design of ColorChecker chart for re-identification is
based on insights from recent patch-based re-identification
methods [4, 47, 48, 64]. The patch size matches the size
of patches used for the re-id problem, and we removed the
thin black borders to enable random sampling of the board
(see Fig. 2(b)). This allows us to sample the space of color
differences more effectively by exploring more points in the
c+ij distribution (e.g., combinations of different colors).

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

(a) (b)

Figure 2: Macbeth ColorCheckers (a) orignal [37]; (b) our
ColorChecker for re-identification.

3.2.2 Spatial variations

Patch-based approaches [4, 48] generally perform better
when metrics are allowed to vary spatially. Intuitively, re-
gions with statistically different amounts of background dis-
tortion should have different metrics (e.g. patches in the leg
region might contain more background pixels than patches
at the torso). Let us assume that a bounding box image is
divided into N patches. For a patch location n, we incor-
porate spatial variations into our model by redefining the
Gaussian distribution of ∆ε to beN (0, α(n)Σε), whereα(n)

corresponds to the amount of environmental/background
distortions and depends on the location n of the feature dif-
ference cij relative to the full bounding box of the detected
person. As a result, Eq. 7 becomes

Σ+(n) = Σ+
σ + α(n)Σ+

ε . (8)

We usually expect α(n) to be detector-dependent (based on
how precisely the detector can generate a tight bounding
box). We learn α(n) using an auxiliary dataset. Let Σ

+(n)
R

be a covariance of positive pairwise differences computed
from patches at location n using annotated individuals. We
can learn α(n)’s by solving N objectives

α(n) = arg min
α

||Σ+
σ + αΣ+

ε − Σ
+(n)
R ||F : α ∈ (0, 1), (9)

for n = 1 . . . N . We learn α(n)’s using annotated image
pairs from the CUHK03 dataset and assume them to be
fixed across all evaluation datasets (see Fig 3(a)). Note that
larger amounts of background pixels yield higher values of
α’s (e.g. in head and leg regions). As a result, Φ and G from
Eq. (3) become location dependent

Φ2(ci, cj ; G
(n)) = (ci − cj)

TG(n)(ci − cj), (10)

G(n) = (Σ+
σ + α(n)Σ+

ε )−1 − (Σ−)−1. (11)

Deformable model: In addition to spatially varying met-
rics, the correspondence between patches can also vary spa-
tially. Because of pose changes, features extracted on a
fixed grid may not correspond even though it is the same
person. Therefore, patch-based methods [4, 48] often al-
low patches to adjust their locations when comparing two
bounding box images. In [4], a deformable model con-
sisted of spring constraints that controlled the relative place-
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Figure 3: Spatial variations: (a) learned background distor-
tion coefficients α(n); (b)N ×N cost matrix, which is used
as an input to the Hungarian algorithm for finding optimal
patch correspondence.

ment of patches. These spring constraints were learned di-
rectly from data using structural SVMs. [47] assumed the
correspondence structure to be fixed and learned it using a
boosting-like approach. Instead, we define the patch corre-
spondence task as a linear assignment problem. Given N
patches from bounding box image i and N patches from
bounding box image j we create a N ×N cost matrix that
contains patch similarity scores within a fixed neighborhood
(see Fig 3(b)). To avoid patches freely changing their loca-
tion, we introduce a global one-to-one matching constraint
and solve a linear assignment problem

Ω∗
ij = arg min

Ωij

(
N∑

n=1

Φ2(c
Ωij(n)
i , cnj ; G(n)) + ∆

(
Ωij(n), n

)
)
,

s.t. ∆
(
Ωij(n), n

)
=

{
∞, η(Ωij(n), n) > δ;

0, otherwise,
(12)

where Ωij is a permutation vector mapping patches c
Ωij(n)
i

to patches cnj and Ωij(n) and n determine patch locations,
∆(·, ·) is a spatial regularization term that constrains the
search neighborhood, where η corresponds to distance be-
tween two patch locations and threshold δ determines the al-
lowed displacement (different δ’s are evaluated in Fig 7(a)).
We find the optimal assignment Ω∗

ij (patch correspondence)
using the Kuhn-Munkres (Hungarian) algorithm [29]. This
yields the color dissimilarity:

N∑

n=1

Φ2(c
Ω∗

ij(n)

i , cnj ; G(n)). (13)

3.3. Total dissimilarity

By incorporating patches, Eq. (2) becomes

d2(i, j) = (1− γ)||Ti − Tj ||2 + γ

( N∑

n=1

Φ2(c
Ω∗

ij(n)

i , cnj ; G(n))

)
.

