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(a) Ours, 15 spp (8.3 s)

rMSE 0.00199

(b) LD, 20 spp (8.5 s)

rMSE 0.01003

(c) Ours,15 spp (8.3 s)

rMSE 0.00199

(d) Reference,16384 spp

Figure 1: Our adaptive rendering result in the Courtyard scene. Our method with 15 samples per pixel (spp) produces a high-quality
reconstruction result and drastically reduces a relative mean squared error (rMSE) compared to a straight-forward method utilizing low
discrepancy (LD) sampling patterns uniformly.

Abstract

We propose a new adaptive rendering algorithm that enhances the
performance of Monte Carlo ray tracing by reducing the noise, i.e.,
variance, while preserving a variety of high-frequency edges in ren-
dered images through a novel prediction based reconstruction. To
achieve our goal, we iteratively build multiple, but sparse linear
models. Each linear model has its prediction window, where the
linear model predicts the unknown ground truth image that can be
generated with an infinite number of samples. Our method recur-
sively estimates prediction errors introduced by linear predictions
performed with different prediction windows, and selects an opti-
mal prediction window minimizing the error for each linear model.
Since each linear model predicts multiple pixels within its optimal
prediction interval, we can construct our linear models only at a
sparse set of pixels in the image screen. Predicting multiple pixels
with a single linear model poses technical challenges, related to de-
riving error analysis for regions rather than pixels, and has not been
addressed in the field. We address these technical challenges, and
our method with robust error analysis leads to a drastically reduced
reconstruction time even with higher rendering quality, compared
to state-of-the-art adaptive methods. We have demonstrated that
our method outperforms previous methods numerically and visu-
ally with high performance ray tracing kernels such as OptiX and
Embree.
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1 Introduction

Monte Carlo (MC) ray tracing [Kajiya 1986] has received exten-
sive attention for synthesizing realistic rendering results, but gener-
ally requires a huge number of ray samples (e.g., more than ten
thousands samples per pixel) until a converged or even visually
pleasing image is generated. Unfortunately, its slow convergence
directly leads to prohibitive rendering time (e.g., hours), which is
often proportional to the number of ray samples generated. When a
relatively small number of ray samples (e.g., less than one hundred)
per pixel are allocated, images are typically corrupted by MC noise,
i.e., variance.

Adaptive rendering that adjusts sampling density non-uniformly
and applies smoothing locally has been actively studied recently,
as the approach significantly boosts MC ray tracing by reducing the
required number of ray samples drastically [Hachisuka et al. 2008;
Overbeck et al. 2009]. These methods can be classified into two cat-
egories, multi-dimensional and image space adaptive rendering in
terms of the dimensionality of MC samples [Moon et al. 2014]. The
multi-dimensional methods [Hachisuka et al. 2008; Lehtinen et al.
2012] allocate samples and reconstruct them in a high dimensional
space, where each coordinate corresponds to a random parameter
in the MC integration [Kajiya 1986]. These methods can produce
a high quality image even with a small number of samples (e.g., 8
samples per pixel), but managing individual samples unfortunately
requires high computational and memory overhead.

On the other hand, image space methods [Rousselle et al. 2012; Li
et al. 2012; Moon et al. 2014] utilize per-pixel information (e.g.,
colors, variances, and G-buffers) that can be easily obtained in ren-
dering, and thus these techniques can be easily applied into existing
rendering frameworks. The state-of-the-art methods (e.g., [Rous-
selle et al. 2012; Li et al. 2012; Moon et al. 2014]) have been shown
to improve the performance of MC ray tracing by an order of mag-
nitude. Their main target applications, however, are often limited
to offline rendering frameworks, since its computational overhead
is relatively large. For example, the reconstruction times of the pre-
viuos methods [Rousselle et al. 2012; Li et al. 2012; Moon et al.
2014] are more than 3 s given the Courtyard scene (Fig. 1) due to
their expensive reconstructions (e.g., non-local means and local re-
gression). Especially, the recent local linear approximation [Moon
et al. 2014] shows a superior reconstruction performance when a
reference image has a strong linear correlation with given features
(e.g., textures), but it has very expensive reconstruction time (e.g.,



18 s in the scene of Fig. 1), since it utilizes a complex optimization
process (least-squares fitting).

To address this problem, we propose a new adaptive rendering
method, which performs expensive model reconstruction and op-
timization only at a small number of pixels and predicts filtered
values in other pixels by using estimated linear models. The key
difference between our work and the previous methods is that our
method estimates optimal colors in a region (i.e., multiple pixels) by
performing a novel linear prediction based reconstruction. Specifi-
cally, our major technical contributions are summarized as the fol-
lowing:

• We construct multiple linear models iteratively by using a re-
cursive least squares. Our method estimates coefficients of
linear models recursively given prediction windows with dif-
ferent sizes, where we predict multiple pixels from the linear
models (Sec. 4.1).

• We design a recursive error analysis to estimate the predic-
tion error introduced by our linear prediction, and select an
optimal prediction size by using the error analysis (Sec. 4.2).

• We provide an adaptive sampling approach which allocates
more ray samples on high error regions based on our estimated
prediction errors (Sec. 5.1).

We have demonstrated our method with high-performance ray trac-
ing kernels such as Embree [Wald et al. 2014] and OptiX [Parker
et al. 2010], and our result shows higher rendering quality compared
to the state-of-the-art methods [Rousselle et al. 2012; Li et al. 2012;
Moon et al. 2014] in equal-time comparisons thanks to its accurate
error analysis and lower computational overhead. Our method uses
a sophisticated optimization (e.g., least squares fitting), but we dras-
tically reduce the optimization overhead (e.g., 28× lower than the
previous method [Moon et al. 2014] in the Fig. 1), by running our
optimization only at a sparse number of pixels thanks to our predic-
tion, while preserving its high reconstruction quality.

2 Previous Work

Multi-dimensional adaptive rendering. As an early work, Ka-
jiya [1986] proposed a high-level idea to allocate high-dimensional
samples in a hierarchical manner and to reconstruct outputs based
on the samples stored in a tree structure (e.g., kd-trees) by using a
Riemann sum. In a similar research line, Hachisuka et al. [2008] re-
fined the idea and demonstrated that this approach significantly re-
duces the number of samples required for synthesizing a variety of
rendering effects. Frequency analysis based anisotropic reconstruc-
tion often focused on simulating specific rendering effects such as
depth-of-field [Soler et al. 2009], motion blur [Egan et al. 2009],
soft shadows [Egan et al. 2011b], and ambient occlusions [Egan
et al. 2011a]. Lehtinen et al. [2011] presented a new reprojection
method to reuse samples among multiple pixels in order to reduce
noise introduced by distributed effects, and Lehtinen et al. [2012]
extended the idea to support indirect illumination. These methods
demonstrated that high quality reconstruction can be achieved even
with a small number of samples. These techniques, unfortunately,
support a limited set of rendering effects.

