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Abstract. Digital restoration of film content that has historical value is crucial for the preservation of cultural
heritage. Also, digital restoration is not only a relevant application area of various video processing technologies
that have been developed in computer graphics literature but also involves a multitude of unresolved research
challenges. Currently, the digital restoration workflow is highly labor intensive and often heavily relies on expert
knowledge. We revisit some key steps of this workflow and propose semiautomatic methods for performing
them. To do that we build upon state-of-the-art video processing techniques by adding the components neces-
sary for enabling (i) restoration of chemically degraded colors of the film stock, (ii) removal of excessive film grain
through spatiotemporal filtering, and (iii) contrast recovery by transferring contrast from the negative film stock to
the positive. We show that when applied individually our tools produce compelling results and when applied in
concert significantly improve the degraded input content. Building on a conceptual framework of film restoration
ensures the best possible combination of tools and use of available materials.© 2017 SPIE and IS&T [DOI: 10.1117/1.
JEI.26.1.011021]
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1 Introduction
Until the relatively recent transition to digital media, film has
been the primary medium for storing visual content for a
long time. Some of this content is being preserved in archives
due to their historical or artistic value, or their importance for
other reasons. In fact, in some countries, the film content is
perceived as a part of the cultural heritage, therefore, signifi-
cant investments have been made for film archival. Another
related effort is the digital restoration of the legacy content,
such that it can be transferred and viewed in current hardware
and, therefore, becomes available to a wider audience.

The digital restoration process involves scanning the
film stock and accounting for various types of chemical and
physical degradations without modifying the original artistic
intent of the content. All these steps require specialized tools
and knowledge, and as such the digital restoration process is
often quite time consuming and labor intensive. Therefore,
only a small percentage of the legacy content can be proc-
essed per year. While in some rare cases, a title’s commercial
value can justify its restoration costs (e.g., Disney’s recently
rereleased LionKing), other less popular but nevertheless cul-
turally significant titles may become irreversibly destroyed
before they are ever restored.

Interestingly, a number of research problems that are rel-
evant to many of the challenges in digital film restoration
have been investigated in computer graphics literature for
decades. The restoration of chemically degraded film colors
(due to humidity, heat, etc.) is closely related to the body of
work in color transfer. The removal of excessive film grain is
essentially a specialized instance of denoising and video

filtering. Similarly, restoration of the contrast of the positive
film stock from the negative stock can be viewed as a special
form of contrast enhancement through joint filtering. Despite
the resemblances, however, we found that off-the-shelf com-
puter graphic methods still require overcoming a multitude
of research problems in order to be applicable to digital film
restoration.

The goal of this interdisciplinary work is to present a set
of semiautomatic key components for digital restoration with
the hope of removing the barriers to a more practical resto-
ration process. To that end, we start from the state-of-the-art
in the computer graphics literature and make multiple con-
tributions to enable their use for the purposes of digital film
restoration. Specifically, we make the following contributions:

• We present practical digital film restoration tools for
restoration of chemically degraded colors, excessive
grain removal, and contrast transfer from negative
stock, all by building upon the state-of-the-art in the
computer graphics literature by adding components.

• We demonstrate the usefulness of our techniques on a
multitude of case studies by restoring degraded film
content.

We base our discussions on a conceptual framework of
film restoration outlined in Sec. 3, which sets the foundation
for optimum use of tools and available film materials. In
the next section, we first start with a brief summary of
the related work.
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2 Related Work

2.1 Film Restoration
For an overview on the fundamentals of film restoration, we
refer the reader to Read and Meyer.1 Digital restoration was
further investigated by Kokaram.2 Other related work dis-
cussed common degradations such as grain noise, dirt and
sparkle, shake, and flicker, while also proposing a Bayesian
approach for their removal. Rosenthaler and Gschwind3 pre-
sented a model of film color degradation as well as a method
for removal of scratches, dust, and other defects. Schallauer
et al.4 presented automatic algorithms for combating prob-
lems such as dust, dirt, image stabilization, flicker, and
mold. Finally, Werlberger et al.5 presented an optical flow
guided framework for interpolation and noise removal for
television content.

