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Abstract
Aspect ratio retargeting for streaming video has actively been researched in the past years. While the mobile mar-
ket with its huge diversity of screen formats is one of the most promising application areas, no existing algorithm
is efficient enough to be embedded in such devices. In this work, we devise an efficient video retargeting algorithm
by following an algorithm-architecture co-design approach and we present the first FPGA implementation that
is able to retarget full HD 1080p video at up to 60 frames per second. We furthermore show that our algorithm
can be implemented on embedded processors at interactive framerates. Our hardware architecture only requires
a modest amount of hardware resources, and is portable to a dedicated ASIC for the use in consumer electronic
devices such as displays or mobile phones.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Content-aware Video
Processing—Non-linear video deformation

1. Introduction

Today’s display landscape is composed of an abundance of
different aspect ratios, whereas video content is typically
produced for a specific target aspect ratio. While TV and cin-
ema formats are fairly standardized, the widespread adop-
tion of hand-held smart-phones and tablet PCs leads to huge
aspect ratio differences compared to the original content. In
order to cope with the different output formats, traditional
methods such as linear scaling or letter-boxing (adding black
bars) are often employed to retarget video content. How-
ever, recent user studies [STR∗05, KSVC07, RGSS10] have
shown that linear downscaling leads to perceptually unpleas-
ant viewing experiences due to the overall image distortion.
Letterboxing on the other hand does not distort the image
content, but reduces the usable display area which can be
problematic especially for the small displays used in hand-
held devices.

In order to alleviate this problem, many feature-
preserving non-linear rescaling methods have been proposed
[WGCO07,RSA08,YSWL08,KLHG09]. Instead of globally
distorting the image, these rescaling methods locally hide
the distortions in less important regions, whereas the aspect
ratio of visually important features is preserved. A recent
user study [RGSS10] compared various of these state-of-the-

art retargeting approaches to linear scaling and image crop-
ping, and concluded that linear scaling was always perceived
worst. Even more interestingly, some of the advanced non-
linear algorithms [KLHG09, RSA09] were often perceived
superior to cropping, even though non-linear retargeting al-
gorithms almost always introduce distortion artifacts.

So far, no computationally efficient solution for video re-
targeting in end-user devices has been presented. We there-
fore present a retargeting algorithm based on a modified ver-
sion of [KLHG09] to achieve quality results at much lower
computational complexity. Based on the new algorithm, we
describe an efficient hardware architecture for mobile de-
vices and validate this architecture using a prototype FPGA
implementation. We show that our implementation is able
to retarget HD input videos in real-time, at modest hardware
cost and at low clock speeds. We furthermore present a com-
parison to a mobile general-purpose embedded processing
unit.

Contributions. To summarize, the contributions of this pa-
per are as follows. First, we present a hardware-efficient,
real-time video retargeting algorithm. Many algorithmic de-
sign decisions where influenced by co-designing for a corre-
sponding hardware architecture. We compare the results of
our algorithm to previous work, and show that the quality is
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similar to existing approaches, however, at much lower com-
putational complexity. Second, we present the first dedicated
hardware implementation of video retargeting. The FPGA
implementation is highly efficient in terms of resource us-
age and achieves 1080p60 retargeting performance.

2. Related Work

Image retargeting has been extensively researched in recent
years, and Rubinstein et al. [RGSS10] present an excellent
comparative study on a broad body of previous work. In this
section, we will focus on video retargeting.

Video Cube Based Algorithms. Video retargeting algo-
rithms can be separated into two classes. The first class of
algorithms operates on a video cube, i.e, a large number of
frames simultaneously, which needs to be processed offline
on high-end computing platforms. While algorithms such
as [WFS∗09, WLSL10, YSWL11] achieve high-quality re-
targeting results, they usually require huge computational
resources as well as a huge amount of memory and memory
bandwidth. The algorithms cannot be applied to streaming
video, and are therefore not suited for real-time retargeting
on resource-limited devices.

