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Fig. 1. We show a cloud rendered with a traditional exponential transmittance (left) and with a non-exponential, long-tailed transmittance curve (right). The
non-exponential transmittance leads to both deeper light penetration as well as a softer appearance near the surface, allowing for a richer appearance.

We develop a new theory of volumetric light transport for media with
non-exponential free-flight distributions. Recent insights from atmospheric
sciences and neutron transport demonstrate that such distributions arise
in the presence of correlated scatterers, which are naturally produced by
processes such as cloud condensation and fractal-pattern formation. Our
theory formulates a non-exponential path integral as the result of averaging
stochastic classical media, and we introduce practical models to solve the
resulting averaging problem efficiently. Our theory results in a generalized
path integral which allows us to handle non-exponential media using the
full range of Monte Carlo rendering algorithms while enriching the range of
achievable appearance. We propose parametric models for controlling the
statistical correlations by leveraging work on stochastic processes, and we
develop a method to combine such unresolved correlations (and the resulting
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non-exponential free-flight behavior) with explicitly modeled macroscopic
heterogeneity. This provides a powerful authoring approach where artists
can freely design the shape of the attenuation profile separately from the
macroscopic heterogeneous density, while our theory provides a physically
consistent interpretation in terms of a path space integral. We address im-
portant considerations for graphics including reciprocity and bidirectional
rendering algorithms, all in the presence of surfaces and correlated media.
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1 INTRODUCTION
Standard techniques in graphics for rendering scenes containing
participating media rely on the classical radiative transfer equation
(RTE) [Chandrasekhar 1960]. A central assumption of the classical
RTE is that the medium is composed of tiny, statistically indepen-
dent scatterers. This independence leads to a “memoryless” Poisson
process and the familiar exponential falloff of light (see Figure 2a).
While this model has proved useful in a wide range of applications,
it does not accurately describe media where there are any kind of
correlations between individual scatterers.
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Fig. 2. We show media with discrete scatterers (top) and continuous densities (bottom) of different distributions (a)–(d), and the average transmittance
measured in these media as a function of mean free paths (e). Independently placed scatterers ((a), white noise) lead to the classical exponential transmittance.
Negatively correlated scatterers ((b), blue noise) lead to faster-than-exponential extinction. Positively correlated scatterers ((c)–(d), pink/red noise) lead to
slower-than-exponential extinction.

1.1 The case for correlated/non-exponential transport
Awealth of media with correlated scatterers can be found in the class
of colloids, i.e. mixtures of insoluble microscopic particles dispersed
in another substance. This covers a wide variety of materials such as
foods (e.g. milk, honey, soups, juices), agents (gels, foams, oils, ink,
paint, toothpaste), gases (mist, dust, fog, steam, smoke, clouds), outer
space (stellar clouds, planetary rings, comets) and even some glasses
and plastics. Interactions between these particles is dictated by a
variety of forces, such as electrostatic forces, van der Waals forces or
excluded volume repulsion. The inter-particle correlations caused
by these forces has been widely reported in literature [Beresford-
Smith et al. 1985; Goicochea 2013; Grier and Behrens 2001; Jamali
2015; Rahmani 2013; Smith et al. 2004; Xu et al. 1998] and is the
subject of research in a diverse set of fields. If significant correlations
exist on the scale of the mean-free path of the medium [Davis
and Marshak 2004], non-exponential free-flight distributions arise,
where positive [Borovoi 2002; Kostinski 2001] and negative [Shaw
et al. 2002] correlations lead to slower-than-exponential and faster-
than-exponential free-flights, respectively. For the specific case of
clouds, growing evidence from atmospheric sciences shows that
correlations in the positions of water droplets exist at scales ranging
at least from centimeters to kilometers [Davis et al. 1999; Kostinski
and Jameson 2000].

In Figure 2 we perform a simple Monte Carlo experiment where
we trace photons with random origins and directions through 2Dme-
dia consisting of explicitly modeled absorbing particles. We gather
statistics about the averaged transmittance (e) by tabulating along
the horizontal axis the fraction of photons that survive for a given
distance. In each case the average number of particles is identical,
and it is the statistical correlations that give rise to different light
attenuation behavior. Intuitively, particles in positively correlated
media (c,d) “clump” together and leave larger gaps than expected,
so photons that traverse these gaps skew the free-flight distribution
towards the tail, allowing light to penetrate further on average. The
opposite happens in negatively correlated media. Ignoring these
correlations and instead assuming statistical independence leads to
an inaccurate estimation of light transport with notably different
visual appearance; c.f. Figure 1.

We wish to account for such violations of independence in a phys-
ically plausible manner, and enable practical rendering algorithms
that enrich the level of control over the appearance of participating
media. We first formulate the general problem as an ensemble aver-
age in stochastic media (Section 2), and solve it approximately with
a new non-exponential path integral that supports surfaces and het-
erogeneity (Section 3), which we then make reciprocal (Section 3.1).

This path integral is general, but impractical to solve in the pres-
ence of heterogeneity, and we introduce a new decomposition for
heterogeneous non-exponential media (Section 3.2) that superim-
poses non-exponential free-flights onto a classical heterogeneous
medium. This results in a more flexible and directable system where
artists can author classical media properties but additionally choose
between different free-flight distributions, all while providing a con-
sistent interpretation of the light transport that is independent of
the chosen Monte Carlo rendering algorithm. Our new path inte-
gral shows how to easily change any Monte Carlo path-sampling
algorithm to accommodate arbitrary free-flight distributions. To
leverage this new flexibility, we use the mathematical formalisms of
stochastic Gaussian processes and fractal noise [Barnsley et al. 1988]
to obtain artist-directable parametric models for non-exponential
free-flight distributions (Section 4).

1.2 Related work
Atmospheric sciences & neutron transport. Motivated by empirical
observations [Davis et al. 1999; Kostinski and Jameson 2000] ofmulti-
scale correlations of liquid water content in clouds, the atmospheric
science community has developed many statistical models [Borovoi
2002; Davis and Marshak 2004; Davis and Mineev-Weinstein 2011;
Davis and Xu 2014; Kostinski 2001; Shaw et al. 2002] to explain how
such correlations lead to non-exponential aggregate transport behav-
ior. These methods typically reduce the cloud to a fully homogenized
slab while introducing statistically equivalent non-exponential free-
flights. We adopt the fractal variability model proposed by Davis
and colleagues [2011; 2014], but additionally provide a way to super-
impose the non-exponentiality from such unresolved fluctuations
onto resolved macro-scale heterogeneity. Likewise, motivated by
correlations and non-uniformity of pebble-bed reactors, Larsen and
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Vasquez [2011; 2014a; 2014b] recently derived generalized RTE-like
models for neutron transport that allows non-exponential, angle-
dependent free flight distributions by introducing an additional
“memory” parameter tracking the distance since the last interaction.
We discuss these models in more detail in Section 2 and show that
they are a special case of our more general model.
Non-exponential behavior also arises when there is “cross-talk”

between neutrons (photons) of different energy-levels (wavelengths).
This is often ignored in graphics – unless fluorescence/in-elastic
scattering [Gutierrez et al. 2008; Jarabo and Arellano 2018] needs to
be considered – but is quite common in neutron transport where
multi-energy simulations are standard practice. D’Eon [2016] pro-
vides an excellent overview of previous work on non-exponential
free-flights outside of graphics. Unfortunately, it is difficult to di-
rectly leverage these prior formulations in graphics, since they do
not construct a theory considering both volumes and “solid” surfaces
that can readily be solved using a chosen Monte Carlo rendering
algorithm.

Graphics. There has also been some work in graphics that explored
non-classical transport, often in the context of approximating com-
plex geometry as a continuous participating medium. Moon et al.
[2007] introduced the concept of non-exponential transport to graph-
ics, and several approaches [Meng et al. 2015; Moon et al. 2008;
Müller et al. 2016] have since considered the problem of acceler-
ating multiple scattering within discrete random (granular) media.
These methods all addressed isolated rendering problems (via data-
driven tabulation or by simplifying to the classical RTE) and do
not provide a theory for how to handle non-classical transport in
general. Jakob et al. [2010] and follow-up work [Dupuy et al. 2016;
Heitz et al. 2015] took a step in this direction by enhancing the
classical RTE to account for angular structure/correlations using the
microflake model. These theories, however, still ignore the spatial
correlations that give rise to non-exponential free-flight behavior
in media. Our theory shows how to achieve this by modeling un-
resolved spatial correlations and density fluctuations (volumetric
“roughness”) statistically, akin to howmicrofacet models [Blinn 1977;
Cook and Torrance 1981] represent surface roughness statistically.

