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In this paper we describe a complete pipeline for the capture and display

of real-world Virtual Reality video content, based on the concept of om-

nistereoscopic panoramas. We address important practical and theoretical

issues that have remained undiscussed in previous works. On the capture

side we show how high quality omnistereo video can be generated from a

sparse set of cameras (16 in our prototype array) instead of the hundreds of

input views previously required. Despite the sparse number of input views,

our approach allows for high quality, real-time virtual head motion, thereby

providing an important additional cue for immersive depth perception com-

pared to static stereoscopic video. We also provide an in-depth analysis of

the required camera array geometry in order to meet specific stereoscopic

output constraints, which is fundamental for achieving a plausible and fully

controlled VR viewing experience. Finally, we describe additional insights

on how to integrate omnistereo video panoramas with rendered CG content.

We provide qualitative comparisons to alternative solutions, including depth-

based view synthesis and the Facebook Surround 360 system. In summary,

this paper provides a first complete guide and analysis for reimplementing a

system for capturing and displaying real-world VR, which we demonstrate

on several real-world examples captured with our prototype.

CCS Concepts: • Computing methodologies → Computational pho-
tography;

Additional Key Words and Phrases: virtual reality, omnidirectional videos,

stereoscopy, real-world content.

ACM Reference Format:
Christopher Schroers, Jean-Charles Bazin, and Alexander Sorkine-Hornung.

2018. An Omnistereoscopic Video Pipeline for Capture and Display of Real-

World VR. ACM Trans. Graph. XX, XX, Article XX ( 2018), 13 pages. https:

//doi.org/0000001.0000001_2

1 INTRODUCTION
Technologies for Virtual and Augmented Reality are currently ex-

periencing a new boom. Companies such as Facebook (Surround

360), Google (Jump), Jaunt VR, GoPro (Omni), Samsung (Gear VR),

Microsoft (Hololens), Magic Leap, Oculus, and many others are mar-

keting omnidirectional camera systems and head-mounted displays.

While the basic concepts underlying Virtual Reality (VR) systems

have been around already for a few decades, the performance of

hardware and software for capture, rendering, and display is now

getting to a point where more immersive experiences are possible.

While rendered VR based on computer generated content has

reached an impressive level, the capture of high resolution, immer-

sive stereoscopic real-world content remains challenging in practice,
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Fig. 1. Given videos acquired by a sparse camera rig (see our prototype
with 16 cameras on the left), we describe a complete pipeline for the genera-
tion of high-quality stereoscopic omnidirectional videos of dynamic scenes
(bottom), with support for smooth parallax interpolation between different
viewpoints (two top right images), enabling real-time virtual head motion
in Virtual Reality applications despite the sparse video input.

since it usually has to be stitched from multiple input video streams,

e.g., using camera arrays. Seamless 2D stitching of such content is

nowadays supported by many camera systems. However, in order to

capture and display high quality stereoscopic 3D content, many more

views with larger inter-camera parallax have to be captured, and

one has to convert the captured parallax into consistent, seamless

stereoscopic output images.

One potential approach is image-based rendering utilizing depth

information extracted from the input views (e.g., [Shum and Kang

2000]), where the stereoscopic output is generated depending on the

viewer’s viewing position and direction. However, with only sparse

input available as in our setting, robust and sufficiently accurate

depth estimation for arbitrary scenes remains challenging, often

resulting in noticeable visual artifacts.

A milestone in this context have been the works of Peleg et

al. [1999; 2001], which demonstrated how view-direction indepen-
dent images can be generated from densely captured images us-

ing a single camera rotating off-center. This insight significantly

simplified the creation of panoramic stereo, since a single pair of

correspondingly generated panoramic images can provide a plau-

sible omnistereoscopic impression, i.e. a stereoscopic impression

in all viewing directions on the equatorial plane. The price is that

the generated images are multi-perspective, and hence do not ex-

actly correspond to a real-world, view-direction dependent stereo

geometry that is identical to human stereo perception.