2.2 Color Manipulation
Two fundamental works in the area of film color restoration
are by Gschwind and Frey.6,7 These papers describe a simple
but effective physical model of color degradation occurring
in films. In our work, we build upon the work of Oskam
et al.8 that utilizes a radial basis function interpolation for
balancing the colors between images, and was originally
developed for virtual reality applications. We also studied
other interpolation models that are described in Amidror
et al.9 Other relevant work in color transfer utilizes a moving
least squares approach,10 performs color transfer in two
steps: nonlinear channel-wise mapping followed by cross-
channel mapping,11 relies on statistics in color images,12,13

attempts to preserve the gradients of the source image,14

tries to match the color distribution of the target image,15

and performs histogram matching between the source and
target images.16

2.3 Denoising
Denoising has been one of the most fundamental and practi-
cally relevant problems in visual computing and has been
studied extensively. For a theoretical treatment for the filter-
ing process involved in denoising, we refer the reader to
Milanfar.17 A popular denoising approach is the nonlocal-
means (NLS) filtering,18,19 which has been further discussed
in comparison to other methods in Buades et al.20 More
recently, the performance of the NLS filter has been
improved through adaptive manifolds.21 Other work that
is applicable to denoising includes the domain transform fil-
ter,22 the permutohedral lattice,23 the weighted-least-squares
filter,24 the bilateral filter,25 and the BM3D filter.26 Another
relevant line of research to denoising is edge-aware spatio-
temporal filtering.27,28 Especially, Aydın et al.28 demon-
strated compelling denoising results for HDR video by
relying on simple averaging over motion compensated
spatiotemporal video volumes.

2.4 Contrast Transfer
A more general form of contrast transfer, namely, style trans-
fer has been thoroughly investigated in the computer graph-
ics community. Some recent examples include Shih et al.,29

where they transfer the contrast and various other properties
between headshot portraits. Wang et al.30 transfer tone
and color properties of photographs taken with high-end

DSLR cameras to photographs taken with cell phone cam-
eras with lower image quality. Another interesting style
transfer method based on learning the user’s preferences
has been presented by Akyuz et al.31 specifically for HDR
images. In our case, the style transfer occurs from the film
negative to the film positive, where both the positive and
negative can be chemically and physically degraded at vari-
ous degrees.

3 Digital Restoration Framework
Analog film has been used for over 125 years to tell stories
and to communicate visual information. Although film has
almost completely been replaced by digital video today,
some film makers still choose to produce their movies on
film due to its specific visual style. On the other hand, even
for content shots on digital media, film is still a viable long-
term alternative for archiving. Analog film technology from
capture to display evolved tremendously over the decades,
resulting in a vast amount of different types of film stocks
and the processing techniques associated with them. A com-
prehensive review of historical film technologies with the
main focus on color processes is presented by Flueckinger.32

The major steps of a digital restoration workflow are illus-
trated in Fig. 1. Typically analog film is captured on a neg-
ative NO where O stands for original. In our simplified
model (omitting, e.g., interpositives, etc.) the original posi-
tives PO that are used for projection in cinemas are created
from NO. Generation of the positives usually involves color
grading fG, which is an artistic process for establishing the
final look of the content on screen. As NO and PO are physi-
cal entities, they will undergo deformations over the years
and decades resulting from mechanical/physical treatment
and chemical processes inside the material. The negative
is usually only used to create a few copies and otherwise
is preserved carefully, whereas a positive may have run thou-
sands of times through a projector and be exposed to various
types of outside influences. A negative is typically in better
shape but does not carry the grading information, which is a
historical part of the final visual art. Furthermore,NO and PO
are made of very different materials such that the chemical
degradation processes may be completely different depend-
ing on the particular type of film stock. We formally express
all these effects as two different degradation functions fN

Fig. 1 A conceptual framework of digital film restoration.
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and fP, which transform the originals into their degraded
versions ND and PD.

ND and PD are degradations in the physical medium and
should be removed. Importantly, the end result of this process
should still remain faithful to the restored content’s original
state. The restoration may involve mechanical cleaning and
repairing of pieces as sometimes only fragments are available.
Additionally, often only either ND or PD can be obtained, and
not both. After these initial steps, the film stock is digitized by
a film scanner, which could introduce slight color shifts due to
the scanner’s inaccuracy. Conceptionally, we subsume these
effects into the degrading functions fN and fP, and assume
that ND and PD are final digitized content.

The goal of digital film restoration is the faithful
reconstruction of the original visual information from the
degraded content ND and PD. Conceptionally, this can be
defined as estimation of inverse degrading functions, i.e.,
reconstruction functions f−1�N and f−1�P that would create esti-
mates of the original inputs N�

O and P�
O. From this, we can

estimate the original color grading function f�G.
The goal of our research was to improve film restoration

for two practically relevant scenarios. The first scenario
assumes that the positive stock is available, but the negative
stock is either not available or is somewhat degraded because
of not being well preserved. For this scenario, we present
three methods for performing the improvements conceptual-
ized by the reconstruction functions f−1�N and f−1�P .
Specifically, we address the restoration of degraded colors,
removal of excessive film grain, and (in case the negative
stock is available) the contrast transfer from the negative
to the positive.