(14)

In the next section, we extensively evaluate both texture and
color components as well as hyper-parameter γ.

Figure 4: Sample images from the CCH dataset: the top
and bottom lines correspond to images from different cam-
eras; columns illustrate the same person and the last column
shows images of our ColorChecker chart.

4. Experiments
We carried out experiments on 5 datasets: VIPeR [20],
iLIDS [61], CUHK01 [31], PRID2011 [23] and our new
dataset, CCH. To learn a texture representation (fc7 of
JSTLI ) and α(n)’s, we additionally used CUHK03 [32].
Re-identification results are reported using the CMC curve
[20] and its rank-1 accuracy. The CMC curve provides the
probability of finding the correct match in the top r ranks.

4.1. Datasets and evaluation protocols

CCH (ColorCHecker) is our new dataset that consists of
23 individuals with 3379 images registered by two cameras
in significantly different lighting conditions (see Fig. 4). A
single pair of images of our ColorChecker chart was used
to compute Σ+

σ .
VIPeR [20] is one of the most popular person re-
identification datasets. It contains 632 image pairs of pedes-
trians captured by two outdoor cameras. VIPeR images
contain large variations in lighting conditions, background
and viewpoint (see Fig. 5(a)).
CUHK01 [31] contains 971 people captured with two cam-
eras. The first camera captures the side view of pedestrians
and the second camera captures the front or back view ( see
Fig. 5(b)).
i-LIDS [61] consists of 476 images with 119 individuals.
The images come from airport surveillance cameras. This
dataset is very challenging because there are many occlu-
sions due to luggage and crowds (see Fig. 5(c)).
PRID2011 [23] consists of person images recorded from
two different static surveillance cameras. Characteristic
challenges of this dataset are significant differences in il-
lumination (see Fig. 5(d)). Although there are two camera
views containing 385 and 749 identities, respectively, only
200 people appear in both cameras.
CUHK03 [32] is one of the largest published person re-
identification datasets. It contains 1467 identities, so it fits
very well for learning the JSTL model [55]. We used this
dataset as an auxiliary dataset for training both deep texture
representation and background distortion coefficients.
Evaluation protocols We fixed the evaluation protocol
across all datasets. For computing color dissimilarity, all
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Figure 5: Re-identification datasets and their synthesized ColorCheckers. Top and bottom lines correspond to images from
different cameras. Columns illustrate the same person; the last column illustrates our manually generated ColorCheckers.

images of individuals are scaled to be 128×48 pixels and di-
vided into a set of 12×24 overlapping patches with a stride
of 6×12 pixels. This yields 60 patches per image. To extract
color features ci, we concatenate Lab, HSV, YCbCr, LUV,
and RGB histograms, each with 10 bins per channel, into
the 150-dimensional color feature vector, and we reduce the
dimensionality to 30 components using PCA. For texture,
we convert images to a single intensity channel. To fit the
JSTL architecture [55], we scale them to be 160×64 pixels.
For evaluation, we generated probe/gallery images accord-
ingly to the settings in [40,55]: VIPeR: 316/316; CUHK01:
486/486; i-LIDS: 60/60; PRID: 100/649 and CCH: 23/23.
In all experiments, we follow a single shot setting [40]. To
obtain background patches for learning Σε, we run back-
ground segmentation [43] and keep the patches that do not
intersect with the foreground mask. For iLIDS and CCH we
extract background patches from frames without subjects.
To capture camera illumination conditions we use the Col-
orchecker chart. In practice, it is better (and easier) to use
a picture of an actual chart. However for comparison pur-
poses with existing datasets, we synthesize the ColorCheck-
ers (see Fig. 5). We first randomly select 24 image pairs and
extract 2 patches from the upper and the lower body parts.
We then select 35 patches for the ColorChecker, while try-
ing to match colors from Macbeth Chart [37]. Labeling 35
patches compares favorably to previous supervised learning
methods that needed hand labeling of hundreds of subjects
across each camera pair. This procedure was repeated 10
times to minimize subjective bias. c+ij is generated by ran-
domly sampling 500 locations of the ColorCheckers.

