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Figure 1: Our intelligent virtual characters can navigate real world environments (right) and react to objects that collide with them (left).

Abstract

In this paper, we explore interacting with virtual characters in AR
along real-world environments. Our vision is that virtual characters
will be able to understand the real-world environment and interact
in an intelligent and realistic manner with it. For example, a char-
acter can walk around un-even stairs and slopes, or be pushed away
by collisions with real-world objects like a ball. We describe how to
automatically animate a new character, and imbue it’s motion with
adaption to environments and reactions to perturbations from the
real world.

Keywords: Character animation, locomotion tracking, procedural
character animation.

Concepts: •Computing methodologies→ Animation; Graphics
systems and interfaces;

1 Introduction

Augmenting our environment with intelligent virtual characters that
can walk around and interact with our environment is an exciting
and promising vision. However, achieving this idea represents sev-
eral technical challenges. It remains a challenge to model the mo-
tion of a character, have it understand its environment and navigate
the world in a natural way.

In this work, we take a first step in the direction of making a charac-
ter intelligent, and able to interact in AR. We separate the problem
into three main components. First is the modeling of the charac-
ter’s motion and its ability to move around. Given a character’s
skeleton, how should the joints move in order to go from point A
to point B, including on un-even terrain. We describe a parametric
model of quadruped locomotion, which we use to fill a blendtree
that outputs motions conforming to control directions. The second
problem is how to adapt the characters motion to un-even terrains,
as well as collisions with objects (such as a ball). We full-fill this
by layering on top of the blendtree, an inverse kinematics solver for
terrain adaptation, and a physically simulated ragdoll for character-
object collisions. The last problem is the character’s ability to un-
derstand the environment and naviguate it. Online consumer-level
scanning of 3D worlds remains inaccurate, and we describe our so-
lution which cleverly combines pre-defined objects with off-the-
shelf scanning solutions to provide high-resolution 3D reconstruc-
tions of the environment.

Given our intelligent character that can understand the real world
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and move around, we describe the types of AR interactions we sup-
port with real world objects, as well as the experiments we con-
ducted using these interactions.

2 Related Work

AR: An early example of AR technology is the MagicBook
[Billinghurst et al. 2001]. Large markers are integrated into a
book’s pages, which enable viewing virtual content through VR
glasses (and later through mixed reality [Grasset et al. 2008]), based
on which page of the book is open. They add various visual and au-
ditory effects to an existing illustrated book to enhance the reader’s
immersion. The Haunted Book [Scherrer et al. 2008] is a prime
example of well-integrated AR content. The camera is mounted
on a lamp on the table and the augmented book is viewed through a
computer screen. Their focus lies on interaction between the virtual
content and the physical book.

Seeing a virtual character walking on different terrains is ordinary
in a game environment, but to see it walking on your desk and in-
teracting with the physical objects on the table is not as common.
A few games coming with the Hololens ( [Hololens 2017]), have
a character navigating the real world, using the device’s built 3D
scanning technology. However, the accuracy of the interaction is
quite low as the scans are of low resolution. From the idea of mix-
ing physical objects with virtual 2D character, Kim et al. developed
an interactive interface where a virtual character jumps over the
physical blocks which the user can change their position in real-
time [Kim et al. 2014]. It doesn’t require any special equipment,
such as wearable glasses, but a depth sensor and a projector.

Character Motion: The current practice for real-time interactive
characters is to manually craft motion clips by key-framing in soft-
ware such as Maya. The motions are then fed into a blendtree that
blends the motion [Kovar et al. 2002; Arikan et al. 2003]. The
controllers are then given a layer of inverse kinematics to adapt
to different terrains, and use short-lived ragdoll dynamics for the
character to react to perturbations and body collisions. We follow a
similar path, which we describe in detail, but are different in one re-
gard: when a new character comes in, the animator has to craft new
motion clips which is a time consuming process that hinders the
ability to scale the applications to many different characters. Hence
in our paper we describe an automatic way of synthesizing the mo-
tion clips, similar to [Kokkevis et al. 1995], [Torkos and van de
Panne 1998], [Megaro et al. 2015], [Bhatti et al. 2015].



3 Character Motion

Our animation model provides a virtual quadruped character the
ability to navigate real world environments, and react to objects in it
in real-time—given only the character’s skeleton as input. The mo-
tion model is composed of motion clips (walk straight, left, right,
backward, etc) that are blended in real-time. Then an inverse kine-
matics and short-lived ragdoll retargeting method are layered on
top to adapt the motion to terrains and perturbations. We start by
describing how we generate motion clips from a skeleton.

