An Approximate Computing Technique for Reducing the
Complexity of a Direct-Solver for Sparse Linear Systems in
Real-Time Video Processing

Michael Schaffner'*, Frank K. Glrkaynak!, Aljosa Smolict, Hubert Kaeslint, Luca Beninit

T Integrated Systems Lab
ETH Zurich, Switzerland

{schaffner,kgf,kaeslin,benini}@iis.ee.ethz.ch

ABSTRACT

Many video processing algorithms are formulated as least-
squares problems that result in large, sparse linear systems.
Solving such systems in real time is very demanding. This
paper focuses on reducing the computational complexity
of a direct Cholesky-decomposition-based solver. Our ap-
proximation scheme builds on the observation that, in well-
conditioned problems, many elements in the decomposition
nearly vanish. Such elements may be pruned from the de-
pendency graph with mild accuracy degradation. Using an
example from image-domain warping, we show that pruning
reduces the amount of operations per solve by over 75 %,
resulting in significant savings in computing time, area or
energy.

Categories and Subject Descriptors

G.1.2 [Numerical Analysis]: Approximation

; G.1.3 [Numerical Analysis]: Numerical Linear Alge-
bra—Sparse, structured, and very large systems

; 1.4.8 [Image Processing and Computer Vision]|:
Scene Analysis—Stereo

Keywords

Cholesky Decomposition, Hardware Accelerator, Approxi-
mate Computing, Video Processing

1. INTRODUCTION

Many image and video processing algorithms are formu-
lated as regularized least squares problems whose solution
can be found by solving a linear system of equations [13].
However, those linear systems tend to be very large - in the
order of tens of thousands to millions of variables - since
the unknowns are often either pixel values or pixel coordi-
nates. Although the sparse, regular structure of such sys-
tems can be leveraged to efficiently solve them, the compu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions @acm.org.

DAC 14, June 01 - 05 2014, San Francisco, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2730-5/14/06...$15.00.
http://dx.doi.org/10.1145/2593069.2593082

* Disney Research Zurich
. Switzerland
smolic@disneyresearch.com

tational complexity is still very large. This motivates the
development of custom hardware accelerators for real-time
applications that operate e.g. on streaming video.

There are two main approaches that can be used to solve
such linear systems [11]. Direct methods are based on ma-
trix decomposition, whereas iterative methods calculate the
solution by iteratively updating the solution vector based
on e.g. a gradient descent scheme. A comparative study
of hardware implementations on an FPGA by Greisen et.
al. [15] shows that hardware implementations of iterative
methods tend to require a large memory bandwidth and this
results in a significant amount of on-chip memory - which
becomes very expensive for large problems. On the other
hand, direct methods such as solvers based on the Cholesky
decomposition can make use of data-locality and can be ef-
ficiently realized with a small on-chip cache. Therefore, we
focus on the direct Cholesky method in this paper and aim
at reducing its computational complexity.

There are well established pre-ordering methods (such
as [2,10]) for the Cholesky decomposition that aim at re-
ducing the number of non-zero elements in the decomposi-
tion by re-ordering of the problem matrix. While this ap-
proach can have benefits in the case where all elements in
the decomposition are calculated by one unit sequentially
(like in a CPU), it impedes the use of many parallel pro-
cessing units for high performance systems due to the loss
of regularity in the sparsity structure. In this paper, we
pursue a different method based on approximation, which is
a variant of the incomplete LU factorization with threshold
(ILUT) [19] that is often used to calculate pre-conditioners
for iterative methods. It has recently been shown that un-
conventional approximations may lead to very large savings
in either computation time, energy consumption or circuit
area for applications that are error tolerant to some degree
(e.g. image and video processing) [3,8,17]. Bates et. al. [3,8]
use the insight that logarithmic number systems (LNS) can
be implemented very efficiently at low precisions, resulting in
so called low-precision high dynamic range (LPHDR) arith-
metic. Palem et. al. [17] propose probabilistic pruning - an
approach where logic gates are pruned from the netlist of
adders based on the statistics of the data to be processed.

In this work, we note that well-conditioned linear sys-
tems arising in video processing applications tend to con-
tain very small elements in the fill-in of their Cholesky de-
composition. Using example problems from image domain
warping (IDW) [1,16], we show that an incomplete factor-

ization, where these elements are pruned from the depen-
dency graph, still provide solutions that are accurate enough
(similar as reported in [17]). This effectively reduces the
number of required operations - in well-conditioned cases by
more than 75 %. Incomplete factorizations essentially use a
threshold in order to decide whether an element in the ma-
trix is to be kept or not, and thus they can be conveniently
integrated into existing hardware architectures.