In the second scenario, we assume that both positive and
negative stocks are available, and the negative stock is in

a good condition. In this case, we use the scans of the pos-
itive and negative films to estimate the color grading function
f�G using the same color restoration method applied in the
first scenario (Sec. 4.1). Then, we simply apply the color
grading function to the negative (N�

O) in order to obtain a
positive (P�

O) that has a similar level of quality to the neg-
ative, but is also faithful to the artistic vision estimated from
the positive.

While the aforementioned scenarios are common in prac-
tice, every film restoration project is a unique exercise and
can impose challenges. However, the methods presented in
the reminder of this paper are useful additions to the cur-
rently available set of restoration tools, and can be used
in tandem with others to facilitate the digital restoration proc-
ess under various circumstances.

4 Advanced Tools
In our conceptual framework, any restoration method can be
a part of the reconstruction functions f−1�N and f−1�P . In this
section, we present three such tools which build upon the
state-of-the-art in visual computing. In order to obtain the
results presented in Sec. 5, we applied these methods in
the presented order. However, they can be used in any
order, standalone, or in combination with any other restora-
tion tools and software (e.g., scratch removal, stabilization,
etc.). In addition to the development of tools, another focus
of our work was on the development of related user interfa-
ces, which allow intuitive control over relevant parameters of
the algorithms. An example of user interaction is shown in
Fig. 2 (Video 1). These user interfaces enabled testing and
optimization during algorithm development but also show
how the tools can be integrated into professional products
and further be used in real restoration projects.

Fig. 2 User interaction with the color restoration tool via our interface. Video 1 (MP4, 10 MB) [URL: http://
dx.doi.org/10.1117/1.JEI.XX.XX.XXXXXX.1].(Please note that the large file size may result in a long
download time.)
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4.1 Color Restoration
Color degradation is caused by chemical processes inside the
film stock. (Fig. 3 shows an example.) These processes vary
largely for different types of film stock and often even affect
the color components differently. For instance, sometimes
the blue component fades faster than others, causing a char-
acteristic color shift. In some cases for certain types of film
stock, it is possible to model the chemical degradation proc-
ess and to derive corresponding algorithms for inversion
as described in Refs. 6 and 7. However, such approaches
require physical measurements of the film stock to derive
appropriate model parameters and in the end still require
interactive correction and finishing.

In our approach, we rather rely on color transfer algo-
rithms that have proven to have high quality and flexibility
in other application domains.8 We make the assumption
that the color degradation is a global transformation,
which means that the degradation only depends on the colors
of the original film and not on the position of the colors in the
frame. This assumption is justified due to the fact that the
evident color degradation is caused by a chemical process
that affects the images globally.6

4.1.1 Color restoration pipeline

The pipeline of our approach for color restoration is illus-
trated in Fig. 3. The key is a color transformation which
is used to transform the degraded film. This transformation
is generated in an interactive process controlled by the con-
servator, where the conservator provides several restored
keyframes to our system. The number and spacing of key-
frames depend on the length of a sequence and the amount
of change. In our results, we mostly used just one keyframe
for sequences of several seconds. Rarely a second keyframe
was used. The conservator restores the keyframes using tradi-
tional grading tools. Then our system will estimate a color
transformation of that particular grading by comparing the
restored keyframe to the input as described below (indicated
by red lines in Fig. 3). This color transformation is then applied
to the whole sequence to create the final restored output.

4.1.2 Estimation of color transformations

The estimation of the color transformation that was used to
manually restore a keyframe follows the approach of Oskam

et al.8 The task is to compute the transformation parameters
according to some optimality criteria. Let us assume that the
equation c 0 ¼ fðc; pÞ defines the transformation f that takes
as input a faded color c and computes as output the corre-
sponding original color c 0. f depends on p which represents
the parameters that must be computed before using the trans-
formation to correct other frames. For the computation of the
parameter p, we use a least squares criterion defined as

EQ-TARGET;temp:intralink-;e001;326;664arg min
p

XN
i¼1

kc 0
i − fðci; pÞk2; (1)

where ðci; c 0
i Þ (i ¼ 1; : : : ; N) are color correspondences, i.e.,

pairs of restored and corresponding faded colors (Fig. 3).
The least squares criterion simply minimizes the sum of
the squared transformation errors for the given color corre-
spondences and is computed by an appropriate solver. The
color correspondences needed for transformation training
can be obtained manually or automatically as outlined in
the next section.