Image-space adaptive rendering. Image-space approaches gener-
ally take per-pixel information (e.g., colors and variances) as an
input, and then apply well-known image filters such as wavelet
thresholding [Overbeck et al. 2009] and Gaussian filter [Rousselle
et al. 2011] to fully utilize rendering-specific information (e.g., vari-
ances). Recently, sophisticated error estimation has been developed
for supporting superior filtering methods. Kalantari et al. [2013]

proposed a robust error metric based on the median absolute devia-
tion. Rousselle et al. [2012] divided input samples into two buffers
(i.e., dual buffer) and estimated the error introduced by the non-
local means, and Delbracio et al. [2014] proposed a new similar-
ity measure between two patches by using a histogram constructed
with samples. Li et al. [2012] introduced a general unbiased error
metric (i.e., Stein’s unbiased risk estimator) to improve reconstruc-
tion quality of non-linear filtering methods (e.g., cross-bilateral fil-
ter), and the error metric was also utilized to decide how to com-
bine the filter weights computed from an input color buffer and a
feature buffer (e.g., geometries) in the non-local means filter [Rous-
selle et al. 2013]. Although these methods employ different error
analysis and filters, their common behaviour for high-quality fil-
tering is to apply a filter with estimated optimal parameters, e.g.,
bandwidths, at each pixel. Fortunately, these methods can be easily
parallelized thanks to their image-space nature. Nonetheless, these
approaches become computationally heavy and may take a number
of seconds, since they require sophisticated error analysis as well
as expensive filtering for high-quality or error-guaranteeing results.
As a result, these methods have not been adopted to recent inter-
active rendering systems such as Embree [Wald et al. 2014] and
OptiX [Parker et al. 2010], which use high-performance kernels.
Computationally efficient filters such as A-trous [Dammertz et al.
2010] and guided filter [Bauszat et al. 2011] have been developed
for real-time rendering. The usage of the real-time filters, however,
has been limited to a preview, since its filtering quality can be sub-
optimal due to the lack of robust error analysis.

Most recently, Moon et al. [2014] approximated image functions
with linear models locally using features (e.g., G-buffers). In addi-
tion, they developed an error estimation of a local linear approxi-
mation by decomposing its reconstruction error into bias and vari-
ance, and estimated optimal filter bandwidths for different features
to minimize the error. They demonstrated that the local regression
framework can produce high-quality rendering results for a variety
of rendering effects. However this method, like other high-quality
adaptive techniques, suffers from a high computational overhead,
since expensive optimization for estimating the optimal bandwidths
is performed at every single pixel. Our method also utilizes a local
linear approximation using G-buffers, but the key difference is that
our approach reconstructs multiple pixels simultaneously from a
single linear model so that expensive error estimation can be per-
formed only at a sparse number of pixels, resulting in a drastically
reduced computational overhead.

Table 1: Notation used throughout this paper

Symbol Description

y input image generated by Monte Carlo ray tracing
x feature vector for a pixel, which includes its pixel po-

sition and geometries (e.g., normal, texture and depth)
f(x) ground truth image as a function of x
∇f(x) ground truth gradient of f(x)
ΩF

c filtering window with a fixed size (e.g., 19 × 19) de-
fined at center pixel c

ΩP
c (k) prediction window with a variable size k centered at

pixel c

β̂c(k) estimated coefficients of a linear model defined within
ΩP

c (k)

f̂(xi) predicted value at a neighboring pixel i within a pre-
diction window ΩP

c (k)

3 Reconstruction using Local Linear Models

The ultimate goal of image reconstruction methods is to restore the
ground truth image, f(x), from an input image, y, generated by
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Figure 2: Visualization of center pixels and their effects. Given uniformly sampled, i.e., 32 samples per pixel (spp), input images (a) and (b),
we create our linear models at center pixels. The black dots in the image (c) indicate regularly, but densely selected center pixels with a fixed
small prediction window. On the other hand, in (e), we choose regularly populated center pixels with a large fixed prediction window. When
we use the small fixed prediction interval, we can preserve the detailed occlusion and features, but leave a lot of high-frequency noise (d).
When using the large fixed interval, we can reduce noise well, but remove the high-frequency occlusion and features (f). On the other hand,
our method adaptively selects the center pixels (g) and shows high-quality reconstruction results with lowest numerical errors.

MC ray tracing, which is corrupted by MC noise, i.e., variance.
Throughout the paper, we will use a subscript to represent the value
of a function at a specific pixel. For example, f(xi) and yi denote
a ground truth and input pixel value at pixel i, respectively. We
summarize our notation in Table 1. To design an efficient, yet high-
quality filtering technique, we propose a novel prediction based re-
construction method, which estimates the ground truth image f(x)
based on a sparse number of linear models.

Let us define a filtering window, ΩF
c , centered at a center pixel, c.

The window is considered as a set including all the pixels within the
window. We also define a prediction window, ΩP

c (k) ⊆ ΩF
c , which

has k ≡ |ΩP
c (k)| pixels as its elements. Note that the filtering

window ΩF
c has a globally fixed size (e.g., 19 × 19). The prediction

window ΩP
c (k) where we predict the ground truth image f(x) by

a linear model, however, has variable size k. Within the prediction
window, we define our linear model by using the first-order Taylor
polynomial from the center pixel c:

f(xi) ≈ f(xc) +∇f(xc)
T (xi − xc), (1)

where xi denotes a feature vector at pixel i. The ground truth value
f(xc) and its gradient ∇f(xc) are unknown, but can be estimated
in the least squares sense, which minimizes the sum of squared

residuals between the filtered image f̂(x) reconstructed by least

squares and input image y. Once the estimated gradient, ∇f̂(xc),
is computed, we utilize it to predict the ground truth function f(xi)
at i pixels within the prediction window ΩP

c (k), where i can be the
center pixel c and even other pixels, i.e., i 6= c, instead of fitting
expensive linear models separately at other pixels within the win-
dow. Fig. 2 visualizes center pixels c where we build our linear
models (black dots), and our method linearly predicts all the color
values of other pixels i from a sparse number of linear models by
utilizing the Taylor polynomial (Eq. 1). Even with a sparse number
of linear models, we can appropriately reconstruct high-frequency
details (e.g., noisy textures in the bottom row), especially when the
details have a linear correlation with a rendering-specific feature
(e.g., textures).