Streaming Video Based Algorithms. The second class of
algorithms are streaming video based approaches that do not
operate on 3D video cubes directly, but rather on individual
frames with inter-frame consistency constraints. One draw-
back of such approaches are temporal artifacts due to the
limited amount of available future video frames. Our work
is based on the streaming video retargeting system of Krae-
henbuehl et al. [KLHG09]. In their system, the input video is
analyzed to detect spatio-temporal saliency and other visu-
ally important cues. The analysis results are then used to for-
mulate a global energy minimization to find the optimal re-
targeting transformation grid. The global energy minimiza-
tion furthermore includes a temporal consistence constraint,
that smoothes the deformation grid using the previous de-
formation. Unfortunately, the energy minimization problem
is very intense in terms of computations and memory band-
width, which is not suited for embedded devices. The au-
thors report performance of up to 10 frames per seconds for
720p video, however using a high-end CPU/GPU computing
system which has several orders of magnitude more com-
putational resources and memory bandwidth than small FP-
GAs/ASICs and embedded processors.

The approach from [SWDL09] computes the visual im-
portance map offline and calculates the resampling grid on
the target device. Along similar lines, [ZHM08] precom-
putes a shrinkability map, which can directly be applied on
the target device without much overhead. While both ap-
proaches relieve the target device of the retargeting com-
putation, both will only work in the presence of precom-
puted meta-data. The recent work by Kim et al. [KJJK11]
uses columns that are adaptively grouped in stripes, which
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Figure 1: Overview of the video retargeting algorithm. Orig-
inal image from [RGSS10].

are then scaled independently in the horizontal direction.
However, their approach is computationally intensive, and
not suited for hardware implementations. In summary, none
of the current streaming video approaches can achieve real-
time retargeting of HD video.

Hardware Architectures. Bae et al. [BCP∗11] present an
FPGA implementation to determine visual saliency for gaze
prediction. However, their architecture only supports 4M
pixels/second and cannot be extended to high-definition
video easily. Greisen et al. [GSH∗12] present a general-
purpose video rendering architecture based on elliptical-
weighted-average splatting. We adapt a simplified version
of the rendering architecture as one component in this work.
To the best of our knowledge, no hardware architecture for
video retargeting has been reported yet.

3. Video Retargeting Algorithm

Our algorithm consists of three steps. As a first step, a visual
saliency map is computed. In a second step, two resampling
patterns both in horizontal and vertical direction are com-
puted based on the saliency information. As a result, areas
of low importance are scaled non-uniformly whereas the as-
pect ratio of more important areas is kept uniform. In a last
step, the video stream is warped according to the resampling
pattern, and finally streamed out. To achieve temporal sta-
bility, we filter the resampling patterns over time. Figure 1
summarizes the overall algorithm.

Our algorithm combines and modifies techniques from
previous works. At its core, we separate the 2D warp com-
putation of [KLHG09, PWS12] into two separate 1D warp
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problems. Similar to [PWS12], this separation leads to a rec-
tilinear retargeting mesh, as opposed to arbitrary transforma-
tions [KLHG09].

3.1. 2D Saliency Estimation

Similar to previous work, we compute a low-level saliency
map to determine the visually important parts of the video.
As a first step, the input images are down-sampled before
computing the actual saliency. While the saliency could be
computed at higher input resolutions, this usually does not
add substantial information (see [JDT10]).

Our estimation algorithm is based on [GMZ08] and shows
a good trade-off between computational complexity and esti-
mation quality. The original algorithm relies on the observa-
tion that visual saliency can be obtained from the phase spec-
trum of the video sequence: the phase carries information on
where discernible objects are located in an image [GW08]
The phase spectrum of a video sequence (RGB with mo-
tion, RGBm) is extracted using the quaternion Fourier trans-
form (QFT). First, the RGBm information is transformed
to a quaternion representation (complex number with four
components), and then transformed to frequency space using
a QFT. In the frequency domain, the phase information is ex-
tracted by normalizing each quaternion with its magnitude.
An inverse QFT transforms the phase information back into
the image domain. Note that the QFT can efficiently be cal-
culated by two separate 2D fast Fourier transforms (FFTs).