4.2. Texture invariance

In this experiment we used 5 datasets: CUHK03, CUHK01,
VIPeR, iLIDS and PRID. Similar to [55], we propose a joint
learning scheme for producing an effective generic feature
representation. We divide each dataset into training, test-

rel. perform. drop
METHOD VIPeR CUHK iLIDS PRID min max avg

in
te

ns
ity JSTLI* 15.8 50.6 44.1 35.0 - -

JSTLILOO 9.8 26.8 44.0 21.0 0.2 47.0 31.3
Handcrafted 3.2 4.1 28.9 5.9 34.4 91.8 72.3

co
lo

r

JSTL [55]* 35.4 62.1 56.9 59.0 - -
JSTLLOO 20.9 37.1 43.5 2.0 23.5 96.6 50.3
KISSME [28]* 19.6 16.4 28.4 15.0 44.6 74.5 60.7

Our 34.3 45.6 51.2 41.4 3.1 29.8 17.3

Table 1: CMC rank-1 accuracies, where * corresponds to
the supervised methods. When training in leave-one-out
(LOO) scenarios (unsupervised case), models trained only
on intensity images have better generalization performance
than models trained on color images (compare relative per-
formance drop statistics). Our method is complementary
to JSTLILOO and achieves significantly better accuracy than
unsupervised methods and KISSME*, and it is comparable
to supervised JSTL*.

ing and validation sets. As JSTL requires a high number of
identities, all training, testing and validation sets are then
merged into single training, testing and validation sets for
training a single CNN. Individually training each dataset is
usually not effective due to insufficient data [55]. In Tab. 1,
we report comparison of JSTL trained only on intensity im-
ages (JSTLI*) with JSTL trained on color images (JSTL*),
and we refer to this scenario as supervised learning (be-
cause the training split from the test dataset was included in
the merged training set). * is used to highlight supervised
methods. Compared to KISSME [28] for both color and in-
tensity images, it is apparent that a single CNN is flexible
enough to handle multiple dataset variations. Learning on
color images, we achieved better performance in this super-
vised setting.

However, as we are interested in generalization proper-
ties of this CNN (for unsupervised case), we also evaluate
JSTL performance on unseen camera pairs. Similarly to
leave-one-out (LOO) cross validation, we train CNNs from



scratch while entirely skipping images from the test cam-
era pair (e.g. results of JSTLILOO in VIPeR column refers to
JSTL trained using all datasets but VIPeR.). CUHK03 im-
ages were always included in the training phase. The right
side of the table reports the performance drop statistics rel-
ative to the supervised JSTL( r

∗
1−r1
r∗1

) for both intensity- and
color-based models: min, max and average performance
drop statistics across all datasets are provided. This experi-
ment reveals that JSTL models trained on color images have
significant relative performance drop, even up to 96.6% for
the PRID dataset (i.e. rank-1 accuracy decreased from 59%
to 2%). The average performance drop for color images
is more than 50%. In contrast, for JSTL models trained
using only intensity images, the performance drop is sig-
nificantly lower and is even unnoticeable for some datasets
(e.g., iLIDS rank-1 dropped from 44.1% to 44.0%). This
implies that models trained only on intensity images are
more invariant to camera changes. JSTLILOO achieves rea-
sonable performance without fine-tuning and is very com-
petitive with the supervised KISSME [28] that uses color
information, outperforming it on 3 of 4 datasets.

Intuitively, if we would have a large amount of data cov-
ering all possible color transfer functions, we should be able
to learn features that have good generalization capabilities.
In practice, with limited training data, our results indicate
that it is more effective to learn deep texture representa-
tion using only intensity images and adapt to camera-pair
specific color changes using the proposed one-shot learning
(the last row in Tab. 1). Our approach significantly out-
performs JSTLLOO and KISSME and achieves comparable
performance to its supervised counterpart – JSTL*.