Our high-level idea of reconstructing multiple pixels within a pre-
diction window by using a single linear model may be consid-
ered intuitive given Eq. 1. It introduces, however, novel techni-
cal challenges, since we should estimate an optimal, local pre-
diction window, ΩP

c (kopt), which minimizes our prediction error,

ξc(k) =
1
k

∑

i∈ΩP
c
(k)(f̂(xi)− f(xi))

2. In Fig. 2, we show the re-

sults computed by fixed prediction windows (e.g., small and large
one), and these results show a noisy result or over-smoothed result.
It motivates us to develop adaptive prediction sizes for high-quality
reconstruction.

Technically, the prediction window ΩP
c (k) corresponds to the inter-

val, where we approximate the unknown functions f(xi) by using
the first-order Taylor polynomial (Eq. 1), and thus the predicted

value f̂(xi) varies in terms of the size of the interval (i.e., predic-

tion size k ≡ |ΩP
c (k)|). As a result, our first technical challenge

is to efficiently construct multiple linear models with different k
values, i.e., different intervals (Sec. 4.1). We then need to esti-
mate their prediction errors, i.e., ξc(k), depending on the size of
k in order to select the optimal size kopt that minimizes the error.
The second technical challenge is that the optimal prediction size
kopt is still unknown even after computing multiple linear models,
since the error ξc(k) depends on the unknown term f(xi). There-

fore, we should find an estimated error ξ̂c(k) and its corresponding

estimated optimal prediction size k̂opt (Sec. 4.2). To realize our
high-level idea while tackling these challenges, we propose a novel
algorithm to estimate the optimal prediction window ΩP

c (kopt) in
the subsequent section.

Linear Approximation using geometries. The linear approxima-
tion based on rendering-specific features x (e.g., data in the G-
buffer) in Eq. 1 was previously studied for filtering Monte Carlo
noise [Bauszat et al. 2011; Moon et al. 2014], but the previous
methods do not fully utilize ∇f(xc) for reconstructing multiple

pixels of ΩP
c (k). Our method, however, reconstructs all pixels

within the prediction window ΩP
c from a linear model simultane-

ously, instead of performing a filtering at every pixel.

4 Linear Model Estimation

Our optimization goal is to estimate the optimal model defined as a
linear model (e.g., first-order Taylor polynomial) computed within
the optimal prediction size kopt, which has a minimal prediction
error ξc(kopt). The optimization to calculate the prediction size
kopt can be formulated as follows:

kopt = argmin
k

ξc(k) = argmin
k

1

k

∑

i∈ΩP
c
(k)

(

f̂(xi)− f(xi)
)2

.

(2)



Note that our goal is to minimize the averaged squared difference

between predicted values f̂(xi) and ground truth values f(xi) over

the pixels defined in the prediction window ΩP
c (k), since we plan

to predict all the pixels i in ΩP
c (k) from a single linear model. We

propose an iterative estimation process for efficiently computing
linear models as a function of k in Sec. 4.1 and a recursive error
analysis for computing k̂opt in Sec. 4.2.

4.1 Recursive Reconstruction of Linear Models

Our linear model construction is the process of estimating the co-
efficients (i.e., intercept and gradient) of a linear function, the first-
order Taylor polynomial, which correspond to the ground truth
f(xc) and its gradient ∇f(xc) in Eq. 1, given a prediction size
(i.e., an interval of the first-order Taylor polynomial). To this
end, we utilize the least squares problem to compute the opti-
mal coefficients, which minimize the sum of squared residuals

between observed noisy function y and filtered image f̂(x), i.e.,
∑

i∈ΩP
c
(k)(f̂(xi)− yi)

2. We define the estimated coefficients as a

vector β̂c(k) ≡ (f̂(xc),∇f̂(xc)), which is the least squares esti-
mator for the unknown vector βc(k) ≡ (f(xc),∇f(xc)).

Given this least squares problem, we propose a recursive algorithm

for computing the least squares solution β̂c(k) within a prediction
size k. To compute multiple linear models, each of which is con-
structed within a different prediction size k, one can apply the nor-

mal equation, β̂c(k) = (XT
k Xk)

−1XT
k Yk, where Xk is k×(d+1)

design matrix whose i-th row is set as (1, (xi − xc)
T ) and d is the

length of the feature vector xi. The design matrix is filled with the
features from k pixels. Analogously, each element in the vector
Yk = (y1, ..., yk)

T is set with the intensities of k different pixels
from the Monte Carlo input image y. We consider yi as a 1D value,
since we can apply our method to each channel independently for
color images.

Unfortunately, the normal equation used in least squares based
methods [Moon et al. 2014] commonly requires a matrix inver-
sion, i.e., (XT

k Xk)
−1, for each prediction size k. Furthermore,

when we consider |ΩF
c | candidates, which are computed by adding

pixels one-by-one from the prediction window to the least-squared
based reconstruction, we need to solve the normal equations |ΩF

c |
times. This is impractical, since this approach would require a pro-
hibitive computational cost. Our main idea to avoid the expensive
matrix inversion is to use the recursive least squares [Ljung and
Söderström 1987], which updates the inverse covariance matrix,
Pc(k) ≡ (XT

k Xk)
−1, incrementally without performing the ma-

trix inversion.

Specifically, we update the inverse covariance matrix Pc(k) and

the corresponding linear model β̂c(k) by using both xk and yk at
the k-th pixel from the ones computed using prior k − 1 pixels as
follows:

Gc(k) =
Pc(k − 1)zk

1 + z
T
k Pc(k − 1)zk

,

Pc(k) = Pc(k − 1)−Gc(k)z
T
k Pc(k − 1),

β̂c(k) = β̂c(k − 1) +Gc(k)
(

yk − β̂T (k − 1)zk
)

, (3)

where z
T
k = (1, (xk − xc)

T ) corresponds to the k-th row in the
design matrix of the normal equation. The vector Gc(k) can be
considered as a weight allocated to a new sample pair, xk and yk,

and the linear model β̂c(k) is updated by considering a weighted a

priori error (yk − β̂T (k − 1)zk). Analogously, the inverse covari-
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Figure 3: We visualize how our method estimates prediction errors

of linear models β̂c(k(r)), given r, (the floor integer of) the half of
the width of the prediction window; r = 2 in the top and r = 3
in the bottom row. When increasing r of a square window from a
prior step, we split pixels into two disjoint sets (i.e., training and
test sets). We then estimate the error of a new r value and its new

prediction window, by testing the prior model β̂c(k(r − 1)) com-
puted from its training set against newly included samples (i.e., the
test set). This process is recursively performed for estimating the
optimal prediction size kopt that minimizes the prediction error.

ance matrix Pc(k) is also updated by using the weight 1. Techni-

cally, the computed linear model β̂c(k) up to k pixels is the least
squares solution, which minimizes the least squares cost function
∑

i∈ΩP
c
(k)(f̂(xi)− yi)

2.