We compute the 2D FFT by first performing a 1D FFT
on the rows, followed by a 1D FFT on the columns. Un-
fortunately, this operation corresponds to a matrix transpo-
sition, which can be costly in terms of memory bandwidth
– especially if the 2D array does not fit entirely in the cache
[CS00]. Therefore, we modify the original algorithm to com-
pute a block-wise saliency. More specifically, we partition
the input image into N sub-images. Each of the sub-images
spans the full width of the downsampled input image, but at
only 1

N of the vertical resolution. Then, the saliency com-
putation can be performed on all sub-images individually,
avoiding the need to transpose the full image data. The fac-
tor N can be chosen depending on the on-chip cache size of
the target architecture.

The naive block-wise saliency decomposition leads to ar-
tifacts at the block boundaries, as shown in Figure 2b. We
mitigate this problem by overlapping the individual blocks
by 25% on each side, which greatly reduces the artifacts
(Figure 2c). In contrast to the global QFT, all blocks are nor-
malized individually and therefore the overall saliency scale
is not preserved (e.g. top part of Figure 2c). We normalize
each block by its mean frequency magnitude to reduce these
scaling errors (Figure 2d). Similar to previous work, we ap-
ply a final spatial Gauss blur to remove remove high fre-
quency noise from the saliency result.

(a) (b)

(c)

(e) (f) (g)

(d)

Figure 2: Saliency estimation algorithm: (a) the original
QFT results as proposed in [GMZ08], (b) our block saliency
approach, (c) our block saliency approach with overlapping
blocks, and (d) our block saliency approach with overlap-
ping blocks and per block scaling. The last row contains
the input image (from [RGSS10]), and the filtered output
saliency proposed by [GMZ08] (middle), and our approach
(right), corresponding to (d).

3.2. Rectilinear Transformation Computation

In a second step, our algorithm computes a non-linear defor-
mation based on the saliency map described in the previous
section.

3.2.1. Saliency Projection

The 2D saliency is projected separately onto a horizontal and
a vertical 1D saliency profile, in order to determine the im-
portance of each row and column. As design goal for the 1D
projection operator, we strive to achieve high saliency values
even if there is only one small but very salient object in a
given row or column. As further design choice, adding more
salient objects should not increase the saliency compared to
just one salient object. We therefore propose a block-wise
mean computation of the saliency. To compute the horizon-
tal saliency, each row of the input 2D saliency S(x,y) is par-
titioned into contiguous blocks BH = {B(i)H }. For each of
these blocks, the mean saliency value is computed, and the
maximum of all mean values is used as 1D projection

SH(x) = max
B(i)

H

 ∑
y∈B(i)

H

S(x,y)/‖B(i)H ‖

 , (1)
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where SH(x) represents the horizontal saliency profile, and
the block size ‖B(i)H ‖ denotes the number of pixels contained

in B(i)H . The vertical saliency profile SV(y) is computed ac-
cordingly.

We add a perceptually motivated center bias to the 1D
saliency profiles. As shown by the user studies based on real
eye tracking [JEDT09], human observers mostly focus on
the center region of images and video. The center bias there-
fore modifies the input saliency to reduce the saliency near
the image borders, while retaining the saliency near the cen-
ter. Since the center bias is perceptually motivated and there
is no ideal form, we choose a simple piece-wise linear func-
tion in our implementation. The bias reduces the saliency
profiles towards the endings of the profiles and keeps the
middle 60% constant.

3.2.2. Non-linear Scale Computation

The next step of our algorithm computes the mapping from
the 1D saliency profiles to a rectilinear resampling pattern.
In order to retain the aspect ratio in important regions, we
seek to compute a scaling vector that equals 1 in such ar-
eas, both in horizontal and vertical direction. The visually
less important regions should have a scaling value < 1 in the
case of minifications, and a value > 1 in the case of magnifi-
cations. Furthermore, the sum of all elements of the scaling
vector should match the requested target size. In the follow-
ing, we consider retargeting an input image of dimensions
W ×H to a target image of dimensions W ′×H′. Due to the
downscaling for the saliency computation, both widths and
heights need to be downscaled accordingly for this compu-
tation.