Furthermore, to compare it with standard handcrafted
texture descriptors, we concatenate HOG, LBP and SIFT
features [58] extracted on a dense patch layout and com-
pute image similarities using `2. From the results, it is ap-
parent that JSTLILOO outperforms handcrafted features by a
large margin on all datasets, which demonstrates the effec-
tiveness of learning a set of generic deep texture features.
As a result, we use JSTLILOO as our Ti descriptor.

4.3. Color calibration

Inter-camera color variation is an important problem for
multi-camera systems. Standard approaches either (1) pur-
sue color constancy (i.e., perceiving the same color un-
der different illuminations) and perform normalization tech-
niques [18, 24, 30, 46] or (2) search for pair-wise map-
pings that are inferred from image pairs, e.g., a pair of
Macbeth ColorCheckers [3]. We compare our color met-
ric learning to both groups of methods on the CCH dataset
(now without the deep texture component, i.e. γ = 1 in
Eq. (14)). The first group includes: histogram equaliza-
tion (HQ) [24], multi-scale retinex with color restoration
(MSRCR) [46], grey world normalization (GREY) [18] and
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Figure 6: Performance comparison with standard color cal-
ibration techniques. Our approach outperforms other tech-
niques by a large margin for all values of background distor-
tion coefficients. The main improvement comes from learn-
ing metric G.

log-chromaticity (LOG) [30]. The second group, which
employs ColorChecker images, consists of: scene-specific
color calibration (SSCC) [3], inter-camera color calibra-
tion (ICC) [44], and 3D Thin-plate smoothing spline (TPS)
[9, 38]. A comparison in Fig. 6 between the two groups re-
veals that the performance of the second group (indicated
by solid lines) is generally higher. It is also apparent that
our color metric learning significantly outperforms all color
calibration methods. Compensating for background distor-
tions helps (e.g., in Eq. 11, we can set learned coefficients
α = α(n), or neglect background modeling α = 0, or as-
sume max background covariance computed from the train-
ing data across all patches α = 1) but the main improve-
ment comes from learning the metric G for color features
using statistical inference [28]. Our approach yields signifi-
cantly higher performance than standard approaches, which
usually model color transfer either by 1D color histogram
mappings [44] or low-rank matrix transforms [3].

4.4. Comparison to re-identification methods

Table. 2 reports the performance comparison of our one-
shot metric learning with state-of-the-art approaches across
4 datasets. We report the results of unsupervised, semi-
supervised and supervised approaches. Semi-supervised
approaches usually assume the availability of one third of
the training set. The #IDs column provides the average
number of labeled identities used for training correspond-
ing models. Our method outperforms all semi- and un-
supervised methods on all datasets, and it achieves maxi-
mum improvement on the PRID dataset. We improve the
state of the art by more than 16% on rank-1 accuracy com-
pared to the previous best reported result, including re-
sults from unsupervised GL [26] and semi-supervised TL-
semi [42] approaches. Further, our approach achieves com-
petitive performance with the best supervised methods that
require hundreds of training examples. For example, our
results on the PRID dataset outperform all supervised ap-



METHOD #IDs VIPeR CUHK01 iLIDS PRID

se
m

i/u
ns

up
er

vi
se

d

Our, α = α(n) 1 34.3 45.6 51.2 41.4
Our, α = 0 1 30.1 39.6 49.9 31.9
JSTLILOO 0 9.8 26.8 44.0 21.0
JSTLLOO 0 20.9 37.1 43.5 2.0
Null Space-semi [57] 80 31.6 - - 24.7
GL [26] 0 33.5 41.0 - 25.0
DLLAP-un [27] 0 29.6 28.4 - 21.4
DLLAP-semi [27] 80 32.5 - - 22.1
eSDC [58] 0 26.7 15.1 36.8 -
GTS [52] 0 25.2 - 42.3 -
SDALF [15] 0 19.9 9.9 41.7 16.3
TSR [49] 0 27.7 23.3 - -
TL-un [42] 0 31.5 27.1 49.3 24.2
TL-semi [42] 80 34.1 32.1 50.3 25.3