The remainder of the paper is organized as follows: Sec-
tions 2 and 3 summarize related work and some preliminar-
ies. The incomplete factorization technique that is used here
is explained in Section 4 and numerical results are given in
Section 4.2. In Section 4.3 we outline how the approach
can be integrated into existing hardware architectures, and
Section 5 concludes the paper.

2. RELATED WORK

The design of hardware architectures for a Cholesky de-
composition based solver has been addressed in many previ-
ous studies [4-6,14,15,20,21]. Most architectures build upon
an array of parallel MAC units that evaluate the abundant
amount of dot products in the decomposition concurrently.

Maslennikow et. al. [14] show that rational fraction arith-
metic can result in smaller operators. In [21], Sun et. al.
propose a mixed-precision approach where the decomposi-
tion step is performed with low precision, followed by an
iterative refinement with high precision. The idea to lo-
cally use a logarithmic number system (LNS) to improve the
area and latency of divisions and square-roots is introduced
in [20]. The benefits of a fused floating-point datapath is
elaborated in [5]. Cho et. al. [4] as well as Yang et. al. [6]
show that it can be beneficial for hardware architectures to
use the modified LDLT decomposition instead of the nor-
mal LLT Cholesky decomposition since it does not require
the calculation of square-roots and uses less divisions.

In all the work listed above, relatively small, non-sparse
matrices are used, except [15] where an architecture for
large, sparse linear systems in image and video processing
applications is developed. As opposed to [15], our approach
additionally leverages the statistics of linear systems in video
processing in order to gain efficiency. Further, the method
we use is orthogonal to many optimizations such as oper-
ator fusing or iterative refinement, and could therefore be
combined with such optimizations as well.

3. PRELIMINARIES

3.1 Sparse Linear Systems in Image and Video
Processing

Many image and video processing algorithms can be posed
as a quadratic minimization problem [13,15] of the form

min (E (f)) = min (Eaata (f) + Bsmoorn (), (1)

where the data term Fqq4:, enforces function values at certain
sampling positions, and the smoothness term Fgsmootn is a
regularizer that propagates the known sample values to adja-
cent sampling positions. The vector f is holding the samples
of an unknown discrete function (e.g. pixel intensities or co-
ordinate values) defined on a two-dimensional sampling grid
A with width w and height h. The two terms Fgqto and
Esmooth are briefly summarized below and a more detailed
description can be found in [15].

(a) dataconstraint . Arq

h R Vi
. Ve i1 smoothness
sampling i constraints
grid A fiaw
« W - > 4
", c
bw s (©
L=| ety “fill-in"
w-h w-h
i —,

Figure 1: a) Sampling grid with unknowns f;. b)
Sparsity structure of the matrix A. c¢) Sparsity struc-
ture of the Cholesky factor L of A.

Let i be the linear index of the sampling points of the grid
Awithi € Dy ={1,2,...,w,...,w-h}. Figure 1 a) illustrates
the relations introduced by the data and smoothness terms
for one sample f; of f. The data term usually has the form

Eiata (f) = Z N (fi —pi)?, (2)

i€Dy

where p; are the constraint values, and the parameters \;
are weights indicating the relative importance of the corre-
sponding constraints. The smoothness term contains differ-
ential constraints defined among neighboring samples, and
is usually given by

Esmooth (f) = Z ()\21 (fi+1 - f’b - dlz)Q +
i€Dp (3)
A (fiw — fi = dﬁ’)Q) ;

where df and dY are the constraint values, and A\{ and \! are
again relative-importance-weights. The superscripts * and
Y indicate whether the parameter belongs to a horizontal-
or vertical difference constraint. Since the energy functional
E(f) is quadratic in the elements of f, the solution to (1)
is a least-squares solution, and can be found by solving a
linear equation system of the form Af = b, where A is a
symmetric, quadratic and positive definite matrix. Since
the constraints are defined on small, local neighborhoods on
A, the matrix A is very sparse and only contains a main- and
a few off-diagonals. Further, the number of variables in the
linear system is in the order of tens of thousands to millions
- depending on the resolution of A. The structure of A in
the case of IDW will be discussed in more detail below.