A key advantage of their omnistereoscopic representation in the

context of VR is that only a small modification to the stitching pro-

cess allows for changes of the virtual viewpoint position, enabling

a more natural interaction and immersive experience of the VR
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content compared to static stereoscopic images. However, in prac-

tice, existing high resolution omnistereo approaches (e.g., [Richardt

et al. 2013]) require a very large number of input views, in the order

of several tens to hundreds, to generate convincing virtual head

motion effects. Building a corresponding video camera array is a

difficult practical challenge.

In this paper we describe a complete and practicable pipeline for

the capture and display of real-world VR video content. In particular

we try to address important questions that have remained open

in previous works. On the practical side, we discuss a solution

that allows the generation of plausible stereo panoramas, including

virtual head motion, from a small number of input videos. Our

prototype is a camera array consisting of only 16 machine vision

cameras (see Fig. 1). On the theoretical side, we provide an analysis

that relates stereoscopic output parallax and the available virtual

head motion to the camera array geometry, which is an important

prerequisite in order to be able to capture convincing, immersive

real-world VR. We further discuss additional tools such as multi-

perspective projection in order to mix real-world VR with computer

generated content.

We show several real-world video panoramas that are suitable for

real-time stereoscopic viewing with support for virtual head-motion,

e.g., using an Oculus or Google Cardboard HMD. We compare to

alternative solutions such as image-based rendering using depth,

and to the Facebook Surround 360 system. In addition, we discuss

and simulate alternative array and camera designs that, we hope,

provide a useful guide for other researchers for building omnistereo

video capture systems.

2 RELATED WORK
2D panoramas of a scene are traditionally obtained by stitching

multiple pictures sharing a common single center of projection,

e.g. acquired by a purely rotating perspective camera [Brown and

Lowe 2007; Hartley and Zisserman 2004; Kopf et al. 2007]. See the

extensive survey by Szeliski [2006] for more details. 2D panoramic

stitching tools are now commonly available on consumer cameras

and smartphones. Similar tools and products also exist for video

panoramas, where multiple cameras with overlapping field of view

capture the scene, such as the Point Grey Ladybug camera, the

FlyCam, or the PanaCast camera. The issue with such camera arrays

is that, in order to create seamless 2D output panoramas, one has to

hide or compensate for the parallax between the individual input

views, which can for example be achieved by image warping [Jia

and Tang 2008; Kang et al. 2004; Lee et al. 2016; Perazzi et al. 2015;

Shum and Szeliski 2000] or seam-optimization [Efros and Freeman

2001; Zhang and Liu 2014]. See, e.g., Perazzi et al. [2015] for a more

detailed overview of 2D approaches.

In contrast to 2D panoramas, for the creation of stereoscopic

panoramas, parallax between input views is desired, i.e., the scene

has to be observed from different viewpoints. One solution is to

rotate a pair of stereo cameras [Couture et al. 2011; Zhang and Liu

2015] or a lightfield camera [Birklbauer and Bimber 2014] and then

stitch the acquired pictures. These approaches provide limited stereo

due to the short camera baseline, and are challenging to extend to

omnidirectional stereoscopic video acquisition for dynamic scenes

as required for VR applications. [Hedman et al. 2017] capture images

from a moving camera, and then perform textured 3D mesh recon-

struction that can be used for view synthesis. While this allows a

wider stereo effect, it is also limited to static scenes. Another alter-

native is pushbroom imaging, which has been extensively applied

and studied in the context of satellite images [Gupta and Hartley

1997], and for linear acquisition, e.g., of facades [Agarwala et al.

2006; Kopf et al. 2010; Rav-Acha et al. 2008; Román and Lensch 2006;

Zheng et al. 2011]. Such approaches still do not support dynamic

scenes and 360 omnidirectional stereo.