Artistic control. The film industry has recently started exploring the
use of non-exponential behavior for artistic control and accelerated
multiple scattering [Bouthors et al. 2008; Nowrouzezahrai et al. 2011;
Wrenninge et al. 2013, 2011]. Common strategies include artificially
lengthening the mean-free path for shadow rays of higher-order
scattering [Bouthors et al. 2008; Wrenninge et al. 2011] or replacing
exponential transmittance with a sum of exponentials [Wrenninge
et al. 2013]. While originally developed in an ad-hoc way, we dis-
cuss in Section 4.4 how such sums of exponentials have a physically
grounded interpretation. Pixar’s RenderMan likewise allows spec-
ifying separate “shallow” and “deep” scattering mean-free paths
to preserve fine-scale surface details while controlling long-range
subsurface scattering. D’Eon [2013] derived diffusion equations for
non-exponential free-flights which could conceivably be used in
this context. Most recently, Wrenninge et al. [2017] applied non-
exponential free-flights from Davis and Xu [2014] to homogeneous
path-traced subsurface scattering. While such artistic techniques
have proven useful in production, the industry has gradually shifted

to physically based light transport using path tracing-based ap-
proaches [Christensen and Jarosz 2016; Fong et al. 2017; Keller et al.
2015], reinforcing the need for a more flexible theory of light trans-
port in scenes with surfaces and correlated heterogeneous media
which can be solved in a consistent way using any desired Monte
Carlo rendering algorithm.

Concurrent Work. Concurrent to our work, d’Eon [2018] extend the
work of Larsen and Vasques [2011] to include surfaces while ensur-
ing reciprocity of the resulting RTE. He achieves this by deriving
an uncorrelated free-flight PDF that satisfies reciprocity over two-
segment paths. Our fp function (Section 3) is equivalent to d’Eon’s
uncorrelated free-flight PDF; however, we are able to show that the
correlated and uncorrelated free-flight PDF are linked because of
the underlying physical process of ensemble averaging. Reciprocity
in our model is then simply a result of modelling the underlying
physical process. In contrast, the uncorrelated free-flight PDF of
d’Eon is a mathematical construct and is not a result of any particu-
lar property of the medium. In addition, the RTE derived by d’Eon
is only weakly reciprocal, i.e. the path throughput is not reciprocal
for individual path segments, which complicates rendering with
bidirectional methods. Our path integral on the other hand is fully
reciprocal; it also supports heterogeneity.
Jarabo et al. [2018] also extend the Larsen and Vasques model

to include surfaces and statistical heterogeneity. Their RTE is gen-
eral and allows for different correlated and uncorrelated source
terms and free-flights. Although this RTE could be made reciprocal,
Jarabo et al. do not explore the mathematical relationship between
correlated and uncorrelated free-flight PDFs, and do not discuss
reciprocity. In addition, although their RTE supports heterogeneity
in theory, they do not develop a practical model and are only able
to render homogeneous results. Finally, they do not provide a path
integral formulation of their theory, which makes integration with
bidirectional methods difficult.

In the field of neutron transport, Camminady et al. [2017] extend
the work of Larsen and Vasques [2011] to support piecewise ho-
mogeneous media. They do so by combining a 1D free-flight PDF
with the accumulated extinction across interfaces of the medium.
Their model can be viewed as a special case of our heterogeneity
model, which supports continuously varying heterogeneity. Unlike
Camminady et al., we also provide a physical intuition of this het-
erogeneity model in the context of stochastic media and develop
efficient and unbiased heterogeneous distance sampling methods
for certain classes of media.

2 BACKGROUND
The classical RTE can be viewed as the expected value of a stochastic
process, where in each realization light paths interact with scattering
particles distributed independently at random. This gives rise to the
classical exponential model.
Similar to the classical RTE, we formulate the non-exponential

rendering problem as the average behavior of light paths interacting
with a stochastic medium (Figure 3, top). To formulate the problem,
we need to first pick a model of how each realization of the medium
is expressed: We can either model realizations as discrete point
distributions of scatterers (Figure 2, top), or describe each realization
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as a heterogeneous classical medium (Figure 2, bottom). The latter
model is more convenient to work with mathematically, and we will
use this model for the rest of this paper. However, we include an
alternative derivation of our path integral using the discrete model
in the supplemental material to demonstrate that both models are
equivalent for the purposes of our theory.
In the following, we denote a realization of the medium by the

symbol µ, and use it as a subscript for quantities that depend on the
realization. For example, we associate a heterogeneous extinction
coefficient σµ (x) with each realization. We use the notation ⟨·⟩
to express ensemble averages; for example σ (x) =

〈
σµ (x)

〉
is the

macroscopic extinction coefficient, averaged over all realizations of
the medium.
Within each realization, light transport is exponential, and the

transmittance, free-flight PDF and optical depth are defined as usual:

Trµ (x, xt ) = e−τµ (x,xt ), and pµ (x, xt ) = e−τµ (x,xt )σµ (xt ), (1)

with τµ (x, xt ) =
∫ t

0
σµ (xs ) ds, (2)

and Trµ and pµ further satisfy the well-known integral relationship

Trµ (x, xt ) =
∫ ∞
t

pµ (x, xs ) ds . (3)

We use the notation xt = x+t ·ω to express points along rays.Within
each realization, light transport is described by the standard path
integral [Veach 1997]. The measurement I is the product of emission
Le (x0, x1), sensor responseW (xk−1, xk ) and path throughput д(x)
for length-k path x = x0 · · · xk , integrated over the set of paths P:

Iµ =

∫
P

Le (x0, x1)дµ (x)W (xk−1, xk ) dx, (4)

with

дµ (x) =

[k−1∏
i=1

fµ (xi )Σµ (xi )

] [k−1∏
i=0

Trµ (xi , xi+1)G(xi , xi+1)

]
(5)

and

Σµ (x) =

{
σµ (x) if x ∈ V
1 if x ∈ ∂V

(6)

fµ (xi ) =

{
fm,µ (xi−1, xi , xi+1) · αµ (x) if xi ∈ V
fs (xi−1, xi , xi+1) if xi ∈ ∂V,

(7)

G(xi , xi+1) =
D(xi )V (xi , xi+1)D(xi+1)

| |xi − xi+1 | |2
, D(xi ) =

{
1 if xi ∈ V
cosθi if xi ∈ ∂V

(8)

where fm,µ and fs are the phase function and BRDF, respectively,
αµ is the albedo,V represents the set of all medium points, ∂V the
set of all surface points andV (xi , xi+1) is the visibility function. We
illustrate these terms in the figure below:

Looking at Equation (5) and the illustration above, it may seem
trivial to simply insert a numerically averaged transmittance into
the classical RTE and expect non-exponential behavior. In the sup-
plemental material we prove, however, that only an exponential
transmittance satisfies energy conservation in the classical RTE,
requiring us to develop a more flexible theory.

Instead, we treat the non-exponential rendering problem as com-
puting the expected value of this measurement, i.e. the ensemble
average

〈
Iµ
〉
. In the following, we assume that emission and mea-

surement happen only on surfaces and do not depend on the real-
ization; this is for notational convenience, and we present a general
derivation in the supplemental material. This assumption reduces
the problem to computing the average path throughput:

〈
дµ (x)

〉
=

〈k−1∏
i=1

fµ (xi )Σµ (xi )
k−1∏
i=0

Trµ (xi , xi+1)G(xi , xi+1)

〉
. (9)

This ensemble average captures all correlation effects in the medium,
but is impractical to compute in general: All terms of the path
throughput above depend on the realization µ and are correlated
with each other, which makes simplification challenging without
making further assumptions.

In the field of neutron transport, Larsen and Vasques [2011] con-
sidered a simplified version of this problem, in which

• the medium is infinite and contains no surfaces,
• the medium is statistically homogeneous or stationary, i.e. the
statistics of the medium do not change spatially,
• the phase function and albedo are independent of the realiza-
tion, and
• photon free-flights only depend on the distance to the previ-
ous event (scattering or emission).

