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Abstract—Creating a computational model for stereoscopic 3D
perception is a highly complex undertaking. As one step towards
this goal, this paper investigates stereoscopic window violation
artifacts, which often interfere with artistic freedom and constrain
the comfortable depth volume. Window violations need to be
compensated for in most 3D feature movies. Currently this is
done in an ad-hoc manner due to a limited understanding of the
problem. In this work, we present a model predicting problem-
atic window violations that are visually disturbing. The model
parameters were defined through psychophysical experiments on
simple stimuli. Then the model was calibrated and validated on
real, complex stereoscopic images. Finally, we present a system
to provide visualization of problematic stereoscopic window
violations as well as details for how to correct them.

I. INTRODUCTION

The stereoscopic window violation is a problematic arti-
fact influencing perceived stereoscopic 3D quality. It occurs
when depth perception from stereopsis and occlusion depth
cues are inconsistent due to interactions with the stereoscopic
window border. Fortunately, window violations are not always
problematic. Making that assessment and compensating, if
necessary, requires time-consuming expert input. We present
a computational model based on perceptual measurements to
identify when a window violation is problematic and a system
to automatically correct it.

The Stereoscopic Window represents the virtual window
through which stereoscopic depth is perceived. Its importance
has been recognized since stereoscopic pictures were first
made [1]. The stereo window is defined by the parallax of
the lateral edges of the two images projected on the screen as
represented in line segment p1p2 of Figure 1. At zero parallax,
the window is perceived to be at the plane of the screen.
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Fig. 1. Stereoscopic window violations can occur in the monocular viewing
regions located in front of the screen. Features from Object B are occluded
by the screen edge p2 behind it.
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Stereoscopic window violations occur when a scene el-
ement meets two conditions: (1) it must be presented with
disparity nearer than the stereo window, and (2) it must collide
with the lateral image border as shown in Figure 1. In the
real-world, this problem would never exist. An object in front
of the window is visible to both eyes. When objects in front
of the stereo window are only visible to one eye, the viewer
perceives the image border to occlude the missing information.
Two depth cues are in conflict: disparity provided by the visible
stereo features and the depth ordering from occlusion. Humans
are most sensitive to occlusion in identifying proper depth
order [2], therefore violating it has the potential to produce
a disturbing visual conflict.

Window violations are difficult to avoid. The range of
stereoscopic depth that is comfortable to view is limited to a
region both in front of and behind the screen [3]. Maximizing
this zone of comfort requires placing scene elements in front
of the screen (negative parallax), increasing the likelihood that
a window violation will occur.

Floating Windows are a common solution to remove stereo-
scopic window violations. It is produced by applying an
asymmetric mask to the left and right eye images. Figure 2
provides an example scene with and without floating windows
applied. Floating windows remove features that should be
visible in the two eyes. The black border to the left of the
image appears to float in front of the vase. This preserves the
expected depth ordering of occluding elements.

Floating windows have been applied in feature cinematic
films as a tool to utilize a larger depth volume, regain artistic
control and remove artifacts that distract attention from the
story [4]. Digital cinematography makes it easier to vary
floating windows between shots, animate them within shots,
and place them to correct only the problematic violations.
However, these are all time-consuming tasks requiring expert
input that can be especially difficult to apply in real-time
applications. Our research can automate these operations.

Other solutions include global disparity shift to push ob-
jects behind the stereo window, at the risk of exceeding the
comfort zone. Local disparity warping methods have been
demonstrated to move only a conflicting object behind the
image plane [5]. Blur near the image border has been proposed
to reduce visibility of the violation [6]. Existing solutions
are often applied in an empirical, ad-hoc manner. We aim to
formalize this through a computational model of perception.



(a) Window Violation (b) Floating Windows

Fig. 2. (a) Stereoscopic image with window violation. (b) Window violation
removed with floating windows. Note the asymmetric mask on the left.