Minification (W’<W, H’<H). We seek to find a scaling vec-
tor that maps important regions to 1 and scales unimportant
areas by values < 1. Similar to [ZHM08], the following map-
ping fulfills these requirements

f min
k (α) = min(αSH(k),1), s.t.

W

∑
k=1

f min
k (α) =W ′, (2)

where f min
k (α) describes the horizontal scaling vector, and

the vertical scaling vector is computed accordingly. Thus,
our algorithm needs to determine a value α that fulfills the
above nonlinear optimization problem. Since f min

k (α) is a
monotonically increasing function, we can use a simple it-
erative approach that will always converge to the exact so-
lution. A binary search quickly delivers the solution for a
given precision requirement. In our setup, 10 to 15 iterations
are necessary to obtain a precision threshold of 10−4 pixels.

Magnification (W’>W, H’>H). For magnifying transforma-
tions, we need to modify the scaling vector to allow rescal-
ing values larger than 1 for less important image regions. Vi-
sually important regions should be kept equal to one. One
way of achieving this is by mirroring the scaling vector
function (2) around the horizontal axis f min

k (α) = 1, which

leads to f mag
k (α) = (2− f min

k (α)). Substituting this expres-
sion into (2) yields:

f mag
k (α) = 2−min(αSH(k),1), s.t.

W

∑
k=1

f mag
k (α) =W ′,

(3)

where the vertical scaling vector is computed accordingly.
Note, that (3) only supports individual pixel magnifications
up to a scale of 2, but can easily be adapted for cases with
larger aspect ratio differences.

Combination of Horizontal and Vertical Resampling. Our
algorithm independently computes the horizontal and verti-
cal scale vectors to match the output resolution W ′ and H′,
respectively. To couple the horizontal and vertical scale com-
putation, we propose to solve a different problem with target
image size W ′′×H′′ such that W ′′/H′′ = W ′/H′. This al-
lows for reformulating the retargeting problem with an addi-
tional degree of freedom (DoF) to control the distribution of
the non-linear distortions to the horizontal and vertical direc-
tions, while keeping the target aspect ratio. The DoF could
potentially be obtained with a coupled optimization; how-
ever, we found that this optimization often leads to unstable
results. We therefore leave the additional DoF as design pa-
rameter. Note that this parameter is kept constant for all our
experiments.

3.2.3. Spatio-temporal Filtering

The scaling vectors (2), (3) obtained in the previous sec-
tion are directly related to the input saliency map. There-
fore, high-frequency and low-frequency fluctuations in the
saliency will directly lead to spatio-temporal fluctuations in
the output video. In contrast to previous work, which often
uses regularization terms for a non-linear optimization, we
directly enforce regularization by applying post filters after
the non-linear scale computation.

First, high-frequency content is removed using an acausal
finite impulse response (aFIR) filter. We collect the horizon-
tal and vertical scaling vectors over time (e.g., 10 frames),
and assemble each of them in a separate matrix. We then
apply a 2D smoothing filter on the spatio-temporal scaling
matrices. The filter is acausal in the time domain in order
to consider future changes in the scaling vectors. Different
aFIR filters such as bilateral filters and Gaussian filters have
been evaluated, and we found that all tested filters provide
similar output results.

In order to be able to filter low-frequency content effi-
ciently in hardware, we use an infinite impulse response
(IIR) filter in a second step. The advantage of the IIR filter is
that the cut-off frequency is not limited by the filter length,
but by the filter coefficients. We use a one-tap IIR filter

sout[k] = asout[k−1]+ (1−a)sin[k], 0≤ a≤ 1, (4)

where k corresponds to the time index. The filter coefficient
a is largely dependent on the type of scene, and should be
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adapted to the video content. In the current form, we set
a manually (a ≈ 0.9 for the video sequences, the ’cow-
boy’ scene has a higher value), but the coefficient might be
adapted automatically using image analysis tools to detect
e.g. scene cuts, global camera motions or static backgrounds.
For instance, scene cuts could be used to clear the IIR filter
(a = 0); low global motion should result in a large a, large
global motion in a smaller a.

Linear upsampling. Before generating the resampling grid,
the horizontal and vertical scaling vectors need to be linearly
upsampled to achieve the actual target resolution.