Using these assumptions, Larsen and Vasques successfully derive
a generalized linear Boltzmann equation (GBE) that describes non-
exponential transport. Although they do not derive a path integral
and their model has significant limitations, we take inspiration from
their approach and apply some of their assumptions to our more
general problem (Equation (9)).
Our goal is to derive a new path integral that supports non-

exponentiality and lifts some of the restrictions of the Larsen and
Vasques model that make it unsuitable for graphics. In particular, our
path integral should include bounded media and surface transport
within the same framework, in addition to supporting macroscopic
heterogeneity. This path integral should also be practical to compute
and fully reciprocal to allow the use of all rendering algorithms used
in graphics.
The derivation of our path integral proceeds in three steps: We

first import two critical assumptions from the Larsen and Vasques
model and apply them to Equation (9) to obtain a newnon-exponential
path integral. This path integral is not reciprocal in the traditional
sense, and we address this issue in Section 3.1 to derive a fully
reciprocal version. Up until this point, we support statistical hetero-
geneity in its most general form, which makes practical rendering
difficult; to address this, we introduce a practical heterogeneity
model in Section 3.2 that preserves non-exponentiality while en-
abling efficient rendering algorithms for the heterogeneous case.
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⟨д(x̄)⟩ =

≈

Fig. 3. We formulate the problem of non-exponential rendering as the en-
semble average of the path throughput over all realizations of a stochastic
medium (top). We approximate the solution to this problem by computing
the ensemble average separately over each segment (bottom).

3 A NON-EXPONENTIAL PATH INTEGRAL
Before we can proceed with the derivation of our proposed path
integral, we first need to formally define the notion of an ensemble
average. We associate with each realization µ of the medium a prob-
ability measure dP{µ} that describes its likelihood. An ensemble
average of an arbitrary function fµ (x) is then a measurement over
R, the space of all realizations (the ensemble):〈

fµ (x)
〉
=

∫
R

fµ (x) dP{µ}. (10)

The ensemble average preserves all properties of the integral, such
as linearity.
Returning to the problem of computing

〈
дµ (x)

〉
, we now intro-

duce our first assumption: Phase function and albedo are uncorre-
lated with the realization µ. The linearity property of ⟨·⟩ then allows
us to move these terms outside of the ensemble average:〈
дµ (x)

〉
≈

k−1∏
i=1

f (xi )
k−1∏
i=0

G(xi , xi+1)

〈k−1∏
i=0

Trµ (xi , xi+1)Σµ (xi+1)

〉
.

(11)

This simplifies the problem to computing the average transmittance
and extinction coefficient across the entire path. For notational
convenience, we have also moved the geometry term (which is
independent of the realization) and added a Σ(xk ) term (which is 1,
since we have assumed surface sensors).
The second assumption we import from Larsen and Vasques is

that photon free-flights only depend on the distance to the previous
event. In other words, the “memory” of each photon does not extend
beyond a single segment of the path; intuitively, the photon “jumps”
into a different realization every time it interacts with the medium.
This assumption effectively decorrelates segments of the path

from each other, and this allows us to compute the ensemble average
independently for each segment instead of over the path as a whole
(Figure 3, bottom):〈k−1∏

i=0
Trµ (xi , xi+1)Σµ (xi+1)

〉
≈

k−1∏
i=0

〈
Tµ (xi , xi+1)

〉
. (12)

We have moved the ensemble average into the product and substi-
tuted a transport kernel Tµ for the segment term. What should this
term be? We know that it should resemble Tr× Σ, the segment term
of the classical path integral. We observe that the classical segment
term actually represents two different functions, depending on the
end point of the segment: If xi+1 lies in the medium, the segment

pp fp

pf ff

σ (xt )
∫ ∞

t
pp(x, xs ) ds

∫ ∞

t
pp(x, xs ) ds

−
dfp(x, xt )
σ (xt ) dt

∫ ∞

t
fp(x, xs ) ds

fp(
x t
, x
)/
σ (
x t
)

σ (xt )
∫ ∞

t
pf(x, xs ) ds

−
dpf(x, xt )

dt
σ (
x t
)pf(x

t,
x)

−
dff(x, xt )
σ (xt ) dt

−
dff(x, xt )

dt

Fig. 4. The four transport functions pp, fp, pf , and ff correspond to ensem-
ble averaging photons starting or ending in free-space or on particles, and
they are related to one another mathematically via integration, differentia-
tion, and normalization.

term becomes the free-flight PDF pµ ; if it does not, Σµ becomes 1
and the segment term reduces to the transmittance Trµ instead.
However, simply taking the ensemble average of the classical

segment term is not sufficient, since this does not take into con-
sideration the start point of the segment: If xi lies in the medium,
it represents a scattering event—in other words, xi must coincide
with a scatterer. The ensemble may include many realizations of
the medium in which there is no scatterer at xi , and averaging over
all realizations is then not correct. Instead, we need to compute an
average conditioned on xi coinciding with a scatterer.
This results in four different functions (see Figure 4) that repre-

sent the four possible combinations of xi and xi+1 coinciding with a
particle or lying in free-space, or equivalently, all possible combina-
tions of transmittance or free-flight PDF averaged conditionally or
unconditionally. These four functions form the ensemble transport
kernel:

T (x, y) =
〈
Tµ (x, y)

〉
=


ff(x, y) if x ∈ ∂V ∧ y ∈ ∂V
fp(x, y) if x ∈ ∂V ∧ y ∈ V
pf(x, y) if x ∈ V ∧ y ∈ ∂V
pp(x, y) if x ∈ V ∧ y ∈ V ,

(13)

where we have labeled the functions according to the type of trans-
port they represent, i.e. “free space-to-free space”, “free space-to-
particle”, “particle-to-free space” and “particle-to-particle”. To repre-
sent transport starting on a particle (i.e. pp and pf), we need a way
to express ensemble averages over scatterers only. The probability
density of encountering a scatterer at xi is proportional to σµ (xi )
(assuming constant particle radii1), and we can express the expec-
tation of some function f (xi ) conditioned on xi coinciding with a
scatterer as the weighted ensemble average〈

f (xi )ρµ (xi )
〉

with ρµ (x) =
σµ (x)
σ (x)

. (14)

1More precisely, it is proportional to the number density. σµ (xi ) is proportional to the
number density times particle cross-section, the latter of which is determined by the
particle radius.
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With this tool, we can now define the four transport functions:

ff(x, y) =
〈
Trµ (x, y)

〉
(15a)

fp(x, y) =
〈
Trµ (x, y)σµ (y)

〉
(15b)

pf(x, y) =
〈
Trµ (x, y)ρµ (x)

〉
(15c)

pp(x, y) =
〈
Trµ (x, y)σµ (y)ρµ (x)

〉
, (15d)

and our path integral becomes〈
дµ (x)

〉
≈

k−1∏
i=1

f (xi )
k−1∏
i=0

G(xi , xi+1)
k−1∏
i=0

T (xi , xi+1). (16)

It is not at all clear that this throughput is reciprocal. Indeed, we will
show that the transport kernelT can give different results if the seg-
ment is reversed, and we address this problem in Section 3.1. How-
ever, before then it is worth analyzing the four different functions
of T in more detail and develop some intuition for their meaning.

pp(xi , xi+1) and fp(xi , xi+1) are averages of free-flight PDFs and
are themselves free-flight PDFs: They correspond exactly to the
density of particle-to-particle and free-space-to-particle flights. On
the other hand, pf(xi , xi+1) and ff(xi , xi+1) are averages of trans-
mittances and are themselves a transmittance.
In the classical RTE, the transmittance and free-flight PDF are

tightly related (Equation (3)). Because the functions we introduced
are themselves averages of the classical transmittance and free-flight
PDF, and the averaging operator is linear, we can easily prove (see
supplemental) that the same holds for the averaged functions:

pf(x, xt ) =
∫ ∞
t

pp(x, xs ) ds, ff(x, xt ) =
∫ ∞
t

fp(x, xs ) ds . (17)

Perhaps more surprisingly, we can also prove that pf and fp are
directly related. Intuitively, fp(x, y) represents the PDF of hitting
a scatterer at y starting from free-space point x, whereas pf(x, y)
represents the probability of reaching free-space point y starting
from a scatterer at x. These functions describe reverse events in a
sense, and indeed we can show

fp(x, y) =
〈
Trµ (x, y)σµ (y)

〉
(18)

= σ (y) ·
〈
Trµ (y, x)

σµ (y)
σ (y)

〉
= σ (y) ·

〈
Trµ (y, x)ρµ (y)

〉
(19)

= σ (y) · pf(y, x) (20)

These four functions are not arbitrary; they represent probabilities
(densities) of events between two points, and are tightly linked to
each other—given one function, all three others can be derived. The
relationships between them are a direct result of averaging trans-
mittances and free-flight PDFs (17) and performing unconditioned
averages or averages correlated with scatterer locations (20). We
illustrate these relationships and their inverses in Figure 4.

Comparison to the GBE. It is worth pointing out that in the case
of an infinite, statistically homogeneous medium without surface
boundaries, our proposed path integral is equivalent to the General
Boltzmann Equation of Larsen and Vasques [2011]. This is because
then all path vertices lie in the medium and our transport kernel
only evaluates pp, the particle-to-particle free-flight PDF; this is the
same function used in the GBE.