To overcome these limitations, it was proposed to rotate a cam-

era off-center [Ishiguro et al. 1992; Peleg and Ben-Ezra 1999; Peleg

et al. 2001; Richardt et al. 2013; Shum and He 1999]. Stereoscopic

panoramic images can then be created by selecting appropriate

columns from the input images. A key aspect of these approaches is

that the resulting stereo panoramas are omnidirectional, i.e., a single

pair of panoramic images generated with these approaches provides

a plausible stereo impression in all viewing directions on the equa-

torial plane. While the resulting images are multi-perspective and

hence are not equivalent to the view-direction dependent result of,

e.g., a regular stereo camera pair, the resulting stereo is still visually

convincing (see [Seitz and Kim 2002] for a detailed discussion). An

important advantage in the context of our work is that such a view-

direction independent solution is much more feasible in the context

of real-time VR applications, because a single pair of images can be

used to provide stereo in all viewing directions on the equatorial

plane, leading to significantly reduced computational overhead and

storage requirements [Shum et al. 2005; Simon et al. 2004]. Recently

it has been shown that omnistereoscopic panoramas can be cre-

ated using as few as three extreme wide angle lenses [Chapdelaine-

Couture and Roy 2013] or only two 360 spherical cameras [Matzen

et al. 2017]. However this is at the price of considerably reduced

effective output resolution. A second major advantage of this omni-

directional representation is that it rather easily supports changes

in perspective, corresponding to a virtual head motion of the viewer,

without the need for more complex image-based rendering tech-

niques requiring an accurate depth representation [Shum and Kang

2000].

A remaining limitation of the above approaches is, however, that

video results of dynamic real-world scenes are challenging to create

in practice. The main reason for this limitation is that all above

approaches require a comparatively large number of input views

to capture a sufficiently dense lightfield of the scene, which makes

it impossible to capture dynamic content data with an array of

cameras. A few companies have recently announced commercial so-

lutions based on camera rigs similar to ours (e.g., Facebook Surround

360, Google Jump, Jaunt VR). While the Google Jump algorithm is

described in [Anderson et al. 2016], the underlying methods are

proprietary and not accessible. Only Facebook Surround 360 pro-

vides publicly available source code. In the experiments section we

provide qualitative comparisons to the Facebook system.

In summary, we describe in detail how a sparse camera rig can be

used in order to create high quality omnistereo, including support

for virtual head motion and fully dynamic scenes, making capture

and VR display of real-world scenes possible. In addition we discuss

all necessary system parameters in order to gain full control over the
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resulting output stereo, which is essential for creating immersive

virtual experiences.

3 OVERVIEW
First, we will describe how to process the input views coming from a

sparse omnidirectional camera array in order to create the dense rep-

resentation required for synthesizing omnistereoscopic panoramas

with support for virtual head motion. We discuss how to parameter-

ize and interpolate the captured light rays using pure image-domain

operations, so that despite the sparse input, no accurate scene infor-

mation (such as depth) is required.

In the second main section, we then provide a detailed analysis of

various aspects of this pipeline, ranging from expected stereoscopic

output parallax to the range of virtual head motion that is feasible

for a particular array design. We provide derivations for ray tracing

and projection of computer generated content directly into the

multiperspective output panoramas, and discuss various additional

aspects relevant for using the proposed pipeline in practical VR

applications.

4 PANORAMA CREATION FROM SPARSE INPUT

4.1 Camera setup and parameterization
We consider a sparse camera array composed of n cameras covering

a complete 360-degree field of view, see Fig. 1. In a preprocess we

estimate the camera calibration parameters (extrinsic and intrin-

sic) with standard calibration techniques [Zhang 2000] and bundle

adjustment, and then radially undistort the images.

In an ideal setup the cameras lie on a circle of radius r , and the

camera intrinsic calibration matrix can be written

K =



fx 0 cx
0 fy cy
0 0 1


, (1)

where fx and fy denote the focal length in pixels in the horizontal

and vertical directions, and (cx , cy ) the principal point [Hartley and

Zisserman 2004]. Noting α the angle of the camera along the circle,

the pose of each camera is defined as

R(α ) =



− sin(α ) 0 − cos(α )
0 1 0

cos(α ) 0 − sin(α )


and t =



0

0

−r


. (2)

The corresponding camera projection matrix that maps 3D world

coordinates to pixel coordinates is

P(α ) = K [ R(α ) | t ] . (3)

We then define the dense lightfield for a single point in time as

L(α ,x ,y), which we have to reconstruct from the sparse camera

input (see Fig. 2 for an example of a synthetic scene). The value at a

location (α ,x ,y) corresponds to the measured irradiance along the

ray

R⊤ (α )
(
λ · K−1 (x ,y, 1)⊤ − t

)
, (4)

where λ > 0 represents the position along the ray.