3.3. EWA Rendering

The filtered and upsampled scaling vectors from the previ-
ous section are first converted to a resampling grid using
a cumulative sum. In order to retarget the input image, we
choose an elliptical weighted average (EWA) [GSH∗12] re-
sampling algorithm which implicitly handles anti-aliasing
very efficiently. In contrast to the arbitrary deformations al-
lowed in [GSH∗12], our algorithm generates rectilinear de-
formations which allows for various simplifications. In the
following, we will briefly summarize the original EWA al-
gorithm, before listing our simplifications.

The EWA framework performs image resampling using
forward mapping. In a first step, a continuous input signal
is reconstructed using Gaussian kernels as interpolation fil-
ters. More specifically, each input pixel wk is represented
by a circular 2D Gaussian reconstruction kernel with covari-
ance matrix Vi = σ

2
i I2, where σ

2
i denotes the variance of the

kernel and I2 denotes the 2-by-2 identity matrix. The recon-
struction kernels are then transformed to target space, and
low-pass filtered using a circular 2D Gaussian anti-aliasing
kernel with covariance matrix Va = σ

2
aI2. Finally, all ker-

nels are evaluated and accumulated at the output pixel loca-
tions. The resampling equation of EWA splatting is defined
as [ZPBG02]:

fEWA(x) = ∑
k∈Ds

wk|Jk|
2π|Σ|1/2

e−
1
2 (x−m(uk))

T
Σ
−1(x−m(uk)), (5)

where uk is the spatial position of the pixel with index k in
the source image Ds, and wk denotes the RGB value of the
pixel. The image transformation function m(u) is defined by
the resampling grid, and the Jacobian Jk denotes the locally
affine approximation of m(u). The covariance matrix of the
target kernel is Σ = JT

k ViJk +Va .

In our application, Jk can be efficiently determined by
using a Sobel filter evaluated on the output grid positions.
Also, every input kernel will only be transformed by an axis-
aligned non-uniform scaling matrix followed by a transla-
tion. Therefore, the off-diagonal elements of Jk are always
zero. This considerably simplifies the overall method, since
Σ = σ

2
i J2

k +σ
2
a is diagonal. For the selection of σi and σa we

use the adaptive anti-aliasing approach of [GSH∗12], which

replaces Σ with Σ̃

Σ̃(n,n) = max(σ2
a,σ

2
i J2

k (n,n)), n = 1,2 (6)

with σa = σi ≈ 0.39.

Thus, the final (simplified) adaptive EWA rendering ex-
pression reformulates to

fEWA(x) = ∑
k∈Ds

cke−
1
2 (d

2
k,1/Σ1,1+d2

k,2/Σ2,2), (7)

with dk,i := x(i)−m(uk(i)), and

ck = wk
|Jk|

2π
√
|Σ̃|

,

ck = wk
min(1,Jk(1,1))min(1,Jk(2,2))

2πσ2
i

. (8)

4. Hardware Architecture

In the following, we describe an efficient hardware archi-
tecture for the algorithm proposed in the previous section.
The architecture is designed for real-time performance of
1080p60 video (1920x1080 resolution at 60 frames per sec-
ond), and is very efficient in terms of hardware resources.
Figure 3 shows a system-level overview of our retarget-
ing architecture. The architecture is partitioned into device-
dependent infrastructure blocks and device-independent
core functionality. All blocks are operating in a pipelined
fashion, i.e. all parts are able to operate in parallel on pos-
sibly different images. The architecture could easily be real-
ized with either an FPGA or ASIC implementation.

The retargeting core is divided into saliency estimation,
scale estimation, and rendering. The saliency estimation
block receives two input video streams from the external
frame buffer, where the first video stream contains the cur-
rent frame and the second stream contains the previous
frame. Then, the spatio-temporal QFT is computed using
the two input frames, and the resulting saliency values are
blurred for smooth results. As a next step, the scale estima-
tion unit computes the non-linear scale based on the maxi-
mum block-mean saliency values, and sends the temporally
filtered and upsampled retargeting patterns to the rendering
block. As a last step, the rendering block performs EWA
sampling on the full resolution input stream – note, that this
input stream is delayed by multiple frames, due to the laten-
cies of the previous computations as well as the acausal fil-
ter. The retargeted video is then streamed to a standard video
output (DVI/HDMI).