3.1 Reciprocity
So far, our transport kernel is not reciprocal, i.e.T (x, y) , T (y, x) in
the general case. There are two reasons for this: Free-flight PDFs
(such as pp) are not generally reciprocal, and swapping the end-
points of a surface-to-medium segment causes a different case state-
ment to be evaluated (fp in one case, pf in the other).

However, wewill show that this problem can be addressed through
a simple rearranging of terms. We proceed by deriving a reciprocal
transport kernel through mathematical manipulation and then offer
an intuitive interpretation of this new kernel.

We begin by defining

Σ(x) =

{
σ (x) if x ∈ V
1 else.

(21)

Now consider the modified transport kernel T̃

T̃ (x, y) =
T (x, y)
Σ(y)

=


ff(x, y) if x ∈ ∂V ∧ y ∈ ∂V
fp(x,y)
σ (y) = pf(y, x) if x ∈ ∂V ∧ y ∈ V

pf(x, y) if x ∈ V ∧ y ∈ ∂V
pp(x,y)
σ (y) if x ∈ V ∧ y ∈ V .

(22)

Different to before, T̃ will evaluate pf for a segment that has one end-
point on a surface and another in themedium, regardless of direction.
Additionally, T̃ evaluates pp(x, y)/σ (y) for a segment with both
end points in the medium. We can easily prove (see supplemental)
that this term is equivalent to averaging the transmittance along a
segment, conditioned on both end points lying on a particle. This
means that T̃ evaluates only averages of transmittance for all four
possible configurations of a segment. The classical transmittance
is reciprocal, and so are averages of transmittances; hence, T̃ is
reciprocal.

To complete the derivation, we use the relationT (x, y) = Σ(y)T̃ (x, y)
in Equation (16) to obtain our proposed reciprocal, non-exponential
path throughput:〈

дµ (x)
〉
≈

[k−1∏
i=1

f (xi )Σ(xi )

] [k−1∏
i=0

T̃ (xi , xi+1)G(xi , xi+1)

]
. (23)

We have rearranged the Σ terms into the vertex terms so that this
equation looks very similar to the classical path integral. Indeed,
the only difference to the exponential case is the replacement of
transmittance Trwith our modified transport kernel T̃ . This makes it
straightforward to simulate our proposed non-exponential transport
model with existing (bidirectional) rendering methods. We describe
the necessary changes to existing renderers in detail in Section 5.

3.2 Heterogeneity
In Section 2, we formulated the original averaging problem in a
statistically heterogeneous medium. As a result of this, all equations
so far explicitly support heterogeneity in its most general form—for
example, the macroscopic density could vary, or the correlation
between scattering particles could change from one part of the
medium to the next.
Although this generality can be useful, it also means that the

transport kernel T̃ (x, y) is a 6D function. In the general case, this
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makes it impractical to derive analytical forms of T̃ or to tabulate
it numerically, and rendering with this form of the path integral is
difficult. To address this, we introduce an explicit decomposition
of the medium into a 1D transport kernel and a 3D density field
that enables practical rendering methods while preserving non-
exponentiality.
Our current model and the model of Larsen and Vasques can be

viewed as lying on two opposite sides of a spectrum: The Larsen and
Vasques model assumes a fully homogenized model with identical
statistics everywhere, whereas our model makes no assumptions
about how correlations are distributed spatially.

Assuming statistical homogeneity is convenient, because ensemble-
averaged transmittances and free-flight PDFs become functions of
only distance. Parametric models of transmittance can be readily
derived for certain classes of stochastic media (Section 4) if they are
statistically homogeneous, and for all other media, the required 1D
functions can be easily tabulated numerically. On the other hand,
heterogeneous media find wide-spread use in graphics, and any
path integral not supporting such media is heavily limited.

This motivates us to seek a middle ground between the two mod-
els that combines the benefits of both:We decompose the description
of the medium into a heterogeneous, macroscopic density σ (x) and
a 1D transport kernel T (t).

In other words, we assume that the medium is statistically hetero-
geneous, but that the underlying correlations are the same through-
out the medium. Our model imposes that for a medium with unit
macroscopic density (σ (x) = 1), averages of transmittance and free-
flight PDF become functions only of distance:

ff(x, xt ) = ff(t) = ⟨Tr(t)⟩ (24a)

fp(x, xt ) = fp(t) =
〈
Tr(t)σµ (xt )

〉
(24b)

pf(x, xt ) = pf(t) =
〈
Tr(t)ρµ (xt )

〉
(24c)

pp(x, xt ) = pp(t) =
〈
Tr(t)σµ (xt )ρµ (xt )

〉
(24d)

We can view these functions as forming a “base” transport kernel
T̃base(t) that captures only correlations, but not heterogeneity.

For a medium with non-unit macroscopic density but the same
correlations as the medium above, we express its transport kernel in
terms of the base kernel and the macroscopic optical depth:

T̃ (xi , xi+1) = T̃base(τi ) =


ff(τi ) if xi ∈ ∂V ∧ xi+1 ∈ ∂V

pp(τi ) if xi ∈ V ∧ xi+1 ∈ V

pf(τi ) else,
(25)

with τi = τ (xi , xi+1). We obtained this equation by inserting the
equivalent of (22) for T̃base. Because pp is a PDF, it incurs a Jacobian
factor of σ (xi+1) from the transformation. However, this factor
cancels the division by σ from (22), leaving us with a remarkably
simple transport kernel.

This decomposition can be interpreted as separating the medium
into explicitly modeled density variations and statistically modeled
density fluctuations that exist beyond what is modeled explicitly.
This model has several advantages: Reducing the transport kernel
to 1D makes it practical to estimate it numerically or derive it an-
alytically. Additionally, the decomposition of the medium into a

heterogeneous density and a “plug-in” function describing corre-
lations allows us to easily superimpose non-exponentiality onto
existing heterogeneous media without additional effort. Finally, re-
lating the microscopic and macroscopic model via the optical depth
enables practical sampling methods that are even unbiased in some
special cases (Section 5).

Physical interpretation. This heterogeneity model has a simple
physical interpretation, which we illustrate in Figure 5. The left
column in this figure represents an instance of the “base” medium,
which is statistically homogeneous and has a mean extinction of
1. The middle column of this figure represents an instance of a
medium with the same correlations, but a mean extinction of 2.
Through Equation (25), we can relate transmittance in this medium
to transmittance in the base medium via the optical depth; this
can be interpreted as “squishing” the base medium horizontally
and “stretching” it vertically, so that it has twice the amplitude
and twice the frequency. In the general case of a macroscopically
heterogeneousmedium (right column), the amount of this stretching
is determined by the local macro-scale extinction coefficient σ (x).

4 MODELING NON-EXPONENTIAL ATTENUATION
Now thatwe have a theory than can admit non-exponential behavior,
the next remaining question is how we should obtain, represent, and
design the four transport functions (24), and how we can physically
interpret the corresponding light transport.

It is common to model surface appearance at multiple scales, e.g.
by representing large-scale variation using explicit geometry and
displacements, while modeling fine-scale roughness statistically us-
ing a BRDF. We propose to leverage our theory to provide a similar
decomposition for volumes, where we model large-scale heteroge-
neous variation explicitly with spatially-varying macroscopic media
properties (α(x),σ (x), fm (x)), but we can additionally account for
scatterer correlations or unresolved fine-scale heterogeneity sta-
tistically by modifying the transport functions (24). Inspired by
phenomenological [Ashikhmin and Shirley 2000; Phong 1975], data-
driven [Ashikmin et al. 2000; Bagher et al. 2016; Matusik et al. 2003],
and statistical microfacet [Blinn 1977; Cook and Torrance 1981]
models for surface roughness, we can likewise obtain transmittance
functions in different ways:

0 1Optical Depth τ
0

1

2

σµ(τ)

0 1Distance s

σ(s)

σ(s)σµ(τ(s))

0 1Distance s

σ(s)

σ(s)σµ(τ(s))

Fig. 5. We express volumetric micro-roughness σµ (left) statistically and
model macro-scale extinction σ explicitly (black, homogeneous: center,
heterogeneous: right) and combine them (blue). When we pass the base
transport functions through macroscopic optical depth τ (s), the statistical
fluctuations/correlations that σµ (left) represents are scaled vertically and
squeezed horizontally (middle, right) by the local extinction coefficient σ (s).
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Exponential Delta

Uniform Sum of Exponentials

Delta Sum Erlang-2

ff fp pf pp

Fig. 6. We show a homogeneous medium in a Cornell Box rendered with
six different free-flight PDFs. We set pp to be the classical exponential (top
left), a delta function δ3/4 (top right), uniform U(0, 3/4) (middle left), a
sum of two exponentials (middle right), a delta sumX(4) (bottom left), and
the Erlang-2 distribution E(2) (bottom right). Compared to the exponential
baseline (top left), we can achieve a wide range of appearances through
simple parametric transmittance curves.