3.1 Parametric Locomotion Model

We use mechanical simulation, together with characterizations of
quadruped motion, to generate locomotion for characters of differ-
ent shapes and sizes. Internally, our parameterized motion gener-
ation system is based on constrained multi-objective optimization.
The parameters are what we call the motion plan: a gait pattern
(which foot falls at which time), foot height, center-of-mass ve-
locity and rotational velocity. We optimize to match these values
together with various regularizers ensuring smooth transitions be-
tween clips. Some constraints are implicit, or by construction. To
support a wide range of characters, we constrain the skeleton to a
known simplified template (see Fig. 2) that has only hinge joints
and pre-defined masses. The final stage consists in upscaling the
motion from the simplified template to the higher-resolution tem-
plate (see Figure 2)

3.1.1 Parameterization

We use a parametric model of quadruped that are composed of ar-
ticulated chain like structures, in particular, of serially connected
and actuated links. The design parameters s is used to specify the
quadruped morphology, which is given by

s = (l1, . . . , lg,a1, . . . ,an, bw, bl) , (1)

where g is the number of links, li ∈ R is the length of each link, n
is the number of actuators, and ai ∈ R3 is the actuator parameters.
For linear actuators, ai defines the 3D attachment points, while for
rotary actuators, it corresponds to orientation of axis of rotation.
Apart from these parameters that represent the kinematic tree mor-
phology of the quadruped, we use two additional parameters bw
and bl to represent the physical dimensions of the quadruped body
(width and length respectively).

Likewise, the motion parameters m = (P1, . . . ,PT ) are defined
by a time-indexed sequence of vectors Pi, where T denotes the
time for each motion cycle. Pi is defined as:
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where qi defines the pose of the quadruped, i.e., the position, and
orientation of the root as well as joint information such as angle
values, xi ∈ R3 is the position of the quadruped’s center of mass
(COM), and k is the number of end-effectors. For each end-effector
j, we use ej

i ∈ R3 to represent its position and f ji ∈ R3 to denote
the ground reaction force acting on it. We also use a contact flag cji
to indicate whether it should be grounded (cji = 1) or not (cji = 0).

3.1.2 Motion Optimization

The purpose of motion optimization is to take a quadruped design
s and optmize its motion for user specified task while satisfying
certain constraints. We used a cost function F (s,m) to encode the
task specifications. We now describe how F (s,m) is constructed.
To this end, we use a set of objectives that capture users’ require-
ments, and constraints that ensure task feasibility.

Objectives We allow the users to define various high-level goals
to be achieved by their quadruped designs such as moving in de-
sired direction with specific speeds, different motion styles, etc. To
capture the desired direction and speed of motion, we define the
following objectives:

ETravel =
1

2
||xT − x1 − dD||2 ,

ETurn =
1

2
||τ(qT )− τ(q1)− τD||2 , (3)

where xi is the quadruped’s COM as defined in eq. 2, τ(qi) is the
turning angle computed from pose qi, while dD and τD are desired
travel distance and turning angles respectively. ETravel ensures that
the quadruped travels a specific distance in desired time, whileETurn
can be used to make a quadruped move on arbitrary shaped paths.

Motion style is highly effected by gait or foot-fall patterns that
define the order and timings of individual limbs of a quadruped.
We internally define various foot-fall patterns for different motion
styles such as trotting, pacing, and galloping. When users select
a specific motion style, our system automatically loads the nec-
essary foot-fall patterns, thereby allowing novice users to create
many expressive quadruped motions. Motion style is also effected
by quadruped poses. For expert users, we allow the capability to
specify and achieve desired poses, if needed, using the following
objectives:

EStyleCOM =
1
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where k is the number of end-effectors, xD
i and eD

i represent
desired quadruped COM, and end-effector positions respectively.
Apart from these, motion smoothness is often desired by the users,
which is encoded by the following objective:

ESmooth =
1

2

T−1∑
i=2

||qi−1 − 2qi + qi+1||2 . (5)

Constraints We next define various constraints to ensure that the
generated motion is stable.

Kinematic constraints: The first set of constraints ask the position
of COM, and end-effectors to match with the pose of the quadruped.
For every time step i, and end-effector j:

ϕCOM (qi)− xi = 0 ,

ϕEE(qi)
j − ej

i = 0 , ∀j, (6)

where ϕCOM and ϕEE are forward kinematics functions out-
putting the position of COM and end-effectors respectively.