3.2 Linear Systems for IDW Applications

In this paper we will use two example applications from
the image processing domain: video retargeting [16] and au-
tomatic stereo-to-multiview conversion [1]. Both applica-
tions use IDW to non-linearly transform the frames of a
video in content-adaptive manner. The constraints for the
energy minimization problems are cues extracted from the
original video frames, and the solution vector f represents
the coordinates of the pixels in the transformed image.

Video retargeting is concerned with changing the aspect-
ratio of the video frame (e.g. from 16:9 to 4:3) in a content-
adaptive manner. Automatic stereo-to-multiview conversion
uses IDW to inter- and extrapolate a given stereo 3D frame-

pair to new virtual view positions. Key for those applica-
tions is a so called saliency map [12] which is used to weigh
smoothness constraints in (3). This effectively moves dis-
tortions to visually unimportant regions in the image. The
energy minimization problems usually also include: edge- or
line constraints, a few data constraints around the image
border in order to fix its position in the target image, dis-
parity constraints in the case of stereo-video, and temporal
constraints. Such temporal constraints are of the form

Eaata = Z Xi (filt] — filt — 1})27 (4)

1€EDA

where f[t — 1] is the already computed solution from the
previous time step. This constraint is important since on
one hand it ensures that there are no ‘wobbling’ artifacts in
the transformed frames. On the other hand, it can improve
the condition of the problem matrix significantly - which in
turn can increase the performance of the presented pruning
technique, as will be shown later. More details about the
constraint formulation can be found in [1] and [16].

The resolution of current video content is predominantly
1080p (1920 pixels wide by 1080 pixels in height), resulting
in two (one for each coordinate dimension) to four (when
stereoscopic 3D footage is used) equation systems with nearly
two million variables for each frame in the video. Solving
such large systems at frame rates of up to 30fps is com-
putationally very demanding. Therefore, the problems are
usually solved on around 10x sub-sampled grids in order to
reduce the computational complexity. This results in real-
istic grid sizes of about 190x110, which equals to ~ 21k
variables in the minimization problem. For the application
examples we consider in this paper, the problem matrix A
usually has one main-diagonal and four® off-diagonals - out
of which two are unique due to the symmetry (Figure 1 a).

3.3 Direct Solve with Cholesky Decomposition

A widely used direct-solution method for symmetric, pos-
itive definite matrices uses the Cholesky decomposition [11,
23]. This method is well known for its numerical stability
and computational efficiency among direct solution meth-
ods. The standard Cholesky decomposition computes a ma-
trix factorization of the form A = LLT, where L is a lower
triangular matrix. The solution to the equation system
Ax = b can be conveniently found by solving Ly = b for y
and LTf =y for f using forward- and backward-substitution.

The Cholesky decomposition is also available in a slightly
modified variant which has been shown to be more attrac-
tive for hardware implementations [4,6] thanks to fewer di-
visions and the absence of square-roots. The decomposition
provides a factorization of the form A = LDLT, where D is
a diagonal matrix, and the diagonal elements of L are unity.
The matrix elements are computed as

j—1
Ai; = > DpLikLjg

k=1
Lij =

i—1
D and D-L = A” — ZDkL?k’ (5)
J k=1

fori =1,..,nand j =i+ 1,...,n. In order to obtain the
solution, an additional division step has to be added between

!Note that when using subsampled grids, the data con-
straints sometimes need to be interpolated - resulting in
four additional off-diagonals right next to the outermost off-
diagonals of A [15].

the forward and backward substitution - i.e. we first have to
solve Ly = b for §, then we perform the divisions y = D™ '§
and finally get x by solving LTx = y. In this paper, we use
this version of the decomposition throughout.

Computational Complexity and Sparsity of L. The de-
composition step of LDLT has a computational complexity
of O (n‘;) for n x n matrices, in general [11]. In our case,
where the matrix A has the sparsity structure shown in Fig-
ure 1 b), the decomposed matrix L will be banded with
bandwidth bw, and the complexity of the decomposition re-
duces to O (n - bw?) [15]. The matrix A is usually built along
the smaller of the two dimensions A and w, which results in
a bandwidth of bw = min (w, h) + 1. The non-zero elements
that appear between the main diagonal and the outermost
off-diagonal during the decomposition are termed fill-in [15]
(highlighted with green in Figure 1 ¢). Since the division
and forward-/backward substitution steps only have com-
plexity O (n) and O (n-bw) [11], the decomposition step
dominates the overall number of computations that are re-
quired to compute the solution x.