4.1. Saliency Estimation

Figure 4 provides a simplified block diagram that shows the
main components of the datapath. The quaternion transfor-
mation is realized using a simple arithmetic datapath, before
sending the data to the FFT cores. In its original formu-
lation, the QFT algorithm requires one quaternion FT and
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Figure 4: Block diagram of saliency estimation unit. See
Figure 9 for an explanation of the symbols.

one inverse quaternion FT, which can be realized using four
1D FFTs and four 1D inverse FFTs (see Section 3.1). Since
the the saliency is computed on a low-resolution image, the
necessary data rate of the FFTs is low compared to the rest
of the system. This makes it possible to use only two 1D
FFT cores, which evaluate the eight required FFTs sequen-
tially in a time-shared manner. An on-chip RAM buffer is
used as temporary FFT storage and for transposing and bit-
interleaving the 1D Fourier outputs. The quaternion norm
and phase extraction are realized using a simple arithmetic
datapath.

The resulting saliency map is spatially low pass filtered,
using a 2D Gaussian kernel with a variance 5.8, similar to
the initially proposed QFT algorithm. A direct implemen-

tation of the 2D Gaussian would require a minimal filter
size of 34 pixels, which in turn would require a consider-
able amount of resources: 342 multiplications and log2(342)
additions for each saliency value. We apply two algorithmic
transformations that greatly reduce the resource footprint:
first, we exploit the separable filter property of the 2D Gaus-
sian, and perform two 1D Gaussian filters instead. Second,
we approximate the 1D Gaussian by a series of 9-pixel wide
box filters, which converge to a Gaussian (central limit the-
orem). The box filters are efficiently realized with a 9-tap
accumulation delay line followed by a subtraction. In prac-
tice, four box filters result in a reasonable approximation of
a 1D Gaussian with variance 5.8.

The horizontally filtered image is stored in an intermedi-
ate Gauss storage buffer before filtering in the vertical di-
mension. We choose a buffer of 32 downsampled saliency
lines, in order to support filtering over two consecutive
blocks. The final filtered values are then normalized for each
block by the sum of previously computed absolute quater-
nion values.

4.2. Resampling Grid Generation

A simplified block diagram of the resampling grid calcula-
tion is given in Figure 5. In a first step, the incoming horizon-
tal and vertical saliency values are accumulated in the max
block-mean unit. Once a block boundary is reached, the ac-
cumulated value is compared to the current maximum, and
the accumulators are cleared. Two output buffers store the
current saliency vectors. An additional intermediate buffer is
required to perform the vertical saliency accumulation, since
the input saliency is streamed horizontally. The final saliency
vectors are ready as soon as the last saliency value of a frame
is received by the mean max block.

As soon as the saliency vectors are ready, the non-linear
scaling block starts its binary search for the non-linear scale
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factor, both for the horizontal and vertical vectors. The block
works in an iterative manner and stops as soon as the prede-
fined error threshold

W

∑
i

fk(α)−W ′ ≤ 10−4,

is reached.The computation time of this block is negligi-
bly compared to the the other blocks, since convergence is
reached after 10 to 15 iterations and each iteration requires
at most 512 cycles, i.e., the dimensions of the downsampled
saliency image.

After the non-linear scaling vectors are determined, the
vectors are stored in a temporary buffer. The horizontal and
vertical scaling vectors are then filtered with a 1D Gaus-
sian each, where the implementation of the Gaussian filter
is equivalent to the ones used for the saliency computation.
Finally, the filtered scaling vectors are linearly upsampled to
the target output resolution.

4.3. EWA Rendering

Figure 6 shows a block diagram of the rendering unit. The
datapath is very similar to [GSH∗12], although most of the
matrix operations simplify to scalar operations due to ab-
sence of off-diagonal terms. Furthermore, the necessary size
for the accumulation buffer is much smaller due to the reg-
ular access pattern, and only a couple of lines need to be
buffered in the on-chip SRAM blocks.