II. PERCEPTUAL MODELING

Human vision is better at distinguishing two objects when
their relative difference in color or luminance is large. This
difference can be expressed in terms of contrast [7]. The
inverse value of the minimum contrast required for detection
is called contrast sensitivity. The change in contrast sensitivity
is a function of spatial frequency and is modeled by the well-
known contrast sensitivity function [7].

We are inspired by image quality assessment metrics. Some
metrics are based on low-level representations of the human
visual system (HVS) including contrast sensitivity and visual
masking [8]. Perceived contrast distortion metrics, such as
the visible difference predictor (VDP) [9], are designed for
detecting near threshold differences, and extensions [10] are
capable of expressing suprathreshold difference in JND (just
noticeable difference) units. Another quality metric is the
use of structural similarity index metric (SSIM) [11], which
exploits the structural information from a scene. Higher level
visual equivalence models provide metrics to determine when
perceived image changes do not result in a perceived change
in image quality [12], [13]. These suprathreshold models do
not predict the probability of detection, but rather assess
if a difference is significantly visible. These considerations
influence the performance of an image quality metric [14].

Stereoscopic Visual Processing also has a contrast sensitiv-
ity correlate. Frisby and Mayhew’s demonstrated a correlation
between stereopsis sensitivity and contrast detection sensitivity
as a function of spatial frequency [15]. Their findings show
that the shape of contrast detection and stereopsis are similar,
although with a shift representing a decrease in stereopsis
sensitivity. It is possible to perceive the disparate features, but
not achieve stereopsis. The CSF correlation with stereopsis has
led to models of perceived depth of frequency and magnitude
changes in disparity [16]. In contrast, our work is focused on
detecting disturbing window violations.

We assess if the visual system can find a viable depth
interpretation when point correspondences do not exist. Marr
and Poggio [17] developed a cooperative algorithm for ex-
tracting disparity information. They suggest that perceiving
the disparity of an object involves finding a continuous and
smooth matching of point correspondences. Mitchison and
McKee [18], [19] later observed that strong edges can cause
a stable, yet incorrect correspondence match of stereoscopic
stimuli. The visual system favors strong edges at the expense
of misinterpreting the fine texture detail. This implies that
the image border can provide a strong edge biasing the
interpretation of scene elements to be perceived as if they are
behind the stereoscopic window, and free of violation.

(a) Main experiment (b) Orientation experiment

Fig. 4. Example stimuli. (a) Main model experiment with no orientation
filtering. The top stimulus is spatial frequency condition level three (SF3) at
1.16 cpd, and the bottom stimulus is SF4 at 4.65 cpd. (b) Orientation mixing
experiment. The top stimuli is the All Pass (AP) condition. The bottom stimuli
is the Horizontal (H) condition. Both stimuli are spatial frequency condition
SF3 (1.16 cpd). Example provided in anaglyph. The black border is provided
by the black border of the HDTV display device in a darkened room.

We are guided by two key concepts: (1) Stereopsis sen-
sitivity has a CSF-like behavior, and (2) strong edges of
the image borders can influence the depth interpretation of
a window violation. We hypothesize that a scene element in
window violation will be problematic when it is represented
by strong visible contrast. The following sections present
our construction and validation of a computational model for
the perception of disturbing stereoscopic window violations.
We isolate four dominant variables to develop our perceptual
model: contrast magnitude, spatial frequency, orientation, and
disparity. Our model as represented in Figure 3 produces a
binary classification of disturbing window violation.

III. MODEL EXPERIMENTS

Stimuli - Each stimuli trial was composed of two textured
planes, presented in stereoscopic depth (see Figure 4). The
stimuli was shown on a 50” Panasonic 3D plasma TV (TX-
P50VT20E) in a darkened room. Subjects were seated 2 meters
away from the display wearing active shutter stereoscopic
glasses. The maximum pixel disparity of each plane is -50px,
corresponding to an angular disparity of -0.8◦. The height of
each plane was 350px (angular height of 5.9◦) and their width
was 1920px (angular width of 30.75◦).