Note that the equation above is not an approximation of the batch
solution, i.e., the normal equation, but is a recursive formula that is
exactly derived based on the matrix inversion lemma (i.e., Wood-
bury matrix identity) from the batch version [Ljung and Söderström
1987]. Its computational complexity for updating the matrix Pc(k)

and β̂c(k) with k-th pixel is O(d2), where d is the length of the
feature vector xi containing a pixel position, normal, texture, and
depth. Therefore, the complexity for computing all the linear mod-
els, each of which is constructed within a different prediction size k,
is O(|ΩF

c |d
2). We explain how to find an estimated optimal model

β̂c(kopt) in the next section.

4.2 Recursive Estimation of Prediction Error

In this section, we explain our process of choosing the optimal

prediction size k̂opt and its corresponding optimal linear model

β̂c(k̂opt) among possible candidates. Given our recursive recon-
struction (Sec. 4.1), we have iteratively computed multiple linear

models β̂c(k) as we grow its prediction size k. To select the opti-
mal prediction size, we should estimate the prediction error ξc(k)

introduced when we predict k pixels by the linear model β̂c(k). To
choose the optimal prediction size in an efficient and robust manner,
we propose a novel, iterative technique of estimating the prediction
error ξc(k) as a function of k.

A few techniques exist for estimating reconstruction errors such as
Stein’s unbiased risk estimator [Li et al. 2012] and estimated mean
squared error based on the asymptotic expressions of weighted
local regression [Moon et al. 2014]. Unfortunately, these prior
techniques utilize the general error estimation tools developed in

1The recursive equations have a similar structure to the Kalman filter.



statistics for reducing the point error only at the center pixel, i.e.,

(f̂(xc)−f(xc))
2. As a result, for our optimization goal (Eq. 2), we

take a more aggressive approach and attempt to estimate the predic-
tion error ξc(k) defined in multiple pixels, since we plan to predict

values of the k pixels in the prediction window ΩP
c (k) based on a

single linear model β̂c(k).

Our high-level idea for addressing both accuracy and efficiency of
evaluating the prediction error is to fully utilize the recursive least
squares (Sec. 4.1), where we can naturally predict subsequent sam-
ples from previous samples. For example, given a linear model

β̂T
c (k − t) computed with k − t pixels, we can estimate its predic-

tion error in the next t steps as (β̂T
c (k − t)zi − yi)

2 with newly
added t samples before updating the linear model with those t sam-
ples. In this context, let us call the t pixels a test set and k− t pixels
a training set. Based on this idea, we propose a new iterative vali-
dation process, which estimates prediction errors by splitting pixels
into the two disjoint sets. Furthermore, we design it to have a re-
cursive form for high efficiency when considering k different linear
models.

Given a (2R + 1) × (2R + 1) square filtering window ΩF
c , we

estimate the prediction error, when k ∈ {12, 32, 52, ..., (2R+1)2};
such k values are chosen by increasing half of the width (or height),
r, of our prediction window, and thus are computed based on a
function of r. For computational efficiency, we consider only a
subset of possible prediction size k, which is defined using the half
of the width (or height), r, instead of taking all positive integers.
As a result, we parameterize k by k(r) and formulate our iterative
validation approach into the following recursion:

ξ̂c(k(r)) =
ξ̂accc (k(r))

(2r + 1)2
=

ξ̂accc (k(r − 1)) + ∆ξ̂accc (k(r))

(2r + 1)2
, (4)

where ξ̂accc (k(r)) is the accumulated prediction error, which needs
to be normalized by its pixel count, k(r) ≡ (2r + 1)2. We decom-
pose the error into two terms, accumulated error from k(0) and to

k(r − 1), ξ̂accc (k(r − 1)), and the newly added error at the current

r-th step, ∆ξ̂accc (k(r)).

Given this recursion, we estimate the newly added error at r-th step

∆ξ̂accc (k(r)) introduced when we increase the prediction size from
k(r − 1) to k(r), by using the following equation:

∆ξ̂accc (k(r)) =
8r
∑

i=1

(

β̂T
c (k(r − 1)) zi − yi

)2

, (5)

where β̂c (k(r − 1)) is the estimated linear model from k(r − 1)
samples and these samples are defined as the training set of the
r-th step in order to test newly included 8r ≡ k(r) − k(r − 1)
samples, i.e., the test set of the step. Fig. 3 illustrates how we iter-
atively split samples into training and test sets. We substitute our

estimated prediction error ξ̂c(k(r)) (Eq. 4) for the unknown error

ξc(k(r)) (Eq. 2), and then select the optimal prediction size k̂opt
and its corresponding linear model β̂c(k̂opt).

In Fig. 4, we compare our estimated error ξ̂c(k(r)) with its ref-
erence error ξc(k(r)). Also, we visualize our estimated optimal

prediction size k̂opt by using our estimated error ξ̂c(k(r)), with a
reference prediction size kopt computed from the reference error
ξc(k(r)). For our visualization purpose, we compare our estima-
tions with references for all pixels although we run our reconstruc-
tion on a sparse set of image pixels. We use a reference image
generated by 8K ray samples per pixel, and then plug the reference
values into Eq. 2. As a result, the reference optimal size is com-
puted by minimizing the actual L2 error between predicted images
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Figure 4: We compare our estimated error and estimated optimal
prediction size with a reference error and reference prediction size,
respectively. Given a uniformly sampled input image (a), our es-
timated error (b) with a prediction size k(r = 9) shows a similar
pattern compared to its reference (c). Also, our estimated opti-
mal prediction size (d) has a strong correlation (e.g., 0.87) with the
ground truth (e).

and its reference, which cannot be achieved in practice. Our predic-
tion size shows a similar pattern with its reference and a very high
correlation (e.g., 0.87). Around the key-spindles of the toasters in
Fig. 4, our method with 19 × 19 prediction windows has relatively
high prediction errors. In these regions, we need to use smaller
prediction windows and allocate more ray samples to achieve high-
quality results. This is addressed in the next section.

5 Linear Model Construction and Adaptive

Sampling

In this section, we introduce an algorithm to determine positions,
i.e., center pixels c, of linear models (Sec. 5.1) and adaptive sam-
pling process to guide additional ray samples on high error regions
of our filtered image (Sec. 5.2).

5.1 Iterative Construction of Linear Models

We present a simple iterative algorithm to find center pixels c,
where our local linear models (Sec. 3) are created by our recur-
sive estimation process (Sec. 4). The computational complexity of
a linear model estimation is O(|ΩF

c |d
2), and thus our overall com-

plexity for reconstructing the values of all pixels is O(L|ΩF
c |d

2),
where L is the number of linear models, i.e., the number of center
pixels c. Ideally, L needs to be much smaller than the total pixel
count of an input image y, while maintaining a high quality recon-
struction.