(1) The artist-driven “phenomenological” way (Section 4.1), where
we directly design a free-flight PDF/transmittance free-hand
or with simple parametric models;

(2) The “data-driven” physically based way (Section 4.2), where
we instantiate a distribution of physical scatterers, and obtain
the transmittance induced by these scatterers numerically
(through sampling); and

(3) The “statistical” physically based way (Section 4.3) that seeks
analytic parametric models for these functions driven by
some statistical description of the distribution of the physical
medium scatterers (Section 4.4).

4.1 Transmittance via directly designed free-flight PDFs
A simple phenomenological approach is to directly prescribe the
free-flight PDF (either Equation (24a) or (24c)) to something other
than an exponential. Table 1 lists the PDF pdf(x) and CDF cdf(x) of
common statistical distributions. We can take any such distribution
defined on the positive real line, and directly set e.g. fp(τ ) = pdf(τ ),
we then have ff(τ ) = 1− cdf(τ ), and the other functions follow from
the relationships in Figure 4.

We experimented with a variety of such distributions, including a
step, linear ramp, sum of impulses, sum of exponentials, and Erlang-
2. Figure 6 shows renderings and the corresponding parametric
transport curves. It would also be possible to allow artists to design
custom curves using a familiar graph editor interface.
The sum of two exponentials is particularly useful as the two

exponents allow separately controlling the falloff of light near the
start and tail of the distribution. Wrenninge et al. [2013] used this
falloff for shadow rays to allow light to penetrate deeper, approx-
imating multiple scattering. Our theory allows us to incorporate
this in a consistent way for arbitrary bounces and light transport
algorithms.
Inspired by this idea, we also took a classical monopole diffu-

sion profile [Habel et al. 2013; Jensen et al. 2001] and interpreted
it as a free-flight distribution. The radial falloff of a classical mono-
pole is proportional to an Erlang-2 distribution with rate parameter
λ =

√
3(1 − α)(1 − дα) dependent on albedo α and the average co-

sine д. Simulating single scattering from a point light in a homoge-
neous mediumwith this transmittance profile would produce results
similar to an all-bounce monopole diffusion approximation. Applied
as a transmittance profile in our theory, this lets light penetrate
further into the medium at each bounce, and allows us to approxi-
mate multiple-scattered transport using fewer explicitly simulated
bounces.

4.2 Data-driven transmittance via ensemble averaging
While directly designing transmittance functions in this top-down
approach provides high-level artistic controls, it may not correspond
to any physically realizable distribution of scattering particles. To
obtain physically justifiable profiles, we can instead numerically ap-
proximate the ensemble-averaging process by generating stochastic
realizations of heterogeneous media or discrete point distributions.
Without loss of generality, we will consider the function ff(t)

knowing we can obtain the other three functions via integration,
normalization or differentiation using the relationships in Figure 4.

Ensemble-averaging discrete media/particles. One physically based
approach would be to explicitly construct a discrete collection of
scattering particles (Figure 2a-d, top) and approximate the transmit-
tance using a Monte Carlo ensemble average:

ff(t) =
〈
Vµ (x, xt )

〉
≈

1
N

N∑
i=1

Vµi (x, xt ), (26)

whereVµ denotes the visibility within each random realization, and
the ensemble average depends only on distance t if the stochastic
point process is statistically isotropic and homogeneous.
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Table 1. The probability density functions pdf(x ), cumulative distribution function cdf(x ), and characteristic functions φ(r ) for a variety of statistical
distributions. Γ(α ) and γ (s , x ) are the complete and lower incomplete gamma functions, and δ (x ) and H (x ) are the Dirac delta and Heaviside step functions.
When µ is used as a parameter it specifies the mean of the corresponding PDF. We omit the implicit values of 0 or 1 in PDFs and CDFs with bounded
support. When hand-designing attenuation via free-flight distributions, pdf(τ ) describes the free-flight distribution pp(τ ), and transmittance is obtained via
pf(τ ) = 1 − cdf(τ ); fp and ff are obtained via normalization and integration. When designing attenuation via 1/f noise, pdf(σµ ) describes the distribution
of σµ due to fBm micro-fluctuations, transmittance is obtained from φ(iτ ), and the free-flight distribution becomes −dφ(iτ )/dτ . The last two columns list
sampling routines for these two approaches.

Sampling

Distribution Parameters pdf(x) cdf(x) φ(r ) xi ∝ pdf(x) ∝ −dφ(ir )/dr

Delta δµ mean: µ > 0 δ (x − µ) H (x − µ) eir µ xδ = µ −
ln ξ
xδ

DeltaSum X(n) impulses: {µ1, . . . µn }
1
n
∑n
i=1 δ (x − µi )

1
n
∑n
i=1 H (x − µi )

1
n
∑n
i=1 eir µi xX = uniform from {µ1, . . . µn } −

ln ξ
xX

UniformU(a,b) range: 0 < a < x < b < ∞ 1
b−a

x−a
b−a

eirb−eira

ir (b−a) xu = (b − a)ξ + a −
ln ξ2
xu

Linear L(b) range: 0 < x < b < ∞ 2
b

(
1 − x

b

)
1 − 2 xb −

x 2

b2 — xl = b(1 −
√
ξ ) −

ln ξ2
xl

Normal N(µ,v) mean: 0 ≤ µ < ∞
variance: v > 0 (2πv)−

1
2 e−

(x−µ )2
2v 1

2

[
1 + erf

(
x−µ
√

2v

)]
eir µ−r 2v/2 xn =

√
−2 ln ξ1 cos(2πξ2) −

ln ξ2
xn

Gamma Γ(µ,α) mean: 0 ≤ µ < ∞
shape: α > 0

1
Γ(α )

(
α
µ

)α
xα−1e−xα/µ 1

Γ(α )γ (α, xα/µ) (1 − irµ/α)−α Marsaglia’s method (ξ−1/α − 1)α/µ

Erlang-2 E(λ) rate: λ > 0
shape: k ∈ N λ2xe−λx e−λx + λxe−λx (1 − ir/λ)−2 xE = −

1
λ ln (ξ1ξ2) (ξ−1/2 − 1) λ

This ensemble average amounts to computing the probability of
having no scattering particles over a distance t along a random ray.
If the positions of the particles are statistically independent, then
this tabulation procedure will converge to the exponential distri-
bution (see Figure 2a,e), since it is computing the probability of no
events occurring over a distance t within a Poisson process. How-
ever, it is also possible to instantiate points with specially crafted
spatial correlations that e.g. induce or inhibit clumping. Figure 2e
visualizes the transmittance curves obtained from 2D discrete points
sets with spectral power falloffs corresponding to “blue” (b), “pink”
(c) and “red” (d) noise respectively. Data-driven curves like these are
a “gold standard” in the sense that they can handle any distribution
of scatterers we can explicitly construct. But they require expensive
sampling and tabulation for every set of parameters, which quickly
becomes intractable for large collections of particles in higher di-
mensions.

Ensemble-averaging continuous densities. We can forego instantiat-
ing discrete particles and instead model the spatial correlations via
a heterogeneous micro-scale density field σµ (x) (Figure 2a-d, bot-
tom). Given a fixed realization of σµ (x), the transmittance defined
in Equation (1) can be written equivalently as:

Trµ (x, xt ) = e−tσµ (x,xt ), where σµ (x, xt ) =
1
t

∫ t

0
σµ (xs ) ds (27)

is the micro-scale density field σµ (x) averaged, or “blurred”, along a
line segment of length t between x and xt .
For a statistically homogeneous medium, the ensemble-average

transmittance becomes:

ff(t) =
〈
Trµ (t)

〉
=
〈
e−tσµ (x,xt )

〉
≈

1
N

N∑
i=1

e−tσµi (x,xt ). (28)

TheMonte Carlo estimate is averaging transmittance throughσµ (t) =
σµ (x, xt ) for a fixed t , but over random realizations µi of the medium.
Figure 7 shows random 1D transects σµ (t) (left) in a medium where

σµ (x) is modeled using a single octave of Perlin noise [Perlin 1985],
and transects (middle) of the corresponding “blurred” micro-scale
density σµ (t).
While computing ensemble-averaged transmittance this way

avoids the complexities of instantiating billions of discrete particles,
it still makes parametric control cumbersome due to the need for
tabulation.