The stimulus planes were textured with filtered, random
dot stereograms to control the experiment conditions of con-
trast magnitude, orientation and frequency. We presented 15
combinations of spatial frequency and contrast. Five spatial
frequency levels were investigated spanning the range from
0.14 cpd to 18.6 cpd. The possible levels of maximum contrast
were 0.21, 0.63 and 1.35. The orientation condition was
created using a fan filter applied in the frequency domain [20].
Disparity was applied to each plane.

Procedure - The experiments were implemented as a
two-alternative forced choice (2AFC) procedure. Human sub-
jects were paid, naive to the experiment and had normal or
corrected-to-normal visual acuity and stereo acuity. Subjects
were first introduced to the concept of window violations
through presentation of real-world examples. The experiment
task was to compare the two planes in the stimuli image
(Figure 4) and choose which of the two looked less disturbing
or annoying. They were instructed to base their assessment on
the image regions close to the left and right vertical screen
borders, where window violations are expected to occur. The
experiment duration was approximately 40 minutes.
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Fig. 3. Pipeline of our computational model. A luminance image is decomposed into band-limited contrast and contrast orientation channels. We then apply
our predictive model and additional disparity scaling. Results are combined using winner-take-all producing the final probability map.

Evaluation - Our main experiment observed the influence
of contrast and spatial frequency on the preference of window
violations. Six subjects participated and evaluated the balanced
combinations of five spatial frequency levels and three contrast
levels resulting in 225 trials per experiment. No orientation
filtering was applied on these stimuli. Disparity was fixed at
-50 pixels. Figure 4(a) presents an example.

We performed Two-factor Analysis of Variance (ANOVA)
with repeated measures to analyze the influence of spatial
frequency and contrast on viewer preference. There was a
strong statistical significance for within-subjects main effects
of contrast (F(2, 30) = 367.32, p < .001) and spatial frequency
(F(1.32, 19.89) = 100.43, p < .001) using Greenhouse-
Geisser adjusted degrees of freedom. Both factors significantly
influence window violation preference. We also analyzed the
Bonferroni-adjusted pairwise comparison between the levels
of each condition [21]. We observed a statistically significant
difference in preference between all contrast levels (p < .01)
and nearly all spatial frequency levels.

The responses collected from each session are normalized
to represent the likelihood for each combination to be pre-
ferred. Figure 5(a) demonstrates a monotonic preference for
lower contrast as well as a preference for high and low spatial
frequency conditions. The plot also shows behavior similar to
the familiar contrast sensitivity function for luminance sup-
porting the assumption that a disturbing window violation is
significantly influenced by contrast magnitude and frequency.

The orientation mixing experiment was created by filter-
ing the RDS textures applied to the two stimuli planes using
a segmented fan filter. Through a series of experiments, we
identified a significant orientation effect when the stimuli pre-
sented a narrow orientation band. Our orientation experiment
enabled comparison of different stimuli orientations as shown
in Figure 5b. This experiment was conducted with six new
subjects who had not participated in the main experiment.
The maximum contrast and disparity condition levels were
held constant. Spatial frequency and orientation was balanced
resulting in 400 trials per experiment. A narrow orientation
filter was used (one 22.5◦ segment from an eight segment fan
filter) to produce the following orientation conditions: All-Pass
(no orientation filtering), Horizontal, Diagonal and Vertical
orientations.

The narrow orientation tuning enabled us to directly ob-
serve a significant orientation effect (F(3, 15) = 14.29, p <
.001) in addition to reproducing a significant spatial frequency
effect (F(4, 20) = 4.06, p < .05). The results are represented in
Figure 5(b). The horizontal condition was the only condition
to show an insignificant influence (p = .125) on spatial
frequency. The spatial frequency preference curve was much

flatter. Pairwise comparison reveal no significant preference
between spatial frequency levels for the horizontal condition.