Fig. 2. Dense lightfield representation of a synthetic scene. The x, y and α
axes are shown in red, green and blue, respectively.

Fig. 3. Top: α -x slice of L(α, x, y ) from Fig. 2. Bottom: α -x slice after trans-
forming with the mapping function φ . The fact that after transformation
the curved lines are straightened illustrates that a linear interpolation in
the transformed space can result in accurate point trajectories.

4.2 Lightfield Reconstruction
Our aim is to reconstruct L(α ,x ,y) from a sparse set of input views Îi
with i = 1, . . . ,n. The first step is to map the captured input images

into the coordinate frame of L by associating each input image

Îi with a camera angle αi using the estimated camera calibration.

In order to approximate the ideal camera setup described in the

previous section, where all cameras reside on a circle, we align

each input image Îi with the expected input at angle αi by applying

the corresponding homography. Referring to the thus transformed

images as Ii , we now have

L(αi ,x ,y) ≈ Ii (x ,y). (5)

Then the problem of reconstructing L comes down to performing

an accurate view interpolation in α . For an accurate image space

approach, it is important to understand how a given 3D point X
moves in (x ,y) when varying the camera angle α .

Trajectories of scene points in image space. Rather than con-

sidering the projection of a fixed 3D point when rotating the camera

about the origin o by some angle α , changing the point of view
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Input φ1.03r φ2r φ10r φ

Fig. 4. Transforming an input image with φ yields a good approximation to the point trajectories even for points that are close. This can be illustrated by the
fact that varying the cylinder radius d used in φd from 1 to ∞ interpolates between the input image and the image transformed by φ . Unless points are
unreasonably close for typical capturing setups, i.e., d ≪ 2r , the resulting transformations closely resemble each other. This is best visible when comparing
the shapes of the transformed images.

can provide a more intuitive understanding: by keeping the camera

fixed and rotating the 3D point with the inverse rotation instead, the

same trajectory can be obtained. The path can thus be interpreted

as observing a 3D point that travels along a cylindrical surface.

Assuming that the depth at a given location x = (x ,y)⊤ is known,

the nonlinear path in image space can be reconstructed by backpro-

jecting according to Eq. 4, rotating the resulting 3D point X, and
finally projecting it with Eq. 3

∗
. When representing the 3D point

X in cylindrical coordinates, its change in position is linear in the

angle α . Let the map φd : R2 → R2 denote the backprojection onto

a cylinder with radius d followed by a conversion to cylindrical

coordinates. Then knowing two corresponding image points xi and
xj measured at angles αi and α j and their radial depth d w.r.t. to the

origin o allows to define the nonlinear path in image space

x(α ) = φ−1d

(
(1 − t (α )) · φd (xi ) + t (α ) · φd (xj )

)
(6)

in terms of a linear interpolation in the transformed space. Here we

assume that αi < α < α j such that the weight t (α ) is given by

t (α ) =
α − αi
α j − αi

. (7)

Although φd does allow using image space correspondences for an

accurate view interpolation, it still depends on the depth of the scene

point as it determines the radius of the cylinder. However, Fig. 4

illustrates that the transformation an image undergoes is almost

constant when varying the cylinder radius from around 2r to ∞.
This indicates that trajectories of points can be well approximated

by using a very large cylinder radius, even when they are relatively

close. By letting d → ∞, one can express the mapping in a depth

independent way as

φ (x) =
(
ω (x)
s (x)

)
(8)

with

ω (x) = atan

(
x − cx
fx

)
and s (x) = (y − cy ) · cos(ω (x)). (9)

∗
This idea can also be extended to use other camera models, such as fisheye projection

models, potentially with a field of view larger than 180
◦
, by adapting the equations for

backprojection and projection as desired.