On the first pass, we regularly select center pixels c by using a gran-
ularity factor g, which is initialized to a large one (e.g., width of
filtering window ΩF

c ) along the X and Y directions in the screen
space; for example, we choose a pixel as the center pixel c, whose
x and y positions are multiples of the factor g. After we decide the
center pixels, we estimate an optimal linear model within its opti-
mal prediction size kopt per each center pixel c, and then predict
kopt pixels from each model.

In the second pass, we reduce the global granularity factor (e.g.,
g/2), and test the pixels whose positions are multiples of g/2 to
see whether or not each newly tested pixel is predicted by existing
linear models constructed in the prior pass. If it is not reconstructed

by prior prediction, mainly because of small k̂opt values caused
by drastic illumination changes, we create a new center pixel c on
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Figure 5: Given an input image (a) generated with 4 spp, we
adaptively allocate additional ray samples until the average sample
count becomes 8. We visualize our sampling map (b) and its refer-
ence map (c). Our result (d) based on our map shows only 36 %
higher rMSE compared to the reference result (e) computed by us-
ing the reference map (c). We achieve such a high quality result,
mainly because our estimated map has a high correlation, 0.80,
with its reference map (c).

the pixel and estimate a new linear model. We repeat this process
with smaller granularity factors (e.g., g/4 and g/8 for the third and
fourth passes, respectively) until all the pixels are predicted from at
least a single linear model. The proposed, simple iterative scheme
for the model construction guarantees that every pixel is covered
by at least a single linear model. On the other hand, a pixel can be
predicted by multiple linear models, because prediction windows
of center pixels near the pixel can overlap. In this case, we simply
average multiple predictions from linear models of the respective
center pixels.

Our iterative refinement is driven by a global granularity factor, but
the density of linear models is automatically adjusted by locally
chosen prediction sizes from each local model. The adaptive place-
ment of linear models is conceptually similar to the lazy evaluation
that iteratively caches shading values to compute indirect illumina-
tion by interpolating these values [Ward et al. 1988; Křivánek et al.
2006]. Fig. 2 visualizes selected center pixels, and shows that our
method preserves fine detailed features (e.g., noisy texture) even
with a small number of linear models (e.g., 6.4 % compared to the
number of all pixels). As shown in the figure, our method preserves
the high-frequency occlusion around the key-spindle of the toaster
thanks to a high density of linear models in the area.

5.2 Adaptive Sampling

The main advantage of error analysis based reconstruction meth-
ods [Rousselle et al. 2012; Li et al. 2012; Moon et al. 2014] in-
cluding our method is that we can allocate additional ray budgets
adaptively on high error regions. For our adaptive sampling, we
choose an iterative approach [Mitchell 1987] commonly adopted in
the state-of-the-art methods. In the first pass, we uniformly allocate
a small number of ray samples, e.g., 4 samples per pixel. In the fol-
lowing passes, we adaptively allocate additional rays based on the

estimated error ξ̂c(k̂opt). Specifically, we allocate additional rays
to each pixel i within the prediction window, by using the reduction

of the error, ∆iξ̂c(k̂opt), when a new sample is added. We adopt

an estimated reduction of the error n
−4/(d+4)
i in terms of local di-

mensionality d and the number of samples ni at pixel i, which is
derived in [Moon et al. 2014]. As a result, the reduction of our error

at pixel i can be estimated as ∆iξ̂c(k̂opt) = ξ̂c(k̂opt)n
−4/(d+4)
i .

In addition, we employ a relative error metric [Rousselle et al. 2011]
used in the previous methods [Rousselle et al. 2012; Li et al. 2012;

Moon et al. 2014], and thus our relative error, ρ(∆iξ̂c(k̂opt)), at

pixel i is set as ∆iξ̂c(k̂opt)/(f̂(xi)
2 + ǫ). In practice, ǫ is set as a

small constant (e.g., 0.001). Given the relative error, the number of
ray samples, ∆ni, allocated to each pixel i is chosen proportionally

as ∆ni = Tρ(∆iξ̂c(k̂opt))/
∑

j ρ(∆j ξ̂c(k̂opt)), where T is the

total number of ray samples in an iteration step.

The number of ray samples ∆ni is an estimated value, since its

computation depends on the estimated error map ξ̂c(k̂opt). To ver-
ify the robustness of our sampling map, we compare our sampling
map with the reference map computed by using its reference error,
ξc(kopt) (Fig. 5). For this test, we render the reference image f(x)
with a large number of samples in order to compute ξc(kopt). To
compute the reference sampling map, we use the reference error
ξc(kopt) based on the actual L2 error between the predicted and
reference image generated by 8K ray samples per pixel. Also, we
use the reference value, f(xi), when we compute the reference rel-
ative error, i.e., ρ(∆iξc(kopt)) = ∆iξc(kopt)/(f(xi)

2 + ǫ). We
then use this error to compute the reference number of ray samples.
Our sampling map shows a similar pattern (i.e., very high correla-
tion) with its reference even if the input image is generated with
only 4 ray samples. In addition, our result based on our map shows
a slightly higher error (e.g., 36 %) compared to the result using the
reference map, which cannot be achieved in practice.

6 Temporal Extension

In this section, we extend our method to effectively utilize tem-
poral coherence from past frames up to the current frame t given
a scenario where users can interact with scenes (e.g., navigate a
scene). At the current frame t, we first apply our prediction based
reconstruction technique for a static image in order to utilize spa-
tial coherence between pixels, and then compute the filtered image

f̂(t). We use the filtered image as an input y(t) of our temporal
filtering. We create a linear model per each pixel i, and then update
its coefficients at each frame.

Specifically, given the filtered image y(t) generated by our method

for static images, we update each linear model β̂i(t) at pixel i in
frame t by using the extended recursive least squares [Ljung and
Söderström 1987]:

Gi(t) =
Pi(t− 1)zi(t)

λ+ z
T
i (t)Pi(t− 1)zi(t)

,

Pi(t) = λ−1
(

Pi(t− 1)−Gi(t)z
T
i (t)Pi(t− 1)

)

,

β̂i(t) = β̂i(t− 1) +Gi(t)
(

yi(t)− β̂T
i (t− 1)zi(t)

)

, (6)

where λ is a weight to gradually down-weight previous frames
and is typically fixed to a value near one (e.g., 0.98) in prac-
tice [Ljung and Söderström 1987]. We also use a simple fea-
ture vector zt defined as zt ≡ (1, t)T ; intuitively, we approxi-
mate a time sequence of the ground truth value as a linear func-
tion locally based on a single feature, the frame number t. Tech-
nically, the extended equation for considering temporal coherence
(Eq. 6) is a least squares solution that minimizes the cost function
∑t

j=1 λ
t−j(β̂T

i (j)zi(j) − yi(j))
2, which aims to minimize the

sum of a weighted squared residual. Note that the residuals from
previous frames (j < t) are exponentially down-weighted by λt−j .