All Pass, Diagonal and Vertical stimuli orientation con-
ditions had similar mean preference scores. However, the
Horizontal condition was significantly preferred more than the
All Pass and Diagonal orientations (p < .05) and a trend for
preference over Vertical (p = .066). The mean preference for
the Horizontal condition was 30% higher than all conditions
and 32% higher than All Pass.

The disparity mixing experiment was conducted through
balanced presentation of disparity and spatial frequency condi-
tions. The maximum contrast level was used and no orientation
filtering applied. Four levels of negative disparity were com-
pared within the experiment: 6, 12, 25 and 50 pixels (ranging
from -0.1◦ to -0.8◦ angular disparity). The experiment involved
400 trials per experiment.

The effect of the disparity condition was significant (F(3,
15) = 58.35, p < .001). The results are represented in Fig-
ure 5(c). Pairwise comparison revealed a significant preference
between disparity levels for all except the two smallest, which
were nearly significant (p = .058). There was also a significant
interaction between disparity and spatial frequency (F(2.77,
13.83) = 8.52, p < .001). Smaller disparities showed a flatter
CSF-like preference.

IV. COMPUTATIONAL MODEL

Experimental data guided creation of our computational
model depicted in Figure 3. We first process the image content
from RGB to perceptually meaningful luminance units. Per-
ceived luminance depends on the spectral emission properties
of the display. Our display was characterized using a Photo
Research PR-730 spectroradiometer. The obtained spectral
emission curves for the three channels were applied to the color
matching function of the XYZ colorspace [22] to obtain the
luminance image described by the Y component. The resulting
image describes the amount of cd

m2 emitted by the display on
a per-pixel basis.

Contrast and spatial frequency information is extracted
from a complex image using Peli’s [23] decomposition into
band-limited versions by applying cosine-log filters. A cosine-
log filter centered at 2i cycles/picture is defined as:

Gi(u, v) = Gi(r) =
1

2
(1 + cos(πlog2r − πi)), (1)

where u and v are the horizontal and vertical spatial frequency
coordinates respectively and r is one of the polar spatial
frequency coordinates defined as r =

√
u2 + v2.
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(a) Main Experiment
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(b) Orientation Experiment
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(c) Disparity Experiment

Fig. 5. (a) The mean likelihood for each combination of contrast and spatial frequency to result in a more preferred window violation. Participants preferred
low and high spatial frequency and had a monotonically increasing preference for lower contrast. Contrasts C1, C2 and C3 correspond to .21, 0.63 and 1.35
respectively. (b) Orientation mixing experiment presented all paired comparisons of four orientation conditions and five spatial frequencies. Spatial frequency
effects are not as clear as our other experiments. However, the mean preference for Horizontal orientation condition was 30% greater. (c) Disparity mixing
experiment presented all paired comparisons of four disparity conditions and five spatial frequencies. There is a monotonically increasing preference for smaller
disparity. Error bars represent 95% confidence intervals.

The contrast of the ith band is computed as:

ci(x, y) =
|ai(x, y)|

L′
, (2)

where ci is the ith contrast image, ai is the band-limited lumi-
nance image and L′ is the mean luminance of the luminance
image. L′ is motivated by its use in VDP-related metrics [9].

We construct a lookup table (LUT) based on data collected
in the main experiment (Figure 5(a)) to represent the likelihood
a combination of contrast and spatial frequency is perceived
to be more disturbing than the other conditions. The LUT is a
single matrix, with 15 entries in total: one for each combination
of spatial frequency and contrast condition level. The values
were normalized resulting in a matrix describing the likelihood
for each combination to be visually disturbing.

Bilinear interpolation of the LUT is applied between sam-
ple points. This results in one probability map for each spatial
frequency band. Bands are combined together using a winner-
take-all approach, such that for each pixel we use the maximum
probability value across all probability maps. This approach
is motivated by the independent-channel hypothesis in which
disparity discrimination is influenced by the largest active
spatial frequency channel [24].

As visualized in Figure 3, the LUT is further modulated
by a scaling coefficient to account for orientation effects.
We apply a scaling factor, so = 0.7, to our LUT for only
the narrow-band horizontal components. All other orientation
features (AP-H) have a scaling factor, so = 1.0.