4.3 Probabilistic ensemble-averaging
When performing ensemble averaging, σµ (or equivalently τµ ) acts
as a random variable with some probability density pdf(σµ | t)
describing its variability for each distance t . We visualize this as
histograms on the right-hand side of Figure 7.

Longer-than-exponential tails. This probabilistic view allows us to
explain why in Figure 2 the ensemble-averaged transmittance (red,
pink) results in a longer tail than the exponential (black). Jensen’s
inequality states that for a random variableX and a concave function
f : ⟨f (X )⟩ ≥ f (⟨X ⟩). Substituting the exponential for f , and σµ (t)
for X , we should therefore expect:〈

e−tσµ (t )
〉
≥ e−t ⟨σµ (t )⟩ . (29)

This will be an equality iff σµ (t) =
〈
σµ (t)

〉
for all t , which would

mean the medium had no density fluctuations (was homogeneous)
to begin with.

Link to characteristic functions. We can now write the ensemble
average as the integral:

ff(t) =
〈
e−tσµ (t )

〉
=

∫ ∞
0

e−tσµ pdf(σµ | t) dσµ . (30)

This takes a form remarkably similar to the characteristic function
(CF), which is the Fourier transform of a random variable’s PDF:

φX (r ) =
〈
eirX

〉
=

∫
R

eirx pdfX (x) dx, (31)
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Fig. 7. Left: 1D transects of a Perlin noise micro-scale density function σµ (t ) for random rays and realizations, a single sample of which is highlighted in black.
σµ is a random variable, the distribution of which, pdf(σµ ) is illustrated by the adjacent back histogram. Middle: The line-averaged micro-scale density σµ (t )
is likewise a random variable, but the distribution pdf(σµ (t )) now potentially depends on the length of the line segment t as shown by the histograms for
t = 2.5 (red) and t = 22.5 (green). Right: When the micro-scale density σµ (t ) is modeled as 1/f β fractal noise, the histograms of line-averaged micro-scale
density σµ (t ) (thin transparent lines) take a closed form where the spectral exponent β directly controls the variance vσµ(t ) (thick opaque lines) as a function
of distance t , where lower values of β lead to more rapid decay.
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Fig. 8. 1/f β noise (bottom) is characterized by a spectral exponent β which
determines the slope of its power spectrum on a log-log plot (top). Qualita-
tively, different values of β lead to noises of different “roughnesses” (bottom),
and integrating a noise with spectral exponent β (e.g. white noise) produces
another noise with spectral exponent β + 2 (e.g. red noise).

where i =
√
−1 is the imaginary constant. Comparing Equation (31)

to (30), we see that for a fixed t the ensemble-averaged transmittance

is simply the CF of the random variable σµ (by passing in t i for r ):2

ff(t) = φσµ (t )(t i). (32)

This is a very powerful tool, because, as long as we can express
the variation of σµ (or τµ ) using a distribution with a well-known
CF (see Table 1), we can obtain closed-form expressions for the
ensemble-averaged transmittance! Note that the parameters of the
distribution pdf(σµ | t) may depend on the distance t , as we saw in
Figure 7.

Discussion. So what should this distribution, and its dependence
on t be? We could simply choose a convenient PDF and allow an
artist to set its (potentially t-dependent) parameters by hand. While
this would be fully parametric and analytic, it is unclear how (or
whether) such a model would correspond to any micro-scale density
fluctuations or correlations. Alternatively, we could ensure corre-
spondence by fitting the distribution and its t-dependent parameters
to tabulated data from realizations of σµ (t), like in Figure 7. Next,
we will instead leverage recent work by Davis and colleagues [2011;
2014] to obtain a parametric, closed-form transmittance function
whose parameters provide a physical interpretation of the underly-
ing micro-scale extinction field as a fractal medium.

4.4 Closed-form average transmittance in fractal media
We will follow Davis and Mineev-Weinstein [2011] and model the
variability in σµ (x) as a 3D fractal with 1D transects σµ (x) charac-
terized by 1/f β fractal noise. Figure 8 provides a visual explanation:
Qualitatively, β determines how “rough” the noise will be (bottom),
while quantitatively it dictates that the falloff of the function’s power
spectrum will be 1/f β (top). This directly controls the spatial corre-
lations, where β = 0 means uncorrelated “white” noise, while β > 0
and β < 0 produce positive and negative correlations respectively.
We model σµ (x) statistically as a noise defined by: a mean µσ , a

constant C controlling its overall amplitude, and its spectral expo-
nent −1 ≤ β ≤ 1 ranging from “blue” (β = −1) to “pink” (β = 1).
For convenience, we will combine these into a parameter vector
2We could also express this using moment generating functions (MGFs), which are
defined similarly to the CF, but without the imaginary constant.
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ψ = {µσ ,C, β}. This allows us to write the ensemble-averaged trans-
mittance (30) as:

ff(t | ψ ) =
∫ ∞

0
e−tσµ pdf(σµ | t,ψ ) dσµ , (33)

where the PDF is now determined by the distance t and parameters
ψ = {µσ ,C, β} defining the medium.

Given this fractal noise model, what can we say about pdf(σµ |
t,ψ )?

Gaussian 1/f β noise. A key property of Gaussian 1/f β noise is
that it produces fractional Brownian motion (fBm) [Mandelbrot and
Ness 1968] with β + 2 via integration (arrows in Figure 8).3 We
therefore know that τµ (t) will be a noise with 1 ≤ βτ ≤ 3 and its
distribution (as well as that of σµ ) will be a Gaussian. Davis and
Mineev-Weinstein [2011] formally derived the dependence of this
Gaussian on the distance t and medium parametersψ :

pdf(σµ | t,ψ ) = N(µσ ,vσµ(t)), with vσµ(t) = (Cµσ )
β+1tβ−1. (34)

Figure 7 visualizes random transects of σµ (t): the medium σµ av-
eraged over a distance t . This figure shows the same information
as the second row of Figure 7, but this time for media modeled as
fractal noise with β = −1, 0, 1. The superimposed analytic curves
plot the standard deviation√vσµ (t) from Equation (34) as a function
of t , matching the behavior of the random transects well.
Using the characteristic function of the normal distribution (Ta-

ble 1) with these parameters, we can obtain a closed-form expression
for the ensemble-averaged transmittance via Equation (32):

ffN(t | ψ ) ≈ e−µσt+vσµ (t )t
2/2
= e−µσt+(Cµσ t )

β+1/2 (35)

Unfortunately, this is only an approximation because the Gaussian
is supported on the entire real line, but values of σµ < 0 are non-
physical. This model for noise is therefore only reasonable when
µσ is set sufficiently high and v set sufficiently low so that negative
extinction coefficients are unlikely to occur.

Gamma-distributed 1/f β noise. To counteract the artifacts aris-
ing due to these negative intrusions, Davis and Mineev-Weinstein
[2011] proposed modeling the distribution of extinction values σµ
with the strictly non-negative Gamma distribution pdf(σµ | t,ψ ) =
Γ(µσ ,α(t)), with parameters set to match the mean and variance of
the Gaussian model. Combining Equation (32) with Table 1 gives:

ffΓ(t | ψ ) = φΓt ,ψ (t i) =
(
1 +

µσ t

α(t)

)−α (t )
, (36)

where α(t) =
µ2
σ

vσµ (t)
=
(µσ t)

1−β

C1+β (37)

is the Gamma model’s shape parameter that enforces a variance
dictated by Equation (34).

3β is directly related to the Hurst parameter H = (β − 1)/2 more commonly use in
the fractal literature [Barnsley et al. 1988] when describing fBm and the “persistence”
parameter of fractal Perlin noise [Ebert et al. 2002] used in graphics.
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Fig. 9. Ensemble-averaged transmittances (ff, pf) and free-flight PDFs
(pp, fp) arising from Gamma-distributed fractal 1/f β noise (36) with σ̄ =
1/2. Top: for a fixed C = 3/2 and different values of β ; Bottom: for a fixed
β = 1 and different values of C . Since pf ∝ fp, we only show fp in faded
dashed lines in the middle plots. The inset on the bottom right shows the
Gamma distribution controlling pdf(σµ ) for pink noise.

Discussion. Equation (36) provides a simple 3-parameter model to
produce non-exponential transmittance functions by specifying the
mean extinction µσ , the overall amplitude of variation C , and the
color/spectral falloff/correlation of the noise β . Figure 9 visualizes
the four resulting transport functions for fixed C and varying β
(top), and for fixed β = 1 pink noise and varying C (bottom).