< QN SN
L gy
|
|-
Ry ittt
1111
b

absolute error

0—2
107
107

6 8 10 12 14 16 18 20 22 24 26
precision [#mantissa bits]

Figure 2: Precision evaluation using 10 different
multiview problems with grid sizes 126 x 256. The
figure shows boxplots of the absolute error in x. For
subpixel accuracy, at least 21 bits are required here.

Arithmetic Precision and LNS. Although the Cholesky
decomposition is numerically very stable, large linear sys-
tems still need to be solved using high precision in order to
yield acceptable results. Figure 2 shows the results of an
arithmetic precision vs. solution accuracy study for a multi-
view IDW problem with many data constraints. The x-axis
shows the number of bits used for the mantissa of a binary
coded floating point number (the amount of bits in the ex-
ponent has been fixed to 8 bits). The fewer bits are used,
the smaller the resulting hardware will be. It can be seen
that sub-pixel accuracy is only obtained with more than 21
bits in the floating-point format. Increased problem sizes
can easily result in less well-conditioned matrices. Similarly,
a reduction in the amount of data constraints can also have
a negative impact on the matrix condition, as will be shown
later. This can quickly mandate precisions of more than
30 mantissa bits. Unfortunately, LNS-based arithmetic can-
not be used to reduce the hardware complexity here. The
main operation of the Cholesky decomposition is the long
scalar product for which LNS is not competitive when high
precision is required [7].

100

10° 10" o
g ¢ P — #pts: 10 — #pts: 316
E 102 o 1 0°L-s = #pts:20 | == #pts: 630 |]
< 8 ‘S S — i#pts: 40 #pts: 1257
= Sei== g o, — #ptsi79 | T #pts: 2507
3 L 10” 25 £ 10 S So==#pts: 158 ==#pts: 5000
2 w0 £ s)
N = c S
Q]
5 § 10° g 10 ‘o,
v g bS] -~
IS < 7 ~,
£ 4 $ 107 g 10 %
§ § 3 6 i
g S 070 Y 10 >
g‘ 20 ———» avg. abs. error > 1 nE: . .
s 102 S 10 Y
9 ————» max. abs. error > 1 s ot 5600 S So
s 0 -14 L L h e i L L 4 i | #pt$:5000 g
2 2% 2% 10 1070 20 4 60 8 100 120 107 7 100 10°
(a) threshold (b) index of diagonal (C) #pts

Figure 4: Evaluation of the pruning on a set of multiview problems (grid size 126 x 256) with an increasing
amount of random data constraints. a) shows the amount of pruned MAC operations; b) shows the average
magnitude of L, averaged along the diagonals; and c) shows the averaged L1 condition estimate (condest from
MATLAB) of the problem matrices. The regions where the maximum- and mean errors are greater than one

are shaded in a).

4. PRUNING OF OPERATIONS

4.1 Observations and Incomplete Factorization

An investigation of the fill-in values in decomposed prob-
lem matrices from IDW applications revealed, that many of
them are very small compared to the elements on the main-
and outermost off-diagonal. Consider the example in Figure
3 a), where the average magnitude on different diagonals of
a decomposed multiview problem is shown. One can observe
a large magnitude difference between elements located in the
middle and elements on the border of the band. Therefore,
we apply a pruning technique that leverages this fact by
noting that the new fill-in elements in the Cholesky decom-
position are calculated with inner products among already
computed rows of L. The idea is to skip multiplications
with very small operands, since these are unlikely to have
a large contribution to the final scalar product sum - i.e.
an element L;; from the dependency graph is removed if its
magnitude is below a certain threshold p. Numerically this
has the same effect as

L;j = {O

In hardware, the information whether an element L;; is
pruned can be directly used to skip MAC operations with
a pruned operand at runtime. This may be implemented
by using an array of valid-bits associated with the L;; ele-
ments. Note that just statically skipping off-diagonals with
low average magnitude is not feasible, since they still may
contain important elements, as can be seen in Figure 3 b). It
should be mentioned at this point that the above threshold-
ing technique itself is not new, and belongs to the class of so
called incomplete LU factorizations with threshold (ILUT),
which are often used to calculate pre-conditioners for iter-
ative methods [19]. The difference to our work is that we
directly use the incomplete factorization to calculate a solu-
tion of the linear system, since this provides enough accuracy
for the applications at hand.