f in Eq. (1) can be considered as an interpolation function
that creates the restored output images from degraded input
images, depending on a parameter set p as computed from
the color correspondences of the keyframe. In principle,
there are different options of interpolation functions f, such
as polynomial, radial basis functions, thin-plate splines,
moving least squares, or tetrahedral. Our user interface
allows selection of all these options (see Fig. 2, Video 1).
Figure 4 shows the results obtained using the previously
mentioned interpolation functions based on the same color
correspondences. In this example, the thin-plate spline func-
tion performs best, whereas the least sophisticated polyno-
mial interpolation function achieves the worst result.
Generally, we found for various examples that thin-plate
spline interpolation provides very good results. It is formally
defined by the following equation:
EQ-TARGET;temp:intralink-;e002;326;351

c 0 ¼ Acþ bþ
XN
i¼1

ϕðkc − cikÞwi;

where ϕðrÞ ¼ r2 logðrÞ; (2)

and p ≔ ðA; b; w1; : : : ; wNÞ are the parameters of the trans-
formation. A is a 3 × 3 matrix, whereas b and wi are three-
dimensional (3-D) vectors.

4.1.3 Color correspondences extraction methods

For the selection of the correspondences needed to compute
the parameters of the color reconstruction function, we
developed an interactive and an automatic method. The inter-
active approach provides full control to the conservator.
It follows Oskam et al.8 and is shown in Fig. 5. First, the
user selects some initial correspondences (usually 3 or 4)
by clicking into the input image, typically inside character-
istically colored regions. The system then solves the equa-
tions above and creates a first restored version, which is
usually still very far off. Then the user continues adding cor-
respondences in selected image regions where the error is
still large, and the process is repeated until convergence
and satisfaction of the user. This is typically the case after
about 10 iterations depending on the complexity of the

Fig. 3 Color restoration by color transformation estimation.
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content. Figure 2 (Video 1) shows the user interaction with the
color restoration tool. The user incrementally adds color cor-
respondences until the color transformation is trained well
enough. We developed an interface where the user can control
properties and parameters of the algorithm as needed.

Our automatic approach is based on clustering of random
correspondences and is shown in Fig. 6. The method ran-
domly selects a predefined number of correspondences dis-
tributed over the image. We used 10,000 points for the results
reported in this paper. This step reduces the number of sam-
ples to be considered, while still providing a representative
set of the color distribution. Next, the set is further reduced to
a number of typically 30 color clusters using a k-means
algorithm in 3-D color space, to make the problem computa-
tionally feasible, while still providing a good representation.
Finally, for each cluster, we select the correspondence
which is closest to the centroid as representative, and these

representatives are used to solve for the color restoration
transformation.

For most of our results reported in this paper and in Fig. 7
(Video 2), we used the automatic approach. For a few cases,
we decided to fall back to the interactive approach when the
material was too degraded. This limitation can always be
handled in the interactive restoration workflow, where the
automatic method serves as an additional tool which in
most cases increases efficiency.

4.2 Denoising/Degraining
Denoising is one of the most studied areas in image/video
processing research. We extend a recently proposed edge-
aware spatiotemporal filtering method based on permeabil-
ity-guided filtering (PGF).28 Here, we present a specific
improvement for the application to film restoration.

Fig. 4 Comparison of different interpolation functions. The error images illustrate the per pixel difference
between the manually restored reference and the different restorations by color transformation from the
same correspondences. The PSNR values in decibels provide a global measure of quality.
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4.2.1 Grain noise characteristics

Exposed film always contains characteristic grain noise
which creates the specific look that is considered as part
of a piece of art. However, old degraded film usually exhibits
a significant increase of film grain which is not desired, i.e., it
is an artifact (Fig. 8). A major difficulty in film restoration is,
therefore, to find the right amount of reduction to an approx-
imately original level and nature of noise. The conservator

has to find this balance with the help of a powerful tool such
as ours as described in the following, which also allows the
retaining of texture and contrast of the content as unaffected
as possible.