The disparity scaling factor, sd, is computed by shifting the
linear fit from the disparity experiment such that our maximum
disparity tested, 50 pixels, is represented by sd = 1. Our
primary LUT already represents the probability disturbing for
50 pixel disparities. The result is the following disparity scaling
function: sd = 0.1603 log dmax + 0.3598. Since disparity is
undefined in window violation regions, we set dmax equal to
the maximum window violation size for all pixels of the given
row.

Since we are only interested in the regions in window
violations, we prune the probability map using a disparity map
of the stereoscopic pair removing regions that are not in contact
with the borders or do not have negative disparities. This gives

a window violation detection mask as shown in the Disparity
Scaling component in Figure 3 as well as in results Figure 8.

The probability map per orientation channel, k, is ex-
pressed as follows:

P k(x, y) = max
n

(P k
0 (x, y), ..., P

k
N (x, y)) sko sd, (3)

where the maximum per frequency band, PN , is modulated by
orientation and disparity scaling coefficients. We then apply the
maximum orientation channel, H or AP-H, to produce a final
per pixel probability map:

P (x, y) = max
k

(P k(x, y)). (4)

The next section describes model validation and threshold-
ing for binary classification.

V. VALIDATION EXPERIMENTS

We conducted a subjective study using real-world and
computer-generated images to validate our model and obtain a
measure regarding its performance. Since our goal is to predict
whether a window violation will be perceived as disturbing,
we asked subjects to look at stereoscopic images and label
where a window violation was disturbing.

Stimuli - Stimuli consisted of 95 stereoscopic images:
screen captures taken from stereoscopic movies (including live
action and computer-generated imagery) and in-house pro-
duced computer-generated imagery. The stereoscopic images
presented window violations as large as 50 pixels in width.
The images created in-house described a similar scene, but
with varying object texture and scene composition.

Procedure - The experiments used the same setup as
described in Section III with an additional computer monitor
for user input (Figure 6). Our subjective methodology was
similar to the one presented by Aydin et al. [25] to evaluate
HDR video tone mapping. Eleven subjects participated and
were instructed to look at the stereoscopic image in the 3D
TV and localize the regions on the lateral borders perceived
as disturbing or annoying. The 2D monitor presented the left
half of the left image together with the right half of the right
image overlayed with a grid. This approach allowed all pixels
representing window violations to be visible in one image.



(a) Stereoscopic image (b) 2D with grid overlay

Fig. 6. Validation and Calibration Experiment. (a) Stereoscopic Image
(presented in paper as anaglyph). (b) The user interface for grid-based selection
of problematic window violations.
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Fig. 7. Resulting TPR and TNR after varying their respective importance.

Each cell had a size of 25 pixels and users were asked to label
cells containing disturbing window violations.

Evaluation - The collected data was averaged per stereo-
scopic image across all 11 subjects to provided ground truth
labeled data. The model prediction and ground truth were
both quantized to a cell resolution of 50 pixels. To account
for labeling error and inconsistency, we defined sensitivity for
the ground truth at 60% of subject agreement. To measure
the performance we computed 7-fold cross-validation between
the ground truth and model prediction. The cross-validation
is binned into training and test data sets to find a threshold
value for our model that minimizes the absolute difference
between the true positive ratio (TPR) and true negative ratio
(TNR). The resulting threshold of our cross-validation gave an
average TPR: 71% and TNR: 72%.

Sensitivity of the system can be tuned to different apli-
cations. A floating window generator may be optimized for
a high TPR in order to not miss disturbing violations at the
cost of correcting some of those that are not disturbing. A
quality assistance system may be optimized more towards
TNR, predicting when it is not necessary to intervene with
high reliability. Figure 7 illustrates the performance when we
vary the relative importance. For instance, if we set the true
positives to be twice as important as the true negatives we
observe a TPR: 89% and TNR: 47%.