if [Lij| < p
else '

(6)

4.2 Evaluation

The incomplete factorization scheme is a heuristic and
depends on the statistics of the data to be processed. How-

ever, its behaviour is stable if the problem matrix is well-
conditioned, and an appropriate value for p is used. In the
following we present numerical evaluations showing the in-
fluence of the amount of data constraints and the value of p
on the performance of the technique. Further, an evaluation
using multiview and retargeting video sequences is shown.
The video footage used here is taken from [18,22].

Data Constraints and the Value of p. In order to inves-
tigate the effect of data constraints and the threshold p, we
used a data set of 10 natural images to generate problem
matrices with an increasing number of disparity data con-
straints. The disparity data was generated at random, such
that the amount of constraints is exactly the same for all 10
test images (this is important since the results from the 10
natural images were averaged). The evaluations were per-
formed with double precision in order to minimize quanti-
sation effects?. In order to calculate the error, the solutions
were compared against the same implementation without
pruning.

2Note that the pruning scheme can also be combined with
reduced precision arithmetic - e.g. single precision.

average magnitude
s\ 1 g
index along diagonal

1078 3e4
[50 100 0 12,
(a) index of diagonal (b) index of diagonal

107

7
I:|< 107

Figure 3: Magnitude of the elements of L, once av-
eraged along the diagonals in b), and once shown in
two dimensions in a). The main diagonal of L has
been replaced with the values from D here. The blue
elements in b) have a magnitude less than 107".

3

— 3D_30
3D_32
3037 ,

— 3D 44

pruned MACs [%]
“
g

N
&

(a) 100 10
f @ ¢
—3D_29 X

1 2 3

o

0 20 40 60 80 100

absolute error
S 3 3 3 3
3D_07 [T
3D_02 |1 el
3007 | se——
3D 27 | b 1111111
3D_28 [t L
3D_29 | m——
3D_30 - ———
'
'

frame # frame #
(b) 1 E 10'
—_—
75 s 10’
g ED 5
g Z oy | S0
g s Tmsre 3
3 i 2107
< S
H 25
= 107 T
4 10 8 = %«
1 2 3 o 20 40 60 80 100 o g E L
frame # frame # g @

Figure 5: Evaluation on multiview- a) and retarget-
ing video sequences b). The plots only show results
for the x-problems (the corresponding y-problems
tend to have better performance).

As can be seen in Figure 4 a), the more (uniformly dis-
tributed) data constraints are available, the better the per-
formance of the incomplete factorization approach. An in-
tuitive interpretation of this behaviour is that, in the case
where only a few data constraints are available, the values
of most elements in the solution vector have to be inferred
by propagating the few data constraints across large parts of
the equation system. This leads to tightly coupled systems
with a flat curve in Figure 4 b). In the other case where
many data constraints are available, we find the opposite:
the data constraints have only local influence on the values
in the solution vector, which results in less coupling and a
v-shaped curve in Figure 4 b). This indicates that many el-
ements in L are insignificant and can be pruned away. Since
data constraints are formulated such that they are added to
the diagonal of the A matrix, problems with many data con-
straints have the tendency to be much better conditioned,
as can be seen in Figure 4 c¢). Typical multiview problems
usually have many disparity constraints (> 1000), an on the
basis of this evaluation we can see that by setting the thresh-
old p to around 2725, more than 75 % of all MAC operations
can be skipped, with only loosing subpixel accuracy.

Video Sequences. The second evaluation comprises 10 mul-
tiview video sequences and 4 retargeting sequences of 100
frames. Note that all problem matrices contain a tempo-
ral consistency constraint - except the ones belonging to the
first frames. The pruning threshold has been set to 2727
for the multiview sequences, and to 272° for the retargeting
sequences. All cases were evaluated using double precision.
The grid sizes are 126 x 256 and {200, 204, 270} x 480 in the
case of multiview and retargeting problems, respectively.
Considering the results for the first frames in Figure 5, we
can see that the retargeting problems perform much worse
than the multiview problems. This is because the retarget-
ing problems only contain a few data constraints around
the image borders, whereas the multiview problems con-
tain many, well-distributed data constraints. However, the
amount of pruned operations changes drastically for all sub-
sequent frames. This is due to the temporal consistency con-