To characterize the grain properties of degraded film, we
analyzed a patch of the sky region of the original image con-
tent shown in Fig. 8, which appears to show a uniformly col-
ored region distorted with strong grain noise. The colored
artifacts indicate that grain noise degraded differently in
the color channels. A look at the energy spectral density
of the luma channel of this patch (Fig. 9) shows that the spec-
tral energy is isotropically distributed in the low and mid
range of frequencies. The isotropic distribution indicates
that grain noise has no direction of preference, whereas
the lack of high-frequency energy reveals that grain noise
is locally correlated, i.e., it is smooth to a certain degree.
A closer look at the distribution of absolute x- and y-
derivatives (Fig. 10) shows that they are concentrated in a
small domain in comparison to the original image domain
with values up to 255. Hence, we characterize nonstructured
image regions with grain noise as having isotropically
distributed noise and small x- and y-derivatives.

4.2.2 Grain reduction

We reduce the grain noise by using PGF,28 which we extend
by employing permeability weights that take the character-
istics of grain noise into account. The weights are computed
adaptively from the available noisy image content to enable a
strong spatial diffusion in areas with isotropic image content
and small partial derivatives in x- and y-directions, while in
areas deviating from this assumptions the level of diffusion is
gradually reduced.

PGF is conducted by filtering with a one-dimensional
(1-D) filter in a separable way along image rows, image
columns, and in time along optical flow trajectories. First, all
image rows are filtered which gives image Jð1Þ and then all
image columns of image Jð1Þ are filtered and image Jð2Þ
is obtained. We continue alternating between filtering image
rows and image columns for a number of iterations. Finally,
after spatial filtering, we apply the same filtering approach

Fig. 6 Automatic extraction of correspondences.

Fig. 7 Different restoration results that can be seen in Video 2 (MOV, 190 MB) [URL: http://dx.doi.org/10
.1117/1.JEI.XX.XX.XXXXXX.2].(Please note that the large file size may result in a long download time.)

Fig. 5 Manual extraction of correspondences.
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once in the time direction along optical flow trajectories.
We experimentally found that the results converged after 10
spatial iterations. We used this setting as our default value,
which, if desired, can be changed through our user interface.

We denote in the following a sequence of values of a one
color channel along an image row, image column, or optical

flow trajectory as I1; : : : ; IN . We filter this sequence accord-
ing to

EQ-TARGET;temp:intralink-;e003;326;538Jðkþ1Þ
i ¼ Ii þ

P
N
j¼1;j≠i πijJ

ðkÞ
jP

N
j¼1 πij

; Jð0Þi ≔ Ii; (3)

where Ii is the original noisy image, JðkÞi is the filtering result
after k iterations, and πij ∈ ½0;1� is a permeability weight
indicating the level of diffusion or permeability between pix-
els i and j (πij ≈ 1 is interpreted as high permeability). The
permeability between two nonneighboring pixels i and j is
computed as the product of permeabilities between neighbor-
ing pixels that lie on the interval between these pixels, i.e.,
EQ-TARGET;temp:intralink-;e004;326;410

πij ≔

8>><
>>:

1 ∶ i ¼ jQj−1
r¼i πr;rþ1 ∶ i < jQ
i−1
r¼j πr;rþ1 ∶ i > j

: (4)

Note that a small permeability between neighboring pixels
along the way from pixel i to pixel j will lead to a low overall
permeability πij and a low diffusion of pixel JðkÞj into Jðkþ1Þ

i
[see Eqs. (3) and (4)]. This property is exploited for reducing
or even stopping diffusion between certain pixels.

In our adaptive extension of the PGF filter (APGF), we
compute the permeability between neighboring pixels
πr;rþ1 based on a variant of the Lorenzian stopping function
which takes into account the grain noise characteristics. We
essentially allow a stronger diffusion between neighboring
pixels which create small magnitude differences and are
located in an image area with isotropic structure. Diffusion
is gradually reduced in areas which deviate from this
assumption. Hence, the permeability πr;rþ1 between neigh-
boring pixels that have the desired properties is defined by

EQ-TARGET;temp:intralink-;e005;326;177πr;rþ1 ≔
�
1þ

���� Īr − Īrþ1

ρrγ

����
α
�−1

; (5)

where Īr indicates the gray value of I, α is a shape parameter,
and γ is a scaling parameter. Note that partial derivatives of
magnitudes greater than γ are mapped to permeability
weights πr;rþ1 that are smaller than 0.5 (for ρr ¼ 1). In
addition, the content-adaptive weight factor ρr ∈ ½0; 1�
reduces the permeability if the local image neighborhood

Fig. 9 Energy spectral density of a patch of the sky region of Fig. 8.

Fig. 10 Distribution of derivative magnitudes.