This is straightforward considering that d → ∞ is equivalent to

letting the camera circle radius r → 0.

Fig. 3 depicts α-x-slices of L(α ,x ,y) before and after transfor-

mation with φ. Curved lines become straightened after the trans-

formation which indicates that linear interpolation indeed is an

appropriate approximation to the point trajectory. Due to this in-

sight, we are now able to compute intermediate views based on

image space correspondences as follows.

Computing intermediate views.As a preprocessing step, we first
compute forward and backward flows between all consecutive image

pairs. To this end, we slightly adapt a commonly available method

[Brox et al. 2004] and minimize the energy

E (ui j ) =
∫
Ω
Ψ

(
|Ii (x) − Ij (Hi j (x + ui j (x))) |2

)
dx

+ γ

∫
Ω
Ψ

(
|∇Ii (x) − ∇Ij (Hi j (x + ui j (x))) |2

)
dx

+ β

∫
Ω
Ψ

(
|Jui j (x) |2

)
dx .

(10)

As it is commonly done, we use a robust penalization function

Ψ(s2) =
√
s2 + ε2, where ε = 10

−3
is a small constant and J denotes

the Jacobian. However, instead of directly computing correspon-

dences between the original input images Ii and Ij we propose to
leverage the cameras intrinsic and extrinsic calibration information

to guide the flow estimation. To achieve this, we effectively prereg-

ister Ij to Ii using the homography induced by the plane at infinity

Hi j = KjRi jK
−1
i [Hartley and Zisserman 2004]. Incorporating the

homography Hi j into the minimization problem allows for a better

initialization since accounting for the camera intrinsics and the

relative rotation between the cameras allows to bring all objects

into closer alignment in image space. In fact, distant objects can

already be well aligned by this homography such that the corre-

spondence estimation problem now mostly comes down to refining

initial matches on closer objects. Since optical flow estimation is

a non-convex problem, having a better initialization is important

as it makes it less likely to get stuck in local minima. Besides yield-

ing a better initialization, incorporating the homography into the
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minimization problem offers an additional advantage: since a ho-

mography can describe a nonlinear mapping in image space, it can

account for some of the linear and nonlinear parts of the overall cor-

respondence field between the original input images Ii and Ij which
otherwise may be hard to reconstruct with a first order smoothness

term that pushes the correspondence field to be piecewise constant.

Initially we anticipated a temporal consistency term in the flow

estimation would be required to tackle temporal flickering. However,

in practice, we observed that the results obtained by our indepen-

dently computed flows are temporally sufficiently consistent (see

supplementary video). The same observation has also been made

by [Perazzi et al. 2015] for monoscopic panoramic video stitching.

Following the findings of the previous section, we now use these

correspondences to synthesize intermediate views. When given a

camera angle α ∈ [0, 2π ), we can find the two closest input images

which are related to the cameras capturing views at the angles αi
and α j , respectively. Then we compute the warp fields

wi j = φ−1
(
(1 − t (α )) · φ + t (α ) · (φ ◦ Hi j ◦ (id + ui j ))

)
wji = φ−1

(
t (α ) · φ + (1 − t (α )) · (φ ◦ Hji ◦ (id + uji ))

) (11)

and synthesize the novel view from angle α as

L(α ,x ,y) = (1 − t (α )) · I
wi j
i (x) + t (α ) · Iwji

j (x), (12)

where I
wi j
i corresponds to Ii forward-warped using wi j . A single

panoramic image can then be obtained by fixing x , i.e., a particular
image column, to obtain an α-y slice of L (see Fig. 2). Correspond-

ingly, a stereoscopic output panorama can be created by picking

two α-y slices at different column positions x .
Usually, it is desirable to have square pixels in the output panorama.