As a first step, the transformation grid is computed by
a cumulative sum with a simple accumulator. Then, in the
EWA setup stage, a 1D Sobel filter is used to compute the
Jacobian, and the inverted diagonal terms of the covariance
matrix are computed subsequently. A bounding box stepper
iterates over all pixels within each Gaussians’ bounding box,
similar to [GSH∗12]. The resulting sampling locations are
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Figure 6: Block diagram of the adaptive EWA rendering
unit. See Figure 9 for an explanation of the symbols.

sent to four rasterizers operating in parallel. The exponential
function is realized as look-up table, using linear interpola-
tion between the stored sampling points. Finally, the color
channels are multiplied with the normalized filter value, and
are then sent to the accumulation buffer.

The accumulation buffers are realized using four sepa-
rate on-chip SRAM components, one for each (even,odd)
- (row,column) combination. This greatly simplifies the as-
signment of sampling coordinates to the individual raster-
izers, and furthermore allows to accumulate four indepen-
dent pixel contributions in parallel. Every buffer access is
realized with a read-accumulate-write operation, and the fi-
nal read-out operation is followed by clearing the respective
data. Due to the interpolating nature of the Gaussian ker-
nels, a final output normalization with the accumulated filter
weight is necessary. The resulting output is streamed directly
to the output video interface.

Since video interfaces usually require cycle-accurate pixel
data output, the external video interface dictates the process-
ing speed. To ensure a constant read-out, the accumulation
buffer is designed to be always almost-full. To avoid over-
flows, the input to the rendering is stalled when the almost-
full threshold is reached, whereas underflows are avoided by
ensuring that the input rate and processing rates are higher
or equal than the output rate.

5. Results and Limitations

We evaluated our architecture in terms of quality, as well as
in terms of a dedicated FPGA implementation and a (simpli-
fied) version on a Tegra 2 embedded processor.

5.1. Quality Assessment

The goal of this work is to provide an efficient retargeting
algorithm that is suitable for hardware integration. While
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Figure 7: Selected examples from the RetargetMe
dataset [RGSS10], compared to related work and lin-
ear stretching and center cropping. Our algorithm is able
to produce similar results at much lower computational
complexity.

we did not strive to outperform other video retargeting algo-
rithms in terms of quality, we are able to achieve results com-
parable to much more complicated retargeting approaches.

We evaluate the results of our algorithm on the Retar-
getMe data set [RGSS10]. Figure 7 shows an excerpt of
the results, the full data set together with video sequences
of our running system are provided as additional mate-
rial. Although we did not perform any user study, the re-
sults of our work are very similar to the top-performing
approaches [KLHG09, PWS12], and it is safe to assume
that our approach would score similarly high. Additionally,
our algorithm fails only in cases in which the methods of
[KLHG09, PWS12] also fail. Such cases occur when the
saliency estimation produces incorrect results, or when cer-
tain geometric structures such as circles or diagonal lines
are present. Due to the streaming nature of our algorithm,
temporal artifacts similar to [KLHG09] can be noticable for
video retargeting.

5.2. FPGA Implementation

The video retargeting architecture is implemented using
VHDL, and is targeted for ALTERA FPGAs (Cyclone
IV/Stratix IV). The employed TERASIC development board
supports DVI/HDMI input and output, and features an ex-
ternal SDRAM component. In addition to the retargeting
core, we implemented an interface to an external SDRAM
device as well as standard-compliant DVI/HDMI receiver
and transmitter. The SDRAM controller is interfaced with
a multi-port interface, in order to arbitrate multiple accesses
from different units to the same physical SDRAM compo-
nent.

Table 1 summarizes the resource utilization of our archi-

Figure 8: Our FPGA prototype, connected to a LCD moni-
tor, and our Tegra 2 prototype.

Table 1: ALTERA FPGA resource utilization, divided into
FPGA logic look-up tables (LUTs), register bits (Regs), on-
chip static block rams (BRAM), and embedded multiply-
accumulate units (DSPs).