Fig. 8 Original film scan showing film grain in the sky and face region.
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is anisotropic. This is achieved by penalizing the deviation
between the standard deviations in x- and y-directions, which
are computed locally around pixel r, according to

EQ-TARGET;temp:intralink-;e006;63;471ρr ≔ e−λjσxðrÞ−σyðrÞj; (6)

where the parameter λ is used to adjust the sensitivity of the
weight factor ρr to the level of deviation between the stan-
dard deviations σx and σy. The parameter ρr is computed
according to Eq. (6) only if image rows or columns are
filtered. In the case of filtering in the time direction, we
use ρr ¼ 1.

Hence, the permeability weights are computed in such a
way that a strong spatial diffusion is only achieved if partial
derivatives have a magnitude smaller than γ and the local
image neighborhood is isotropic. If these conditions are
not met then the permeability πr;rþ1 is gradually reduced
because Īr − Īrþ1 becomes large and ρr becomes small.

4.2.3 Results

Our APGF method has three parameters: α, γ, and λ. In all
filtering results shown in this paper, we use α ¼ 0.5 and
λ ¼ 0.5. We select the scaling parameter γ by inspecting
the distribution of partial derivatives in an image patch
that contains a uniformly colored background (like the
sky in Fig. 8), and visually test the impact of different γ
parameters on the visual quality by selecting them from
the range of the largest partial derivatives.

For temporal filtering, APGF requires optical flow as
input, which we computed using the algorithm by Zimmer
et al.33 This method is quite robust against artifacts such as
scratches and blotches. It further provides a smoothness
parameter that can be increased in case such artifacts are
evident.

In Fig. 11, we show grain reduction results achieved with
PGF and APGF, where both methods use the same α and γ
parameters. Note that PGF does not use a content-adaptive
weight factor ρr, which is equivalent to using APGF with
λ ¼ 0. We observe that APGF provides a better image fidel-
ity in anisotropic low gradient regions, such as the mountains

and flowers of Fig. 11(a) and the texture of the scarf and the
settlement in the background of Fig. 11(d).

Figure 12 (Video 3) shows space-only and space-time fil-
tering using APGF. It clearly shows the advantages of the
spatiotemporal approach regarding temporal stability and
smoothness, as well as overall quality. Figure 13 (Video 4)
shows APGF with the previous state-of-the-art

Fig. 11 Degraining results. (a) and (d) two input frames from “Heidi,” (b) and (e) the results of applying
PGF,28 and (c) and (f) the results of applying APGF. APGF provides a better fidelity in comparison to PGF
in anisotropic low gradient regions (edges, ridges, texture), while it shows similar fidelity in remaining
regions.

Fig. 12 Comparison of space-only and space-time filtering with
APGF. Video 3 (MP4, 283 MB) [URL: http://dx.doi.org/10.1117/1.
JEI.XX.XX.XXXXXX.3].(Please note that the large file size may result
in a long download time.)

Fig. 13 Comparison between the (a) method of Lang et al.27

(FeatureFlow) and (b) APGF. Video 4 (MP4, 30 MB) [URL: http://
dx.doi.org/10.1117/1.JEI.XX.XX.XXXXXX.4].(Please note that the
large file size may result in a long download time.)
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spatiotemporal approach presented by Lang et al.27 Both
methods perform similarly in terms of grain reduction and
temporal stability, whereas APGF preserves fine image
details, structures, edges, textures, etc., much better.

4.3 Contrast Enhancement
Contrast enhancement is another basic image/video process-
ing operation and as such has also been widely explored.
However, as there is typically no reference or original
image information, tuning of these algorithms becomes an
arbitrary operation. In film restoration, however, given our
framework, a reference might be available. This is in cases
where both a positive and a negative are available, and the
conservator could decide to combine information from both
sources. The positive may have lost contrast due to degrada-
tion, while still comprising the intended color grading infor-
mation. The negative might be better preserved in terms of
contrast, while lacking color grading.

In such a case, contrast transfer could be applied from the
negative to the positive as shown in Fig. 14 and defined by
the following equation:

EQ-TARGET;temp:intralink-;e007;63;517L 0
P ¼ LP þ βDLN

; (7)

where L 0
P and LP are the output and input luminance chan-

nels of the positive, DLN
is the detail luminance layer

extracted from the negative, and β is a weighting parameter
used to control the amount of contrast transfer. Figure 15
shows results of contrast transfer for varying β.