Cholesky Decomposition / Forward Substitution (a)
A by precalculated Dy Ly products
it}
ik to external
it] memory
valid bits 1
T v _1¥
PU L, ymem 2
PU2 [—» ||| T DIv — >
Dy valid bits 2
Dmem | | H T | l H l H exponent
L, ymemm
o
valid bits m
| | | AT
Processing Unit (PU) (b) (C)

uonD0|ID Nd

valid L-elements

bits in on-chip
< addrgen memory

Figure 6: a) tentative hardware architecture. b) de-
tailed view of a processing unit. c) allocation of the
processing units and memories. Blocks that have to
be added in order to support pruning are highlighted
in green in a) and b). A possible distribution of valid
bits is overlaid in c¢). The vertical black bars mark
columns that are masked by zero DjL;; products.

straint which introduces many data constraints all around
the image - and which is absent in the first frame. We ob-
serve that in all evaluated sequences the use of an incomplete
factorization can reduce the amount of required MAC oper-
ations by more than 75 %. Note that the solution is always
sub-pixel accurate, and that the pruning threshold is held
constant throughout the entire sequence.

4.3 Integration Into Existing Hardware Archi-
tectures

The incomplete factorization technique can be conveniently
integrated into hardware architectures that build upon an
array of MAC units, such as presented in [6]. The impor-
tant feature is that individual MAC units can independently
decide whether an operation can be skipped. A possible
hardware architecture for the decomposition- and forward
substitution steps is outlined in Figure 6 a). The backward
substitution is not elaborated further since it can be simply
implemented using one MAC unit.

Since it is infeasible to store the whole L matrix on-chip
due to its size, an off-chip memory is required. As shown
in [15], the band-structure of L allows to cache only a small
part of the decomposed matrix in an on-chip buffer. The
datapath of the architecture contains an array of m process-
ing units (PU), each of which is connected to its own RAM
bank. As shown in 6 c), each PU is allocated to a subset
of rows in the decomposed matrix L, and the correspond-
ing RAM bank contains the previously calculated elements
of that row. An additional processing element (PU’) is re-
sponsible for the precalculation of the Dy, L;; products. PU’
is connected to all RAM banks, and to an additional RAM
containing the Dj values. The DyL;, are broadcasted to
PU; - PU,,, which use them to build the scalar products

with the rows they are allocated to. The structure of a PU
is shown in 6 b).

Enhancements for Incomplete Factorization. Pruning can

now be implemented by adding a set of valid bits to PU; -
PU,,, and by enhancing the address generators of the pro-
cessing units. Each set of valid bits has to be able to hold
bw - [bw/m] bits, and - by using these bits - the address
generators have to be able to determine the next valid Ly
addresses in the on chip memory within one cycle. Note that
invalid Dy L;; products mask whole columns in L, as indi-
cated with black lines in subfigure ¢). These can be deter-
mined by PU’ during precalculation, such that PU; - PU,,
can skip them. These enhancements complicate the address
generation logic, but since the dominant circuit area is at-
tributed to the floating point operators, the enhancements
are expected to have low overhead in the order of 10 %.

Savings. In the following, we neglect the impact of any
overhead introduced by the forward substitution step and
by the latency of floating point operators®. If we have the
extreme case m = 1, where we have one PU that evaluates
all MAC operations, it is possible to leverage all pruned
MAC operations - i.e. more than 75% of the cycles required
to complete a decomposition can be saved in the case of
the IDW examples. If m is now increased, those savings
gradually get smaller, and are lower bounded by the savings
obtained in the other extreme where we have m = bw. In
this scenario, the limiting factor is the amount of cycles re-
quired to calculate the Dy L;; elements, which is given by
the number of non-zero MAC operands. In all examples
shown in this paper, less than 50% of the matrix elements
are non-zero. Note that this can also translate into large
savings in terms of external memory bandwidth if only non-
zero elements are written to the off-chip memory.

5. CONCLUSIONS AND FUTURE WORK

We showed that, for least squares problems typically aris-
ing in video processing applications, incomplete Cholesky
factorizations can be used to calculate approximate solu-
tions with only mild impact on the accuracy.

The prerequisite for this approach is that the linear sys-
tems have to be diagonally dominant - which is often the
case when many data constraints or temporal constraints are
present. We showed that the approach can save more than
75% of the MAC operations in two different IDW applica-
tions, and that convenient integration into existing hardware
architectures is possible.