su
pe

rv
is

ed

FT-JSTL+DGD [55] 2629 38.6 66.6 64.6 64.0
KISSME [28] 240 19.6 16.4 28.4 15.0
LOMO+XQDA [34] 240 40.0 63.2 - 26.7
Mirror [10] 240 42.9 40.4 - -
Ensembles [40] 240 45.9 53.4 50.3 17.9
MidLevel [59] 240 29.1 34.3 - -
DPML [4] 240 41.4 35.8 57.6 -
kLDFA [56] 240 32.8 - 40.3 22.4
DeepNN [2] 240 34.8 47.5 - -
Null Space [57] 240 42.2 64.9 - 29.8
Triplet Loss [11] 240 47.8 53.7 60.4 22.0
Gaussian+XQDA [36] 240 49.7 57.8 - -

Table 2: CMC rank-1 accuracies. The best scores for un-
and semi-supervised methods are shown in blue. Our ap-
proach performs the best among all these methods across all
datasets. The best scores of supervised methods are high-
lighted in red. Our results are comparable with supervised
methods that require hundreds or thousands of identified
image pairs for training.

proaches except FT-JSTL+DGD [55]. This model was pre-
trained on 2629 subjects, and hundreds of image pairs were
used to fine-tune the model on the target dataset. In a real-
world scenario, collecting these hundreds of images pairs
might be very difficult, if not impossible. Our model needs
only a single pair of images, which is a reasonable require-
ment for real-world deployments.

4.5. Model parameters
Deformable model Fig. 7(a) illustrates the impact of a de-
formable model on recognition accuracy. We also compare
the effectiveness of different neighborhoods on the overall
accuracy. In Eq. (12), we constrain the displacement of
patches to δhorizontal×δvertical number of pixels. Interestingly,
allowing patches to move vertically (δvertical > 0) generally
decreases performance. We believe that this is due to the
fact that images in all of these datasets were annotated man-
ually and vertical alignment (from the head to the feet) of
people in these images is usually correct. Allowing patches
to move horizontally consistently improves the performance
for all datasets. The highest gain in accuracy is obtained on
the VIPeR dataset (+3.2%), which was originally designed
for evaluating viewpoint invariance. This indicates that our
linear assignment approach provides a reliable solution for
pose changes.
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Figure 7: Models parameters: (a) comparison of different
allowable neighborhoods (horizontal×vertical) when ap-
plying Hungarian algorithm for matching patches; (b) sen-
sitivity of hyper-parameter γ.

The color importance Intuitively, it seems that color
should hold the most discriminative information of a per-
son’s identity. Conversely, we find that by employing only
the intensity channel, we can achieve a fairly strong baseline
for person re-identification. Color, although discriminative,
is very susceptible to illumination changes. Interestingly, it
is not clear which has more impact on the final performance
– our one-shot color metric learning or the deep texture rep-
resentation. Compare two extremes in Fig. 7(b): using only
texture γ = 0, and using only color γ = 1. Texture alone
performs better than color alone on two datasets (iLIDS,
CUHK01) but it is outperformed on two others (VIPeR,
PRID). Combining texture and color components consis-
tently increases the recognition accuracy in all datasets.
Computational complexity Eq. (12) requires solving Hun-
garian algorithm for relatively sparse 60 × 60 matrix (see
Fig. 3(b)). Given k non-infinite entries in this matrix, we
employed QuickMatch algorithm [39] that runs in linear
time O(k). The deep texture feature extraction is the slow-
est part and it depends on the GPU architecture (e.g. on
Tesla K80 VIPeR experiment takes 45s, with 39s spent on
deep feature extraction).

5. Summary
Supervised re-identification approaches require hundreds of
labeled image pairs to train effective models for each cam-
era pair. This does not scale to real-world scenarios where
the number of cameras in a surveillance network could be
large. In this paper, we presented a novel one-shot learn-
ing approach that achieves competitive performance with
the best supervised learning approaches, but only requires a
single image from each camera for training. We assume a
metric can be split into independent color and texture com-
ponents without loss of performance. For texture, we learn
deep color-invariant features that can be directly applied to
unseen camera pairs without fine-tuning. Color variations
for specific camera pairs are captured by sampling patches
on registered images of a ColorChecker chart and learning a
color metric for patches. Our method leads to new state-of-
the-art performance in practical and scalable solutions for
re-identification.
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