We also have a set of constraints that relate the net force and torque
to the acceleration and angular acceleration of the quadruped’s
COM:

k∑
j=1

cji f
j
i =M ẍi ,

k∑
j=1

cji (e
j
i − xj

i )× f ji = Iöi , (7)



where M is the total mass of the quadruped, and I is the moment
of inertia tensor. The acceleration ẍi can be evaluated using finite
differences: ẍi = (xi−1 − 2xi + xi+1)/h

2, where h is the time
step. Similarly, the angular acceleration öi can be expressed as
öi = (oi−1 − 2oi + oi+1)/h

2. We note that the orientation of the
root oi is part of the pose qi, and it uses axis-angle representation.

Friction constraints: To avoid foot-slipping, we also have the fol-
lowing constraints for each end-effector j:

cji (e
j
i−1 − ej

i ) = 0, cji (e
j
i − ej

i+1) = 0 , (8)

for all 2 ≤ i ≤ T − 1, which implies that the end-effectors are
only allowed to move when they are not in contact with the ground.
Further, to account for different ground surfaces, we enforce the
friction cone constraints:

f j
i ‖ ≤ µf

j
i ⊥ , (9)

where f j
i ‖ and f j

i ⊥ denote the tangential and normal component

of f ji respectively, and µ is the coefficient of friction of the ground
surface.

Limb collisions: For physical feasibility, we propose a collision
constraint that ensures a safe minimum distance between the limb
segments of quadruped over the entire duration of the motion.

d(Vk1
i ,Vk2

i ) ≤ δ , (10)

where Vk
i represents a 3D segment representing the position and

orientation of kth limb, d(·) computes the distance between k1 and
k2 limbs, and δ is the threshold distance beyond which collisions
may happen.

Motion periodicity: If the users prefer a periodic motion, we can
add an additional constraint that relates the start pose q1 and the
end pose qT of the quadruped:

J(qT )− J(q1) = 0 , (11)

where J(qi) extract the orientation of the root and joint parameters
from pose qi.

3.1.3 High-Resolution Motion

The motion planning algorithm described above mainly cares about
the root and the end-effectors of the skeleton, and it does not opti-
mize for the motion style of the limbs. Thus, for motion planning,
we choose to use a reduced version of the modeled skeleton which
only has two joints for each limb (Figure 2(a)). After the motion is
generated, we do IK post-processing to match all joints (except in-
termediate limb joints) and end-effectors between the original high-
resolution skeleton and the reduced one (Figure 2(c)).

(a) (b) (c)

Figure 2: (a) Low-resolution skeleton. (b) High-resolution skele-
ton. (c) Joint correspondence between low-resolution and high-
resolution skeletons.

IK post-processing We will just use front limb for the discus-
sion. Since motion planning only produces the positions of the
shoulder and the end-effector for each limb and we have two ad-
ditional joints, i.e. wrist and finger, we need to add two parameters
to constrain the limb and provide stylizing interface for the user.
As illustrated in Figure 3(a), L is the distance from the elbow to the
end-effector, which can help determine the elbow’s position. θ is
the angle between the finger and the upright direction, which infers
the positions of the finger and the wrist. Additionally, Figure 3(b-c)
tells us that there are two solutions for the elbow, and similarly for
the wrist. Thus, we need two binary parameters choose which way
we want the elbow and the wrist to bend. If we inspect the motion
of real animals, we will find that their joint angles keep changing
during a motion cycle. To mimic such behavior, we use a different
set of L and θ when the limb is in full swing, and linearly interpo-
late these two sets of parameters for other motion phases.

𝐿

𝜃

shoulder

elbow

wrist

finger

(a) (b) (c)

Figure 3: (a) Illustration of the front limb. Two parameters L and
θ are used to constrain the joints and stylize the limb motion. (b-c)
Since their are two analytical solutions for the elbow position, a
binary parameter is used to select one of them.

3.2 Kinematic Controller and Adaptation

The real-time motions is produced with an animation controller
which transitions and blends between motion clips based on two
input parameters: the speed and direction of the character’s root.
The controller is a state machine holding idle, walk forward, and
walk backward states. The walking states (forward and backward)
each blend between 3 motion clips: left, straight and right. The pa-
rameters for blending between clips or transitioning between states
are detailed in Figure 5, and are automatically created from the gen-
erated motion clips, which is described in the previous section.

This motion controller performs only motions over flat terrain, and
cannot react naturally to pushes and perturbations. To walk over
different terrains, we adapt the current frame of the animation using
inverse kinematics (IK), based on the terrain height. The ground
height is computed by raycasting from the ground foot position, as
shown in Figure 4.