VI. RESULTS

Figure 8 illustrates our results by providing anaglyph image
as well as visualization of the ground truth and model predic-
tion. The middle column (Raw data) uses the Matlab JET col-
ormap to represent the level of subject agreement in labelling
window violations. Dark red and dark blue represent greatest
and least agreement, respectively. The same colormap is used
to represent the model prediction of a disturbing window
violation. Dark red shows a higher probability disturbing. The
right column shows the comparison of the thresholded ground
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Fig. 8. Illustration of results: anaglyph image, ground truth and model
prediction. Raw data column uses JET colormap to represent level of agree-
ment (Ground Truth) or probability disturbing (Prediction). Thresholded data
represent result of binary threshold: Red is positive (disturbing) and blue is
negative (not disturbing).

truth data and thresholded model prediction. The threshold for
the ground truth is set to 60% agreement, while the threshold
used for the model is set to the value obtained from the cross-
validation: 0.4394. The regions in red represent positives and
blue negatives.

Our model identifies most of the problematic areas. Fig-
ure 8(a) shows how our model correctly labeled the hanging
lampshade to be disturbing, however, it incorrectly labeled a
portion of the desk as problematic. Figure 8(b) is correctly
predicted to not be problematic. This was accomplished by re-
ducing texture detail in both the lampshade and desk. Similarly,
Figure 8(c) and 8(d) show how disturbing window violations
can be removed using depth-of-field. Contrast is reduced in
the regions farther from the focal plane. Both the thresholded
ground truth and model prediction data agree the disturbing
window violation is removed.

Perceptual models by their nature are limited to certain
number of factors. Our model currently assumes a black border
around the image and does not explore the effect of matching
the luminance of both the window violation and image border.
We also do not directly consider the luminance of features
in window violation, however, this is partially represented in
assessing contrast of the luminance image. Our model also
does not consider the influence of disparity frequency.



(a) Visualization (b) Floating Windows

Fig. 9. Applications. (a) Disturbing window violations are visualized by
a zebra pattern. (b)-left Automatic floating windows to remove disturbing
window violation. (b)-right is not predicted to be problematic due to depth of
focus blur. No floating windows are applied.

VII. APPLICATIONS

We present two applications of our model: visualization and
the automatic removal of disturbing window violations. The
stereo-matching algorithm developed by Werlberger [26] is
used to identify regions of undefined disparity near the lateral
borders.

Our visualization application is intended to support the
detection of disturbing window violations. We adopt a zebra
patterning approach commonly used to represent regions of an
image that are overexposed. Visualization is provided in two
modes. First, it identifies images containing disturbing window
violations. Second, it provides a visual representation of the
disturbing region by displaying an animated zebra pattern as
shown in Figure 9(a). A user parameter is available to adjust
sensitivity to disturbing window violations. This visualization
could be included in a computational stereoscopic camera
system [27] or stereoscopic analyzers [28]–[30] to provide
real-time detection of disturbing window violations. It could
also be applied as a quality assurance step before releasing
stereoscopic content.

Floating windows effectively resolve window violations.
However, it can be difficult to determine how to apply them,
especially during live-capture. Our prediction can help reduce
the uncertainty. Figure 9(b) shows two results of our automatic
floating window generator: one requires the use of floating
windows and the other does not. In Figure 9(b)-left, we apply a
vertical asymmetric crop based on the largest window violation
width. Because our system localizes regions that are disturbing,
more elaborate floating windows can preserve pixels not in
window violation.

VIII. CONCLUSION

We have demonstrated the development and application
of a computational model for the perception of stereoscopic
window violations. We presented a method of measuring win-
dow violation preference as a function of luminance contrast
magnitude, spatial frequency, orientation and disparity. Our
data fits the expectation of a CSF-like sensitivity function
for stereopsis. The model was calibrated and validated using
viewer input from real stereoscopic images. It can successfully
detect user-labeled disturbing window violations. We present
two important applications: visualization and automatic float-
ing window correction of disturbing window violations.
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