The extended equation utilizing temporal coherence generates a

temporally filtered output β̂T
i (t)zi(t) at each pixel i for the current

frame t by updating its error, (yi(t)−β̂T
i (t−1)zi(t)), but it is more



desirable to track illumination changes by using world positions.
For example, a pixel i at frame t can have a totally different illumi-
nation compared to one at frame t−1, when an object or the camera
moves. To tackle this problem, we utilize the pixels that share sim-
ilar world positions and have small prediction errors for achieving
better accuracy. Specifically, given a pixel i at frame t we find a
corresponding pixel o at frame t − 1, which has the largest value

of
(

‖Wj(t− 1)−Wi(t)‖
2 × ‖yi(t)− β̂T

j (t− 1)zi(t)‖
2
)

−1

by

checking the value within a search window. W is the 3D object
position that primary rays intersect. We then assign linear mod-

els β̂T
o (t − 1) and its covariance Po(t − 1) stored at pixel o to

β̂T
i (t− 1) and Pi(t− 1), and update the matrix and vector through

the extended recursive least squares (Eq. 6).

We have tested our method with high-performance ray tracing ker-
nels such as Embree [Wald et al. 2014] and OptiX [Parker et al.
2010]. In the accompanying video, we test the movement of a point
light in the Toasters scene as it creates sharp illumination changes
on our linear model, caused by moving shadow boundaries. Our re-
sults preserve the hard boundaries well since we reproject our mod-
els based on its prediction error as well as world positions. We have
also verified our method for the Courtyard scene (Fig. 1). When the
camera moves, our method still exhibits some flickering given in-
put images generated with 4 samples per pixel. Nonetheless, we
achieve 3 frames per second on average and our result shows rea-
sonable quality for the preview purpose, especially when we con-
sider that we use a challenging configuration with an area light and
the small sample count (i.e., 4). We also provide our results with a
relatively large sample count (e.g., 64) for high-quality results. In
this case, the rendering time for computing our input image and our
filtering time are 1.9 s and 0.3 s, respectively, on average per frame.

The proposed extension for utilizing temporal coherence can be
considered as a low-pass filter, because it approximates illumina-
tion changes between frames as a low order polynomial (i.e., lin-
ear). When the illumination changes follow non-linear functions
(e.g., moving highlights on glossy materials), our method can pro-
duce over-blurred results. As an interesting future work, we would
like to investigate an adaptive technique to adjust the weight, λ, lo-
cally to better preserve non-linear functions. In addition, it would
be interesting to automatically set the order of our temporal model
locally (e.g., quadratic or cubic) instead of using a fixed order (e.g.,
linear) to preserve non-linear changes of illumination well.

7 Implementation Details

We have implemented our estimation and reconstruction methods
using CUDA and used a 19× 19 filtering window ΩF

c for all tested
benchmarks. We pre-filter input features x since some features can
be noisy due to depth-of-field effects or motion blur. Precisely,
we apply the truncated singular value decomposition (SVD) [Moon
et al. 2014] to original input features within ΩF

c in order to reduce
the noise and remove dependency among features.

Initialization for recursive reconstruction of models. As the ini-
tial condition of the recursion (Eq. 3), we set β̂c(0) as a vector
(y1,0,...,0), where y1 is the intensity of the first pixel (i.e., center
pixel c) that we include when k = 1. We also set Pc(0) as δ−1I
where I is the identity matrix. The δ indicates a confidence on the

β̂c(0). For example, if we have a small δ, the recursive least squares
solution changes quickly once it includes new samples. As a result,

β̂c(0) is not important when we have a very small δ. We set δ to be
a small constant (e.g., 0.001) to avoid numerical instability and to

give less priority on the initial β̂c(0). For the recursion of temporal
extension (Eq. 6), we initialize the matrix Pi(0) and the coefficients

β̂i(0) in the same way that we apply for our static image (Eq. 3).

Initialization for recursive estimation of prediction error. To
initiate the recursion (Eq. 4), we compute two initial values,

ξ̂accc (k(0)) and ξ̂accc (k(1)). When k(0) = 12 we have only one
sample, i.e., the center pixel c, and thus the reconstructed value

f̂(xc) is β̂T
c (1)zc = yc. One can easily verify this by computing

β̂c(1) (Eq. 3). In this case, our filtering does not introduce any bias,

and thus we set ξ̂accc (k(0)) as the variance of the sample mean at
the center pixel c, i.e., the error of Monte Carlo input. The variance
goes to zero as the number of samples goes to infinity, and thus our
method is a consistent method, since we select the smallest predic-
tion size k = 0 in that case by our optimization (Eq. 2).

When k(1) = 32, we have only a single training sample and eight
test samples. In this case, the least squares solution can be unstable
(e.g., under-determined), since the number of samples are smaller
than the local dimensionality d. To alleviate this small sample prob-
lem, we apply the leave-one-out cross validation [Kohavi 1995],
where k − 1 pixels are used to test the remaining 1 pixel. This test
is repeated k times in order to test all the k pixels. Specifically, we
employ the closed-form solution of the leave-one-out cross valida-
tion [Allen 1974] defined as the following:

ξ̂accc (k(1)) =

9
∑

i=1

(

β̂T
c (k(1)) zi − yi

1− z
T
i Pc(k(1))zi

)2

. (7)

The leave-one-out cross validation is computationally expensive,
since it requires O(kd2) operations per each k. Precisely, the com-

plexity of the vector-matrix multiplication z
T
i Pc(k(1))zi is O(d2),

and it is performed k times in the summation. Therefore, we ap-
ply this approach only for the initialization of our recursion when
k = k(1) = 32. Our iterative validation has a computationally
preferable property that all the pixels are used as a test sample only
once. Therefore, if the number of pixels in a filtering window size
is large enough (e.g., 19 × 19 = 361) compared to k = 32, the
total computational burden of our estimation has a time complexity
O(|ΩF

c |d), since our method requires a dot product of two vectors
(Eq. 5) and it is performed at most once per each pixel.

Alternative approaches to error estimation. As an alternative of
our recursive estimation (Sec. 4.2), one may estimate the predic-
tion error ξc(k) using the sum of squared residuals, i.e., ξc(k) =
1
k

∑

i∈ΩP
c
(k)(β̂

T
c (k)zi − yi)

2 where β̂T
c (k)zi = f̂(xi). Unfor-

tunately, it typically leads to over-fitting since its equation is very

similar to the least squares cost function
∑

i∈ΩP
c
(k)(f̂(xi) − yi)

2;

the difference is just a normalization term 1/k. Specifically, the

linear model β̂c(k) is trained to minimize its cost function based on
k pixels, and thus it is undesirable to use the k pixels again for test-
ing the linear model, i.e., measuring its prediction error, resulting
in over-fitting.