LUTs Regs BRAM (bit) DSPs
downsc. 224 180 31K 19
saliency 8466 13391 816K 96
grid 993 562 87K 12
rendering 4071 2731 483K 80
total core 13762 16864 1416K 207
DVI 140 349 0 0
Mem IF. 5297 5169 337K 0
total infr. 5437 5518 337K 0

tecture. The design is very small in terms of logic resources.
We use the available on-chip SRAM blocks quite freely, as
modern FPGAs usually contain an abundance of such re-
sources. For a corresponding ASIC implementation, a con-
siderable amount of the on-chip RAM could be saved by
careful dimensioning of every SRAM component. Further-
more, parts of the on-chip caches such as the saliency blur
cache or the QFT caches could be moved to an external
memory. The buffer of the rendering part might also be re-
duced at the cost of sacrificing rendering quality.

The maximum achievable clock frequency of the retarget-
ing core is 135 Mhz, which is sufficient to achieve 1080p60
real-time performance. Note that a clock of at least 124 MHz
would be necessary to achieve this throughput. The I/O
blocks for DVI and SDRAM accesses run in separate clock
domains, and are decoupled from the core clock. Our design
is easily scalable to higher resolutions and framerates, since
the core functionality could be parallelized to a good degree.

5.3. Tegra 2 Implementation

In order to compare our performance to embedded systems,
a slightly modified version of the retargeting algorithm is
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implemented on a Tegra 2 tablet. The implementation does
not include the temporal filtering, but it features all other
functionality of the hardware architecture. All parts of the
algorithm but the rendering are executed on the ARM CPU,
using one core only. For the rendering, we use the hardware
OpenGL ES 2.0 acceleration with texture-mapped quads.
The quad mesh is generated at the downsampled image res-
olution (512 quads horizontal). Linear upscaling of the warp
is implicitly performed using the quad mesh.

The Tegra 2 tablet is able to retarget 1080p images in
about 520ms. Most of the time is spent in the downsam-
pling operation (49ms), the saliency computation (207ms),
and the rendering block (263ms). Note, that the downsam-
pling operation as well as FFT operation are performed using
OpenCV, which might not be fully optimized for the ARM
architecture. More recent Tegra 3 architectures and multi-
core processing would speed up the algorithm substantially,
however, 1080p60 performance is still challenging.

5.4. Limitations

The quality of our retargeting algorithm mainly depends on
the saliency estimation, similar to previous work. The em-
ployed QFT algorithm performs reasonably well in many
situations, however, future algorithms might show better
performance-quality trade-offs. Another possible extension
could be face detection or other application-specific object
detectors.

Our algorithm can lead to temporally unstable results,
which are noticeable as low-frequency artifacts. This is
mainly due to the employed filter sizes and IIR filter coef-
ficients. If the filter sizes are small, the deformation grid can
fluctuate over time for quasi-static scenes. On the other hand,
if the filter sizes are too big, fast moving object or camera
motion cannot be captured by the slower change of the defor-
mation grid. Adding motion estimation could serve as an im-
age analysis tool to adapt the filter coefficients, which would
improve the result. Note that all streaming video retargeting
algorithms including [ZHM08,SWDL09,KLHG09,KJJK11]
have similar limitations on the maximum allowable scene
motion.

6. Conclusion

In this work, we derived a hardware-efficient algorithm for
content-aware video retargeting. By adapting and modify-
ing state-of-the art video retargeting algorithms, we could
considerably reduce the algorithmic complexity, and thus
develop an efficient hardware architecture. We presented
an FPGA prototype implementation that is able to retarget
1080p60 video streams at low hardware costs, and our ar-
chitecture could easily be integrated into displays or mobile
devices. Despite the reduced computational complexity, our
results are comparable to state-of-the-art approaches.

As final observation, we conclude that state-of-the-art

video retargeting is not fully ready for integration into con-
sumer electronics, since artifacts cannot be avoided in all
situations. As a step toward artifact-free retargeting, our ar-
chitecture could include further image analysis components
such as scene cut detection or optical flow. Furthermore, we
think that with upcoming algorithmic improvements for tem-
poral consistency [LWA∗12] and with the advent of scal-
able video coding [WSL∗11], real-time video retargeting is
a valuable component for upcoming video applications.
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