At the moment, no analytical bounds on the expected
performance can be given - which mandates numerical sim-
ulations with application specific datasets in order to assess
the performance and determine the pruning threshold. How-
ever, we believe that the approach could also have benefits
in other video processing applications with similar structure
- especially if they contain temporal consistency constraints.

A proof-of-concept implementation of the proposed archi-
tecture is in progress, and we also plan to revisit matrix
reordering techniques in this context, since they can be com-
bined with incomplete factorizations.

3The overhead due to the latency of the floating point op-
erators may be minimized by using fused operators, e.g. [9].

6.

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]
(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]
(19]

20]

(21]

(22]

23]

REFERENCES

A. Smolic et. al. Disparity-Aware Stereo 3D
Production Tools. In CVMP, pages 165-173, 2011.

P. Amestoy, T. Davis, and I. Duff. Algorithm 837:
AMD, An Approximate Minimum Degree Ordering
Algorithm. ACM TOMS, 30(3):381-388, 2004.

J. Bates. Processing With Compact Arithmetic
Processing Element, Dec. 24 2010. WO Patent
2,010,148,054.

H. Cho, J. Lee, and Y. Kim. Efficient Implementation
of Linear System Solution Block Using LDL”
Factorization. SoC 2008, 03, 2008.

S. Demirsoy and M. Langhammer. Cholesky
Decomposition Using Fused Datapath Synthesis. In
ACM/SIGDA FPGA 2009, pages 241-244, 2009.

Y. Depeng, G. D. Peterson, and H. Li. Compressed
Sensing and Cholesky Decomposition on FPGAs and
GPUs . Parallel Computing, 38(8):421 — 437, 2012.

J. Detrey and F. De Dinechin. A Tool for Unbiased
Comparison between Logarithmic and Floating-point
Arithmetic. J VLSI SIG PROC SYST, May 2007.

R. S. Eaton, J. C. McBride, and J. Bates. Reliable
ISR Algorithms for a Very-low-power Approximate
Computer. In SPIE DSS, pages 871312-871312, 2013.
F. De Dinechin et. al. An FPGA-Specific Approach to
Floating-point Accumulation and Sum-of-products. In
ICECE Technology, 2008. FPT., pages 33—40, 2008.
A. George. Nested dissection of a regular finite element
mesh. STAM Journal on Numerical Analysis, 1973.

G. H. Golub and C. F. Van Loan. Matriz
Computations, volume 3. JHU Press, 2012.

L. Ttti, C. Koch, and E. Niebur. A Model of
Saliency-based Visual Attention for Rapid Scene
Analysis. IEEE TPAMI, 20(11):1254-1259, 1998.

M. Lang et. al. Practical Temporal Consistency for
Image-based Graphics Applications. ACM ToG, 2012.
O. Maslennikow et. al. Parallel implementation of
Cholesky LLT-Algorithm in FPGA-based processor.
In PPAM, pages 137-147. Springer, 2008.

P. Greisen et. al. Evaluation and FPGA
Implementation of Sparse Linear Solvers for Video
Processing Applications. IEEE TCSVT, Aug. 2013.
P. Krahenbiihl et. al. A System For Retargeting of
Streaming Video. ACM ToG, 28(5):1, Dec. 2009.

K. Palem and A. Lingamneni. Ten Years of Building
Broken Chips: The Physics and Engineering of
Inexact Computing. ACM TECS, 12(2s), May 2013.
RMIT Univ. An Uncompressed Stereoscopic 3D HD
Video Library, Nov. 2013. http://www.rmit3dv.com.
Y. Saad. Iterative Methods for Sparse Linear Systems
Second Edition. STAM, 2003.

D. Sonawane and M. Sutaone. High Throughput
Iterative VLSI Architecture for Cholesky Factorization
Based Matrix Inversion. IJCA, 35(8), 2011.

J. Sun, G. Peterson, and O. Storaasli.
High-performance Mixed-Precision Linear Solver for
FPGAs. IEEE TC, 57(12):1614-1623, 2008.

The Xiph Open-Source Community. Test Media, Nov.
2013. http://media.xiph.org.

J. H. Wilkinson. A Priori Error Analysis of Algebraic
Processes. In Intern. Congress Math, 1968.