Finally, to have the character react realistically to physical perturba-
tions, such as being pushed or hit, we added a simulated character
(ragdoll) layer on top. For this, we used PuppetMaster ( [Pupper-
Master ]) which is a character’s physics tool for automatically gen-
erating ragdolls for bipeds. It enables creating active ragdolls that
can follow kinematic reference motions. We extended its ragdoll
layer for quadruped characters, and used it for simulating reactions.



Figure 4: Terrain adaptation is maintained by the estimation of the
ground height at the position of the each feet by casting a ray and
adding the feet offsets at the current animation frame.

Figure 5: A blending diagram is automatically created from the
generated motion clips that controls the motion transition using
parametric inputs- speed and direction (of root).

4 3D reconstruction

We describe our approach to understanding the environment for AR
purposes. Because current consumer level hardware devices such
as the Hololens only offer coarse reconstructions online, we can-
not use them for having characters walk over as they appear to be
floating in air.

Hence, we developed pre-defined objects that are recognized and
localized in space using feature-based technology (Vuforia Engine
[Vuforia 2017]). For each real world object, we define a corre-
sponding 3D digital geomtric counter-part that matches in shape
and size. Then, we scan the real world object from all directions
using an RGB camera to obtain a data-base of image-based fea-
tures and transformation pairs. At runtime, Vuforia searches for
matching features and returns the id of the object, together with its
transformation that we apply to the 3D object in the scene.

We encountered a few issues recognizing objects with Vuforia. One
problem is when the objects are transparent, or have plain textures.
In this case, the lack of features causes the recognition to fail. Simi-
larly to object recognition, objects with shiny and reflective proper-
ties do not give successful image recognition and tracking. Hence
for some objects, we add a rich texture on top to make them distin-
guishable, as shown in our figures bellow.

5 Interactions

We take our animated character together with its ability to navigate
the real world environment, and design AR interactions in 3D. In
particular, we provide ways for the user to specify where the char-
acter should go, ways to have 3D virtual and real objects collide
with the character, as well as ways to configure different terrains.

Specifying trajectories via touch on the screen. The quadruped
character can be directed through any arbitrary paths in the physical
environment, over different terrains. The paths are generated by

projecting onto the environment, the user’s fingertip when drawing
on the touchscreen, as shown in Figure 6.

Walking over different real-world slopes. The virtual character’s
behavior depends on the purpose of the interaction. Therefore we
label objects either as terrain or non-terrain in order for the motion
model to behave in the correct manner. We label the terrain au-
tomatically by defining objects as terrain if their height is bellow a
certain threshold, that corresponds to the maximum height the char-
acter can climb.

Different slopes and platforms can be formed with different ar-
rangements of the objects as shown in Figure 7. While the char-
acter’s motion model will only employ the inverse kinematics for
adapting to objects labeled as terrain, it should react differently for
the other objects, as described next.

Pushing characters with real-world objects. Non-terrain ob-
jects can be used for interactions like colliding with or pushing
the quadruped, as shown in Figure 8. For animating the reactions,
a ragdoll simulation (un-controlled passive dynamics) is activated
for a short period of time, letting the character react to the pertur-
bation. After the short period of time, the state of the simulated
(ragdoll) character is blended back into the animation state over
another small window of time. Completely switching to a ragdoll
simulation causes to the character to fall. Hence, above a certain
force threshold, we do not blend back to the animation and simply
let the character flow.

Interacting with virtual objects. We also experimented the in-
teractions between the character and virtual objects. We designed
a simple platformer game (which is shown in our accompanying
video), where the user can use various props to carry the virtual
character from the beginning to the end of the platform puzzle,
while trying to prevent him from falling. The character only moves
forward, and its moving direction can only be changed if it hits a
wall prop. When the character meets an elevator platform which
goes up and down, the user needs to use a fan prop (shown in Fig-
ure 10) to stop the character such that it can wait. For an increased
challenge, we added an enemy cannon which shoots 3D balls at the
character, possibly causing it to fall from the platform, as shown in
Figure 9.

6 Discussion and Conclusion

While we did a first step in the direction of having intelligent char-
acter we can interact with in AR, characters that can understand
their environments and navigate them, our system has a few limita-
tions. First we can only interact slowly with objects, as the tracking
is remains at low frequency. We use pre-defined 3D objects instead
of scanning the world. We believe that both of these issues will
improve with the evolution of hardware.

In the future, we plan on investigating chameleon technology with
in-painting, allowing real-world characters to “come-to-life”, by re-
placing their background and animating their virtual counter-parts.
We also plan on integrating additional components to our charac-
ter’s intelligence, such the ability to talk and reason about the ob-
jects in the world.
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