Aswewould hope, both the Gaussian (35) andGamma (36)models
reduce to a simple exponential when variance v → 0 (and hence
α →∞). This will happen if the medium is actually homogeneous
(C = 0), or if we have white noise (β = 0), both of which correspond
to independent scatterers. In the latter case of white noise, we obtain
exponential falloff, but with a modified extinction coefficient.

“Pink” 1/f noise (when β = 1) is another interesting case because
it has a “scale-invariant” property where the distribution pdf(σµ ) in
Equation (35) and (36) no longer depends on t (see Figure 7). This
reduces the transmittance completely to the CF of pdf(σµ ):

ffpink(t) =

∫ ∞
0

e−tσµ pdf(σµ ) dσµ = φσµ (t i). (38)

With the Gamma model, for instance, the variance that plugs into
Equation (36) reduces to vσµ = C

2µ2
σ when β = 1, and so pdf(σµ ) =

Γ(µσ ,α) where α = C−β−1 no longer depends on t .
Equation (38) shows that ensemble averaging transmittance over

a heterogeneous medium can be equivalently interpreted as averag-
ing transmittance across realizations that are each homogeneous, but
with a random extinction coefficient drawn from the distribution
pdf(σµ ). This also gives a physical interpretation to other choices
of non-exponential functions which are themselves characteristic
functions of some distribution (e.g. the sum of exponentials [Wren-
ninge et al. 2013] is the CF of a sum of two deltasX(2)): these all
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Fig. 10. In contrast to the deterministic case (Figure 5), the statistical behav-
ior of rescaled fractal noise depends on its power spectrum via Equation (40).
For instance, the standard deviation of blue noise (β = −1) does not depend
on σ , while for pink noise (β = 1) it is proportional to σ . The colored inter-
vals visualize how the standard deviation is affected by σ (s) for β = −1, 0, 1.

correspond to scale-invariant pink noise, but where pdf(σµ ) dictates
the distribution of blurred extinction values the fractal takes on.

4.5 Combining macro- and micro- properties
We previously introduced our heterogeneity model (Section 3.2)
and gave a physical interpretation of it in terms of “squeezing” and
“stretching” the micro-density function by the macroscopic optical
depth. However, with ensemble averaged transmittance from fractal
media, we can only reason about the micro-density function in a
statistical sense, and this physical interpretation changes slightly.
Firstly, due to the self-similar nature of 1/f β fractal noise, horizontal
squeezing and stretching has no effect on the wavelength content
and can be ignored. Instead, we can see from Equations (35,36) that
scaling the distance t by some constant c is equivalent to scaling
the mean µσ by the same constant:

ff(c t | {µσ ,C, β}) = ff(t | {c µσ ,C, β}). (39)

This means that inserting the macroscopic optical depth adjusts the
mean µσ of the micro-scale medium to locally match the density σ
at the macro-scale. Changing just the mean µσ of the noise, however,
changes its standard deviation in a β-dependent way since:

vσµ (t | {c µσ ,C, β}) = c
β+1 · vσµ (t | {µσ ,C, β}). (40)

This suggests that the way the density match is achieved has a
different interpretation based on the color of the noise (Figure 10).
As in the deterministic case (Figure 5), scaling the distance by a
factor of c in “pink” noise (β = 1) corresponds to scaling the micro-
fluctuations vertically by the constant c , but as β decreases the
standard deviation is scaled less, until at “blue” noise (β = −1) it is
not scaled at all (c0 = 1), suggesting a vertical shift/translation of
the noise instead.

5 IMPLEMENTATION
In this section, we give a brief outline of the modifications that need
to be made to an existing rendering algorithm to support our path
integral. We outline the procedure for evaluation and sampling of T̃
in Algorithm 1. We assume that we are given functions ff , pp and
pf computed in a base medium (i.e. with macroscopic extinction of
1), as well as procedures sampleFP(ξ ) and samplePP(ξ ) to produce
samples distributed proportional to fp and pp, respectively. We also
require functions to evaluate the PDF and CDF for a given sample.

Fig. 11. A heterogeneous medium rendered with regular tracking (left) and
our unbiased delta tracking (right) for a Gamma distributed pink noise
medium. Both methods are unbiased and have comparable noise levels, but
delta tracking renders 23× faster.

Our sampling algorithm proceeds by generating a sample from
fp or pp, depending on whether xi lies on a surface or not. Due to
our heterogeneity model, we can interpret the generated sample
as an optical depth τ ∗ in the macrosopic medium and solve for the
distance s along the ray such that τ (xi , xi + s ·ω) = τ ∗. We do this
analytically in homogeneous media, or numerically using regular
tracking/raymarching in heterogeneous media.

The probability (density) of the generated vertex is obtained from
the sample CDF (PDF) if s lies beyond (before) the distance to the
nearest surface. The sample weight is then simply T̃ /pdf . If fp and
pp are sampled perfectly (e.g. using formulas from Table 1), then
this routine is an optimal distance sampling strategy.

5.1 Unbiased Delta Tracking
The sampling method in Algorithm 1 relies on regular tracking
(slow) or raymarching (biased) to sample distances. Methods based
on delta tracking [Coleman 1968; Novák et al. 2018; Raab et al.
2008; Woodcock et al. 1965] offer potentially better performance
while remaining unbiased, but unfortunately rely on transmittance
being an exponential (namely Tr(a+b) = Tr(a)Tr(b)). However, our
heterogeneity model allows us to use delta tracking for a subclass
of non-exponential media.
For stochastic media characterized by 1/f (“pink”) fractal noise,

Equation (38) shows that the macroscopic transmittance is equiva-
lent to ensemble averaging random homogeneous realizations. This
means that an unbiased estimation of transmittance is possible by
simply averaging scaled exponentials:

ffpink(t) =

∫ ∞
0

e−tσµ pdf(σµ ) dσµ ≈
1
N

N∑
i

e−tσµi , (41)

where the scaling factors σµi are drawn ∝ pdf(σµ ).
Likewise, since our heterogeneity model inserts the macroscopic

optical depth into the base transmittance, for a pink noise medium,
we can globally multiply the heterogeneous medium by a constant
factor and compute the classical transmittance, averaged over the
distribution of scaling factors pdf(σµ ). We can trivially turn this into
a probabilistic process, in which we sample a scale factor ∝ pdf(σµ ),
multiply the macroscopic density by this factor and compute the
classical transmittance (or free-flight distance) through the result-
ing medium. This allows us to use any existing unbiased distance
sampling algorithm, while obtaining a non-exponential result.
In Figure 11, we demonstrate a cloud with Gamma distributed

pink noise (pdf(σµ ) ∝ Γ(α,α), ff(t) = (1 + t/α)−α [Davis and Xu
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Algorithm 1: Transport kernel evaluation and sampling for our method

1 function T̃base(τ , surfaceStart, surfaceEnd)
2 if surfaceStart ∧ surfaceEnd then return ff(τ )
3 else if ¬surfaceStart ∧ ¬surfaceEnd then return pp(τ )
4 else return pf(τ )

5 function sample(xi ,ω , ξ )
6 surfaceStart← xi ∈ ∂V
7 τ ∗ ← surfaceStart ? sampleFP(ξ ) : samplePP(ξ )
8 s ← invertTau(τ ∗)
9 z ← raytrace(xi ,ω)

10 xi+1 ← xi +min(s , z) ·ω
11 surfaceEnd← s < z
12 if surfaceEnd then
13 pdf = 1 − (surfaceStart ? sampleFPCDF(τ ∗) : samplePPCDF(τ ∗))
14 else
15 pdf =σ (xi+1) · (surfaceStart ? sampleFPPDF(τ ∗) : samplePPPDF(τ ∗))
16 weight = T̃base(τ ∗, surfaceStart, surfaceEnd)/pdf
17 return {weight, xi+1 }

2014]) rendered with regular tracking as in Algorithm 1 as well
as classical delta tracking, for which the medium was scaled by a
scaling factor sampled from a Gamma distribution at every bounce.
Delta tracking converges to the same result as regular tracking, but
23× faster.

6 RESULTS
We implemented our theory in two existing rendering systems,
PBRTv3 [Pharr et al. 2016] and Tungsten [Bitterli 2018], following
the outline in Section 5. We will release the code of both of our
implementations.

In Figure 6, we show a homogeneous medium rendered with five
different designed transmittance curves and compare the results to
an exponential medium. The non-exponential transmittances are
simple parametric functions, such as linear or quadratic curves, but
lead to a wide range of appearances that cannot be reproduced by
the exponential. These curves were designed artificially and do not
have a physical interpretation in terms of correlated scatterers, but
their simplicity and ease of control makes them powerful tools for
artistic control of the medium.