For estimating the prediction error introduced by different r, one
may think that we can directly use the simple cross validation ap-
proach instead of our iterative estimation. In the Courtyard scene
(Fig. 1), we have generated an input image with 16 samples per
pixel uniformly, and we have tested our proposed error estimation
and the cross validation. Our estimation time (e.g., 16 ms) is 4×
lower than the cross validation time (e.g., 67 ms) due to the time
complexity difference. In addition, we have compared reconstruc-
tion errors between the two approaches using the input image. Our
reconstruction error (e.g., 0.00253) is similar to that (e.g., 0.00318)
of the cross validation. As a result, we have chosen our proposed
method because of its faster performance with similar or improved
accuracy in practice.
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Figure 6: Equal-time comparisons of the Courtyard (first row), Toasters (second row), and Sibenik scene (third row). The previous methods
show sub-optimal results (e.g., under- or over-blurred results), since they can generate only small numbers of samples due to their relatively
large filtering overheads. Our method, however, shows high-quality rendering results in terms of numerical accuracy and visual quality. Our
method performs our filtering at only 11.6 %, 4.9 % and 6.0 % center pixels for the Courtyard, Toasters, and Sibenik scene, respectively. All
the tested methods were integrated with Embree, a high-performance ray tracing system.

8 Results and Discussions

We have demonstrated our method on top of the Embree exam-
ple renderer, which fully utilizes high-performance ray tracing ker-
nel [Wald et al. 2014]. Specifically, we use a path tracing im-
plementation using the Embree kernel. For our tests, we use a
3.40 GHz processor and an NVIDIA GTX 980 GPU. To conduct
comparisons between our method and previous work, we have
implemented Stein’s unbiased risk estimator (SURE) [Li et al.
2012], non-local means (NLM) [Rousselle et al. 2012], and locally
weighted regression (LWR) [Moon et al. 2014] into the Embree
renderer. To test NLM and LWR we used their CUDA implemen-
tations, provided by the respective authors and also converted CPU
codes of SURE into a CUDA implementation in order to perform
fair equal-time comparison. Furthermore, we have tested low dis-
crepancy sampling (LD) that allocates ray samples uniformly and
reconstructs images by a pixel filter (e.g., a small box filter), with-
out performing any filtering. As a quantitative measure, we use the
relative Mean Squared Error (rMSE) [Rousselle et al. 2011] that the
state-of-the-art methods utilize.

Benchmarks. We have verified our method with the following
scenes: 1) Courtyard, 2) Toasters, 3) Sibenik, 4) San Miguel, 5)
Crown, and 6) Kitchen. We use 1K × 1K image resolutions for
all benchmarks. The Courtyard scene (Fig. 1 and the first row in
Fig. 6) has different types of shadows, which are introduced by a
large area light source. For example, the noisy textured floor below
the car has sharp shadow boundaries, which are non-linear func-
tions that our linear prediction cannot have a large prediction size.
In the Toasters scene (second row in Fig. 6), we show a depth-of-
field effect on noisy textures, and this effect introduces a challeng-
ing scenario, since it is difficult to discern noisy textures from the

noise introduced by the effect. In the Sibenik scene (third row in
Fig. 6), we use a large area light source that introduces severe noise
on the textured floor. The San Miguel benchmark (Fig. 9) contains
a lot of high-frequency edges introduced by complex geometries,
and strong depth-of-field effects are tested. As challenging sce-
narios for the reconstruction methods that use geometric features
(including our method), we test the Crown and Kitchen benchmark
(Fig. 11), where a lot of high-frequency edges (e.g., glossy reflec-
tions) that are not captured by the geometries are introduced.

Equal-time comparisons. Using the Toasters scene (second row
in Fig. 6), we conduct equal-time comparisons. Surprisingly, the
state-of-the-art methods, i.e., SURE, NLM, and LWR, do not intro-
duce benefit over a baseline rendering method, a uniform rendering
method using LD. This is mainly because their filtering and error
analysis time are too large to generate enough samples for reduc-
ing errors. While the previous methods can be an excellent choice
for accelerating offline rendering systems such as pbrt [Pharr and
Humphreys 2010], their benefits are reduced or even disappear as
rendering systems become more efficient. Our method, however,
addresses this issue by using more aggressive reconstruction based
on our novel prediction method. We use 4.9 % center pixels of the
image resolution and predict all other pixels, but our result shows a
similar quality with the reference image.

In the Sibenik benchmarks (third row in Fig. 6), NLM and SURE
provide sub-optimal results on the noisy-textured floor, while the
local linear approximation methods, i.e., LWR and our method,
preserve the detailed features well. However, LWR suffers from
an expensive filtering overhead. For example, LWR spends 6.5 s
for computing its adaptive sampling map and 11.3 s for its final re-
construction. As a result, it was not possible to make the equal-time
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Figure 7: Equal-sample comparisons with offline methods for the
Courtyard (top), Toasters (middle), and Sibenik (bottom). All the
methods use 16 spp on average. We show zoomed-in views shown in
Fig. 6. Even with an equal-count sample, our method outperforms
all the tested state-of-the-art methods in terms of numerical errors.
Furthermore, our method has smaller adaptive rendering time over
previous methods thanks to our prediction based reconstruction.

comparison under 10 s for LWR. Our method tackles this problem
by using sparse filtering performed at 6.0 % center pixels of the im-
age resolution. We also observe similar results for the Courtyard
scene (first row in Fig. 6).

Equal-sample comparisons. We conduct equal-sample compar-
isons with the prior offline methods (Fig. 7). Among all the tested
scenes, our method shows numerically better results compared to
other tested methods. In the Sibenik, LWR and our method show
much better accuracy compared to SURE and NLM, by preserving
the noisy textures on the floor well. However, the rendering time
(28.1 s) of LWR is much higher than our rendering time (7.5 s), be-
cause of its expensive filtering overhead. Our method uses 11.6 %,
4.7 %, and 6.3 % linear models for the Courtyard, Toasters, and
Sibenik scene respectively, compared to the number of linear mod-
els (i.e., total pixel count) used in LWR. Nevertheless, our approach
using the sparse numbers of linear models performs high-quality
adaptive rendering with a significantly reduced overhead.

Moreover, we measure the convergence of the relative MSE in
terms of different ray counts (Fig. 8) given the Toasters and Sibenik
scenes. Our method shows consistently better results compared to
other methods, even if we apply our filtering to only a small num-
ber of center pixels. This indicates that our prediction based re-
construction can produce high quality reconstruction results in a
reduced time without sacrificing a noticeable quality loss thanks to
our adaptive prediction by using our error estimation.