Therefore we determine the sampling rate in α such that the pixel

width in the output panorama matches the pixel height in the input

image. The pixel height in the input image corresponds to 1/fy when

considering an image plane at distance 1. With n samples, the pixel

size in the output panorama is 2π/n. Thus we use n = 2π fy samples

in α when aiming for square pixels.

This concludes the explanation of our interpolation method. Not

only the choice of themethod, but also the choice of the interpolation

points is important. In this scenario the choice of interpolation

points corresponds to the camera setup which we detail on next.

5 ANALYSIS AND PRACTICAL GUIDELINES
In order to create perceptually plausible stereoscopic video, e.g.,

for VR applications using head-mounted displays, it is essential

to have full control over the output parameters such as parallax,

stereoscopic disparity, or the possible amount of virtual viewpoint

changes in the panoramic output images.

We therefore first have to understand the image formation model,

i.e., how 3D points are projected into a panorama. Knowing this, we

can measure the role of different parameters of the capture system

such as the number of cameras n, the circle radius r and the focal

lengths fx and fy , on a given panorama.

Fig. 5. Evolution of the horizontal parallax of a scene point in the output
panorama with respect to its depth for different virtual camera baseline
(VCB) angles. The parallax is expressed in percentage of the panorama
height (left y-axis) and in pixels (right y-axis). The input images have a
resolution of 2000×2000 pixels with 80

◦ field of view.

5.1 Panoramic image formation
When fixing α , the projection of Eq. 3 allows to project a world

point X = (X ,Y ,Z )⊤ by(
x
y

)
� K(R(α )X + t) (13)

where (x ,y) is the projection in inhomogenous coordinates (by the

operator �). Since a panorama is just a (α ,y) slice of L obtained by

fixing x , the panoramic camera model can be obtained by fixing x
instead of α and solving for (α ,y). This leads to an equation of the

form (see details in the Appendix)

A sin(α ) + B cos(α ) = C (14)

with coefficients

A = X · fx − Z · (x − cx ) (15a)

B = Z · fx + X · (x − cx ) (15b)

C = −r · (x − cx ) (15c)

Two solutions exist:

α1 = ϕ − γ (16a)

α2 = π − ϕ − γ (16b)

up to 2π , where ϕ = sin
−1

(
C
D

)
, D =

√
A2 + B2 and γ = tan

−1
(
B
A

)
.

To obtain α , we simply pick the solution for which X lies in front

of the camera. Given α it is straightforward to obtain y by the

projection of Eq. 13.

5.2 Amount of stereoscopic parallax
With the panoramic image formation model we can now under-

stand the relation between the scene depth and the parallax in the

output panoramas. As explained in Sec. 4.2, the stereoscopic out-

put panorama is created from two column slices. For example, the

left panorama is created from the slice at column xl , and the right

panorama at column xr . For simplicity, in this section, we assume

that all cameras in the rig have a fixed focal length f . Furthermore,

we consider symmetric cases around the center column xc of the
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Fig. 6. Evolution of theminimumdepth visible (distance from the acquisition
circle) in two cameras with respect to the number of cameras on the rig and
with different fields of view.

input images, i.e., |xl −xc | = |xr −xc |. The distance xr −xl controls
the virtual camera baseline (VCB). This is analogous to the distance

between a pair of cameras in a conventional stereo rig controlling

the resulting stereoscopic output parallax. To conduct experiments

in a way that is invariant to the input image size, we consider the

VCB angle which is given by 2 · ω (xr ) according to Eq. 9.

Fig. 5 verifies that the parallax in the stereoscopic output panorama

decreases with larger scene depth and smaller VCB angle. Further-

more, it also shows how to choose the acquisition and synthesis

parameters to match the disparity capabilities of desired output

devices, such as head mounted displays or autostereoscopic screens

with a limited disparity range.

5.3 Minimum visible depth
In order to capture a large amount of parallax, objects have to be

sufficiently close to the camera (Sec. 5.2). However, due to the sparse

sampling, an object too close to the camera array might be observed

by only one camera, and therefore cannot be correctly interpolated.