Figure 12 shows a similar homogeneous medium with a linearly
decreasing, non-exponential transmittance. The same scene is ren-
dered with three different rendering algorithms—path tracing, light

Path Tracing Light Tracing Bidirectional Path Tracing

Fig. 12. We render the same scene with different rendering algorithms and
obtain identical results regardless of transport direction. This supports the
fact that our method is reciprocal.
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Fig. 13. We verify our model and compare it to ground truth in a Monte
Carlo experiment in a semi-infinite medium. Please see Section 6 for details.

tracing and bidirectional path tracing—that weremodified to support
our theory. All three algorithms produce identical results, which
supports the fact that our theory is reciprocal.

Figure 1 shows a heterogeneous cloud, rendered with a traditional
exponential transmittance, and a long-tailed non-exponential trans-
mittance derived from the Davis and Mineev-Weinstein model. The
long tail of the non-exponential transmittance allows light to pene-
trate deeper into the cloud, which leads to a brighter appearance
near the bottom and and a softer look near the surface, giving an
overall richer appearance.
In Figure 14, we compare different non-exponential transmit-

tances to an exponential reference in a scene with subsurface scat-
tering. The mean free path of the non-exponential free-flight PDF
was matched to that of the exponential; however, despite having
the same MFP, the non-exponential transmittance is able to achieve
a wide range of appearances.

Finally, in Figure 15 we compare a heterogeneous cloud rendered
using a transmittance derived from fractal noise (bottom two rows)
using the Davis and Mineev-Weinstein model with varying param-
eters (β , C). The fractal noise model allows a range of different
appearances and mean free paths. For comparison, we also provide
the same cloud rendered using an exponential with varying mean
free paths (top row).

We include a comprehensive supplemental material with interac-
tive image viewer, full-resolution HDR images of all our renderings,
additional derivations as well as additional renderings of our scenes
with the exponential model with different mean free paths for refer-
ence. We encourage the reader to refer to our supplemental material
for a more careful comparison.

Monte Carlo Simulation. We additionally implemented our model
in a simple Monte Carlo simulation (Figure 13) for verification. We
created a semi-infinite stochastic “red” noise medium and measured
the mean penetration depth (after a fixed number of bounces) of
photons emitted from a pencil beam at normal incidence. We com-
pare the ground truth ensemble average against results of our path
integral (“Ours”), the classical RTE and the model of Larsen and
Vasques [2011] (“GBE”) computed on a homogenized version of
this medium. We additionally compare the ensemble average of a
modified RTE in which photons “jump” to a different realization of
the medium at every scattering event, conditioned on coinciding
with a scatterer in the new realization (“Ours (model)”). The curves
of our path integral match that of this modified RTE exactly, which
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Exponential Delta Sum of exponentials Davis and Xu [2014]

Fig. 14. We compare a dense homogeneous medium rendered with different non-exponential transmittances to an exponential reference. The mean free path
of the non-exponential free-flight PDF was matched to that of the exponential. Despite matching the MFP, we are able to achieve a wide range of appearances.
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Fig. 15. We compare a heterogeneous cloud rendered using a transmittance derived from fractal noise (bottom two rows) using the Davis and Mineev-Weinstein
model with varying parameters (β , C ). The fractal noise model allows a range of different appearances and mean free paths. For comparison, we also provide
the same cloud rendered using an exponential with varying mean free paths (top row).
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verifies that our path integral computes precisely the ensemble av-
erage of this physical model. Additionally, the curves of our method
are closer to ground truth than the classical exponential model or
the model of Larsen and Vasques, which demonstrates that more
sophisticated models of correlated scatterers and surfaces lead to
more accurate results.
Although our method leads to more accurate results than previ-

ous work, we still observe some discrepancies between our model
and ground truth. To better understand these differences, we im-
plemented a modified version of our method that uses a free-flight
PDF conditioned on the free-flight distance of the previous segment
on the path (“Ours (two-bounce)”). Unlike the other methods, this
model does not reset correlations at every interaction, but correlates
free-flights of adjacent path segments. The disadvantage of this
approach is that currently this conditioned free-flight PDF cannot
be obtained analytically, and it must be tabulated in an expensive
pre-process instead. Although not a practical approach today, this
two-segment correlated method is closer to ground truth than our
base model, which suggests that modelling correlations between
more than two vertices can further improve accuracy.

7 CONCLUSION
We introduced a new theory of volumetric light transport that al-
lows for media with non-exponential free-flight distributions. Such
distributions are the consequence of correlations between scatter-
ers, which can arise from physical processes in e.g. the atmospheric
sciences and neutron transport. We derived a new non-exponential
path integral that approximates the general problem of ensemble
averaged transport in stochastic media and supports surfaces and
heterogeneity in a combined framework, while being reciprocal and
practical to compute. Both our surface and heterogeneity models
have simple physical interpretations and are easy to retrofit into
existing volumetric rendering workflows.
We presented a wide range of tools to leverage this newfound

flexibility, ranging from simple parametric transmittance curves
to powerful mathematical formalisms for Gaussian processes and
fractal noise. The latter allowed us to obtain closed-form, ensemble
averaged transmittances for scatterers distributed with different
colors of noise.
Our theory can be implemented with only minor changes to

existing rendering algorithms, and our results demonstrate that
this allows for a rich range of volumetric appearances while still
allowing for fully bidirectional transport. For the special case of
pink noise media, we even adapted algorithms for unbiased distance
sampling, which opens the door to efficient and unbiased rendering
of non-exponential heterogeneous media.

7.1 Limitations and Future Work
There are several limitations to our work that leave ample grounds
for future research.
Our theory currently assumes that there is a single, globally

fixed free-flight PDF. This means that we cannot handle multiple
overlapping media with different transmittance functions, even
though this could be a useful tool in practice. Although we can take
advantage of unbiased distance sampling methods for certain media,
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Fig. 16. While Davis and Mineev-Weinstein’s [2011] 2-parameter Gamma-
distributed 1/f β noise model allows changing the spectral exponent from
β = 1 (pink) down to β = −1 (blue) noise, this leads to non-physical free-
flight PDFs (pp and fp) which take on negative values and which cannot be
properly normalized. We therefore only use their model for 0 ≤ β ≤ 1.

it is unclear how to do this in the general case. More research is
required to adapt efficient, unbiased distance sampling methods for
all non-exponential heterogeneous media to our theory.

While our theory leads to a richer volumetric appearance space,
navigating this space is still a challenge. Simply maintaining the
same single-scattering mean-free path does not necessarily pro-
vide the best perceptual appearance match between a chosen non-
exponential model and classical exponential transport. In fact, there
are two distinct mean-free paths in our framework (one for pp
and one for fp), so this match is not even unique. Our experience
suggests that the classical parameters (e.g. mean free-path) and
the parameters of the correlations are not orthogonal, so adjusting
them individually to reach a desired appearance is cumbersome.
Reparametrizing the appearance space into perceptually uniform
and orthogonal appearance dimensions, as has previously been in-
vestigated for color [Smith and Guild 1931], glossy materials [Wills
et al. 2009], and translucency [Gkioulekas et al. 2013; Zhao et al.
2014], would greatly facilitate future adoption of our model.
Another interesting avenue for future research is the synergy

between non-exponential transmittance and diffusion theory. In Sec-
tion 4.1, we took the classical diffusion monopole and interpreted
it as a free-flight distribution. Extending this concept to more so-
phisticated diffusion models [d’Eon 2013] could allow for efficient,
approximate multi-bounce rendering. Matching the resulting diffu-
sion mean-free path may also provide a better starting point for a
perceptually motivated appearance space.

While Davis and Mineev-Weinstein’s [2011] 2-parameter fractal
1/f β noise model theoretically allows changing the spectral expo-
nent from β = 1 (pink) down to β = −1 (blue) noise, we found that,
in our framework considering both media and surfaces, it produces
non-physical free-flight PDFs and transmittances which go negative
when β ≤ 0 (see Figure 16). We suspect this arises because Davis and
Mineev-Weinstein operate exclusively on ff and make simplifying
assumptions without enforcing the necessary constraints on ff’s first
and second derivates to make our other three transport functions
physically plausible. A more detailed investigation is warranted, but
since β ≤ 0 produces approximately exponential behavior, we have
not found this reduction in the parameter range to be a concern.
Somewhat surprisingly, the observed transport behavior in a

participating medium can be non-exponential even for classical
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media where the scatterers are independently distributed. Since the
weighted average of exponentials is not an exponential, the spectral
averaging at the sensor will lead to non-exponential appearance if
the medium properties vary across the sensor’s spectral response.
The ability of our theory to model this non-exponentiality could
benefit inverse problems in computer vision and appearance capture,
which rely on accurate forward models.
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