Comparisons using offline ray tracers. We test our method and
others with an offline rendering system, pbrt [Pharr and Humphreys
2010]. Given the San Miguel scene (Fig. 9), we compare our
method with SURE, NLM, LWR, and a recent filtering method us-
ing the ray histogram fusion (RHF) [Delbracio et al. 2014]. To gen-
erate the results of RHF, we used the code provided by the authors.
RHF tends to produce an over-blurred result in the focused area
since it is difficult to discern detailed edges from high-frequency
noise without utilizing G-buffers. The linear approximation meth-
ods based on G-buffers, LWR and our method, produce much bet-
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Figure 8: Convergence of rMSE. We measure rMSE of different
adaptive rendering methods for the Toasters and Sibenik scenes.
Our method shows consistently better results numerically over
other tested methods.

ter results compared to other techniques. However, our result pro-
duces high-quality rendering results using a sparse number of linear
models (9.4 % center pixels). We also compare our method with a
wavelet based adaptive method using the block-matching and 3D
filtering (BM3D) [Kalantari and Sen 2013], and this result is in our
supplementary report.

Comparisons with real-time filtering. We compare our method
with the edge-avoiding A-Trous [Dammertz et al. 2010] and guided
filter [Bauszat et al. 2011], which are real-time filtering methods.
The guided filter separates illumination into direct and indirect
parts, and applies filtering only to indirect illumination. However it
cannot remove noise (e.g., noise on soft shadows) from direct illu-
mination, and thus we extend the original method to apply their fil-
tering to a final input which includes both direct and indirect parts.
Specifically, we additionally include textures as well as normals and
depths which the original paper uses as features. To conduct a fair
comparison, we use uniform sampling since the previous methods
do not have adaptive sampling functionality. The real-time meth-
ods have reduced filtering time (e.g., 55 ms of the A-Trous) com-
pared to our method (e.g., 562 ms), but our filtering errors (0.00536
and 0.00147) are significantly smaller than those of real-time filters
(0.04927 and 0.01106 of the A-Trous and 0.01242 and 0.04633 of
the guided filter). In addition, the real-time filters produce higher
errors (0.01106 of the A-Trous and 0.04633 of the guided filter)
compared even to the error of its input (0.00883) in the Courtyard
scene; this is caused by the lack of robust error analysis.

Computational overhead. We measure time of individual tasks in
our reconstruction given the Sibenik scene (first row in Fig. 10). We
summarize the timing information in Table 2. Given accumulated
buffers for input colors, normals, textures, and depths generated by
MC ray tracing, we compute sample means and variances per pixel
for each buffer (preprocessing step in Table 2) before we apply our
reconstruction. Pre-filtering features (e.g., normals, textures, and
depths) by SVD uses 24 % of the total reconstruction time, and
our recursive reconstruction of linear models using error analysis
spends a major portion (e.g., 64 %) of the total time.

Limitations and future work. A counterexample of filtering
methods that utilize geometries is typically referred as a scenario
where high-frequency details are mostly introduced by illumination
changes (e.g., glossy reflections), as pointed out in [Rousselle et al.
2012]. Fig. 11 features this characteristic, and the geometry based
filtering methods, i.e., SURE, LWR, and our method, show under-
or over-blurred results. NLM preserves detailed edges, but leaves
high-frequency noise since it is difficult to find enough neighbor-
ing patches on the detailed edges. Nonetheless, our method gener-
ates improved results compared to all the tested methods in terms
of rMSE by increasing the number of linear models automatically



(a) Ours, 128 spp

rMSE 0.00407

(b) LD, 128 spp 

rMSE 0.06258

(c) SURE, 128 spp

rMSE 0.01146

(d) NLM, 128 spp

rMSE 0.01066

(e) LWR, 128 spp

rMSE 0.00371

(g) Ours, 128 spp

rMSE 0.00407

(h) Reference     

32768 spp

(f) RHF, 128 spp

rMSE 0.00909

Figure 9: Equal-sample comparisons for the San Miguel scene where complex geometries are tested with depth-of-field effects. The local
linear approximation approaches, LWR and our method, show much better results compared to other methods. Nonetheless, our method
achieves the high-quality rendering result with only 9.4 % center pixels compared to LWR.

8 spp (3.27 s)

rMSE 0.27525

8 spp (3.32 s)

rMSE 0.04927

8 spp (3.66 s)

rMSE 0.00536

32768 spp

16384 spp

(e) Reference

32 spp (13.58 s)

rMSE 0.00883

(a) Inset

32 spp (13.64 s)

rMSE 0.01106

(b) A-Trous

32 spp (14.31 s)

rMSE 0.00147

(d) Ours

8 spp (3.71 s)

rMSE 0.01242

32 spp (14.02 s)

rMSE 0.04633

(c) Guided

Figure 10: Comparisons with real-time filtering methods. The A-
Trous filter (b) leaves noises out (top and bottom rows), while the
guided filter (c) removes the non-linear edges (i.e., shadow bound-
aries). The real-time filtering has a low filtering overhead (e.g.,
55 ms on average for the A-Trous filter), but does not effectively re-
duce rMSE since it does not perform filtering based on robust error
analysis. Our method (562 ms on average) is slower than the filter,
but it shows much better results compared to the real-time filters.

Table 2: Timing breakdown for the Sibenik (Fig. 10)

Task Time (ms) Percentage (%)

Preprocess input data 49 12
Pre-filter features by SVD 94 24
Compute linear models 252 64

Total reconstruction time 395 100

thanks to our adaptive prediction; the numbers of center pixels are
13.3 % and 18.9 % of the image resolution for the Crown (first row)
and Kitchen scene (second row), respectively.

As an interesting future work, we would like to design robust
rendering-specific features (e.g., virtual flash images [Moon et al.
2013]) that have a strong linear correlation with the reference im-
age even for the aforementioned failure case. Our method, like
other image-based solutions, uses brute-force sampling for high-
dimensional space (e.g., lens) and does not utilize high-dimensional
information for reconstruction. It would be interesting to extend
our work to support the high-dimensional space, while maintaining
a high efficiency. Our reconstruction treats each feature equally in
the feature vector x for computational efficiency, but it would be
desirable to use a non-uniform weighting function for considering
the importance of different types of features [Moon et al. 2014].

9 Conclusions

We have proposed a novel prediction based reconstruction tech-
nique for high-quality and efficient MC ray tracing. An iterative
computation of multiple linear models with varying prediction size

is introduced, and its recursive error analysis for estimating the pre-
diction error has been proposed. Our method selects an optimal
linear model that is the least squares solution computed within an
optimal prediction interval, and predicts all the other pixels within
the interval without performing expensive optimization. We have
tested our method with various scenes and recent high-performance
ray tracing systems such as OptiX and Embree, and demonstrated
that our method generates high quality results in a reduced render-
ing time compared to the state-of-the-art techniques.
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