Two nontrivial tasks have to be solved to perform such
contrast transfer, i.e., registration and detail extraction.
Registration is challenging as negative and positive are by
nature very different images (see Fig. 14). Furthermore, in
a restoration scenario, both have been affected by different
degradations that even after initial restoration lead to differ-
ent image characteristics. In contrast, one of these differences
is in fact the one that we want to explore here. Finally, both
sequences were scanned from different film reels. Effects
like shrinking may have affected both reels in different
ways. Therefore, scanned historical film material is often
temporally very unstable, i.e., jerky, warped, etc. Some of
our examples exhibit such degradations. Stable alignment
of two such different and very differently imperfect sequen-
ces is thus a challenging task. We experimented with various

alignment approaches. SURF features34 combined with a
robust estimator35 assuming an affine model turned out to
provide very good results in most of our experiments. The
implementations of SURF and the registration estimator
used in this work are the ones provided by MATLAB with
the functions detectSURFFeatures and estimateGeometric-
Transform. For the results, we mostly used the default
parameters. For some images (1 out of 50 on average), inter-
active correction was necessary, as for contrast transfer
almost perfect alignment is essential (see Fig. 14).

For extraction of the detail layer, we build on the very
recent work by Aydin et al.28 on temporally consistent video
tone mapping. As part of their framework, they describe an
algorithm for temporally coherent separation of a video
sequence into a low-contrast base layer and a detail layer
that captures all high-contrast information. The core of
that approach is the same PGF algorithm that we also use
for denoising (see Sec. 4.2).

The detail layer DI of an image I is defined by the
equation

EQ-TARGET;temp:intralink-;e008;326;280DI ¼ I − BI; (8)

where the base layer BI is computed as a low-pass version of
the input image. It is worth noting that Eq. (8) differs from
the common formulation where the detail layer is obtained
by a subtraction in the log domain. Such a subtraction of a
low-pass image may lead to halos and ringing artifacts as
illustrated for a 1-D signal in Fig. 16, if a nonedge-aware
filter is applied. Careful design of an edge-aware low-pass
filter can avoid this as shown in Aydın et al.28 Figure 17
shows the separation of an image into a base layer and a
detail layer defined by Eq. (8).

Figure 18 shows the results of contrast enhancements
using different low-pass filters for base layer generation.
The nonedge-aware Gaussian filter produces halos on strong
edges. The edge-aware WLS filter36 and our PGF provide
much better results. WLS is a state-of-the-art edge-aware fil-
ter, known to provide excellent results. The advantages of
our approach over WLS are that WLS is computationallyFig. 14 Contrast transfer pipeline.

Fig. 15 Results of contrast transfer for increasing β.
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very expensive and not temporally consistent. As shown in
Aydın et al.,28 PGF closely approximates WLS, while pro-
viding temporal consistency and requiring significantly less
computation. All results reported in this paper and video
were generated by automatic detail layer extraction using
this algorithm.

5 Results
Our algorithms were developed and tested in the context of a
real film restoration project called DIASTOR in cooperation
with a film archive, a national broadcaster, and a post-
production house. We selected sequences from two historical
films Heidi and Kummerbuben. For all test sequences, we
had mechanically/physically restored and scanned versions
of negative and positive available as files (observations
ND and PD).

Heidi is a production from 1978 on Kodak Eastman film
stock in 16 mm. As such it was produced for TV broadcast
only and not for theatrical release. It features a diverse variety
of shots, including landscapes, dialogs, closeups, etc., with

very cinematic camera work. The positive exhibits severe
degradations in various classical ways (color fading, noise,
loss of contrast, temporal instability, scratches, dirt, etc.).
The negative is generally in better condition.

Kummerbuben is a production from 1968 also on Kodak
Eastman, but in 35 mm for theatrical release. The available
material is in better condition compared to Heidi, while still
exhibiting all classical degradations. We selected a shot from
Kummerbuben to illustrate the variety of different input
material one is confronted with in film restoration, which
contains significant camera and object motion.

Figure 19 shows selected results of our restoration pipe-
line for the positive (f−1�P ). The corresponding video results
are available in Fig. 7 (Video 2). Severe color degradations
were corrected using our efficient approach based on key-
frames and color transformation estimation. Next, APGF
was used for denoising, preserving image textures/details/
structures and film look, while reducing extensive noise
and grain. Finally, contrast was enhanced transferring details
from the available negatives. We deliberately did not apply
tools for scratch or dirt removal or other classical restoration
tools, in order to show only the effect of our advanced tools
and how the tools are robust against these artifacts. We must
recognize that our tools can be affected by artifacts such as
intensity flicker, blotches, and scratches. The result of our
methods depends on the number and size of the blotches
and scratches and also on the amplitude of the intensity
flicker. If these artifacts are preponderant, we recommend
removing them before applying our methods. We also
decided not to crop the results to better illustrate the
difficulties for alignment with such material, see especially
the sequence with the two ladies walking uphill
(WalkingLadies). The final results provide a decent quality,
sufficient for reuse, while retaining the vintage character of
the footage. Finally, it is the task of the conservator to create
a faithful and appealing output, using the best available tools

Fig. 16 Detail layer computation using edge-aware versus nonedge-aware filtering. Halos and ringing
artifacts may occur, if nonedge-aware filtering is applied for base layer computation.

Fig. 17 Base and detail layer decomposition.
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in an appropriate way. As our tools apply and extend the
latest state-of-the-art in visual computing, they certainly
expand possibilities and reduce manual efforts.

In a second set of experiments, we illustrate the frame-
work idea (Fig. 1). If the negative ND is available and in
better condition, it makes more sense to apply the tools
on that material (f−1�N ). The positive PD may only be
restored for a couple of keyframes, mainly focusing on
color. The algorithm from Sec. 4.1 can then be used to
get estimates for color grading f�G per keyframe for asso-
ciated sequences. These estimates can then be used to
regrade a new positive sequence P�

O from the restored neg-
ative sequence N�

O. The advantage of such an approach is
that only selected keyframes from PD are necessary only as
a color reference. Heavily degraded images can be avoided.
Figure 20 shows examples of this approach to results of
the positive pipeline. Corresponding videos are available
in Fig. 7 (Video 2). The positive of WalkingLadies exhibits
severe degradations toward the end of the sequence, as
shown in the last two examples in Fig. 20 (green line
close to the left border in third image, destruction across
the whole fourth image). It would be very cumbersome
to repair these degradations. The negative on the other
hand is not affected by these destructions and can, there-
fore, be much more easily restored. Furthermore, the

positive is temporally very unstable for this example,
whereas the negative does not need much stabilization.
These examples illustrate that film restoration is unique
for every project. Especially for very old historical material,
it is an interactive work similar to other types of art resto-
ration. Awareness of the framework paired with powerful
related tools will lead to the best possible results.

Regarding the computational times, the color restoration
tool can potentially run in nearly real time, since each pixel is
processed independently. The degraining filter does not run
in real time because it temporally filters the video based on
the optical flow. For the computation of the optical flow, we
use the method by Zimmer et al.,33 which computes high-
quality flows and requires about 10 s for a full HD frame.
Faster optical flow methods can be used at the cost of quality.
Once the optical flow is computed, the filter requires about
3.5 s to filter a full HD frame using a spatial neighborhood of
21 pixels and a temporal neighborhood of 11 frames. Also,
the contrast enhancement tool is not real time since it uses the
PGF filter for the computation of the base layer that is similar
to the degraining filter and it requires a comparable computa-
tional time. Once the base layer is computed, the contrast
transfer tool requires three additional seconds for the regis-
tration, the computation of the detail layer, and the addition
of it to the positive frame.

Fig. 18 Contrast enhancement results obtained with different filters for base layer extraction.
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Fig. 20 Comparison of the results of the positive and the negative restoration pipeline.

Fig. 19 Results after different steps of the pipeline for positive film restoration.
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6 Conclusions
In this paper, we addressed the problem of digital film resto-
ration which we model as an estimation process given noisy
and incomplete observations. We presented three different
restoration tools that tackle specific imperfections of histori-
cal film material. First, we adapted a color transform
approach for our specific needs and extended it by an auto-
matic correspondence selection method, which in most cases
significantly reduces user interaction. Next, we extended a
very recent and very powerful noise reduction algorithm
for our specific application by adding an adaptive component
(APGF) tailored to grain noise in historic film. Finally, a con-
trast transfer method was introduced that extends a very
recent spatiotemporal filtering algorithm to enhance the con-
trast of a positive using information from a corresponding
negative. All three algorithms extend recent advances in vis-
ual computing and adapt them for specific tasks in digital
film restoration. As such, they expand the toolbox from
which a conservator can choose to handle a given restoration
project at hand. Our results illustrate the power and quality of
the tools on realistic examples from film restoration projects.
We also illustrated the power of framework aspects in exam-
ples combining information from both positive and negative
to create optimum final results.

In the end, film restoration will remain a very interactive
art, where experience and intuition of the conservator play a
decisive role, especially for very old and heavily degraded
material. Improvements of tools may continue as long as
progress in visual computing continues. The digital film
restoration framework remains as a reference for involved
processes and components.
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