An important question that naturally arises is: what is the minimum

distance that can be observed by two cameras. We derive that the

minimum distance is (see details in the Appendix)

r
sin(π − β/2)

sin(β/2 − θ )
, (17)

where r is the camera circle radius, β is the field of view of the

camera, and θ = 2π/n is the angle between two cameras (uniform

distribution on the camera rig circle). Fig. 6 illustrates the values

of the minimum depth with respect to the number of cameras of

the rig and the camera’s field of view. It shows that the minimum

distance decreases with more cameras and wider field of view.

5.4 Analysis of the image space view interpolation
In Sec. 4.2 we mentioned that the trajectories of scene points can be

well approximated solely by image space correspondences without

knowing their actual depth. This section analyzes the approxima-

tion quality of the image space view interpolation in detail and

shows that the deviation compared to a view interpolation based on

scene depth is small. Our analysis covers different configurations

of camera arrays as well as varying depth and elevation of world

points. Here, the elevation of a world point is defined as the angle

between the camera rig plane and the line connecting the world

point and the camera rig center. The plots in Fig. 7 show that the

interpolation error is small and goes towards zero when the world

point is far away from the cameras, the field of view is wider (Fig. 7a)

and more cameras are used (Fig. 7b).

The above experiments, in conjunction with Fig. 6, indicate that

it is benefical to use a camera array composed of many cameras

with a wide field of view. On the other hand, using many cameras

increases the requirements in terms of data bandwidth, memory,

synchronization and processing. A wider field of view decreases

the effective resolution. Concretely, this means that users need to

carefully consider the trade-off between the scene volume that can

be captured and the setup requirements; or adapt the acquisition

setup according to the data provided in Fig. 6 and Fig. 7.

5.5 Virtual head motion
A particularly intriguing feature of the omnistereoscopic panorama

representation is the ability to simulate virtual head motion, i.e.,

shifting the viewer’s location sideways within the captured scene.

In practice, sideways headmotion can be achieved simply by synthe-

sizing the stereoscopic output panorama using two columns from

the lightfield L that are not symmetrically placed around the center

column, which in turn provides a view of the scene from varying

perspectives. This principle has been demonstrated, for example,

in [Peleg et al. 2001; Richardt et al. 2013]. However, in order to be

applicable in real-time VR applications, e.g., using a head-tracked

Oculus Rift, a user’s head motion has to be properly mapped.

One issue is that picking a α-y slice from the lightfield L for

generating a panorama (Sec. 4.2) not only changes the perspective

onto the scene, but alsomodifies the orientation of the panorama (see

Fig. 8). In order to synthesize proper output panoramas required for

virtual head motion effects, the orientation between the panoramas

must stay consistent. This means that points at infinity must be

fixed in the generated panoramas, i.e., be at the same location. Let P

and P ′ be two panoramas generated from extracting α-y slices from

L by fixing the columns x and x ′, respectively. Noting α and α ′ the
orientation of a point at infinity in P and P ′, we must then have

α = α ′. In practice, this can be achieved by shifting P ′ by ω (x ′) −
ω (x ) where ω (x ) is defined in Eq. 9 (see details in the Appendix).

Fig. 8 illustrates the effect of fixing points at infinity on a synthetic

sequence.

After this registration, a virtual head motion effect that mimics

a sideways head motion can be achieved by tracking the sideways

headmotion of a user and selecting the panorama based on this

data. In our prototype, we typically use a subset (just 10-20) of all

panoramic images as this is sufficient for creating a convincing

head motion effect. These views are precomputed and then loaded

by the VR viewer in real-time. This approach directly transfers to

the stereoscopic case where one simply selects both the left and

the right panoramas based on the head position. The described

approach allows for a real-time head motion effect in stereo as it

comes down to selecting two appropriate panoramas. Although

the head motion parallax induced by the sideways head motion is
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(a) (b) (c)

Fig. 7. Interpolation error in percentage of the panorama height (left y-axis) and in pixels (right y-axis) from input images with a resolution of 2000×2000
pixels. (a) interpolation error w.r.t. varying field of view (FOV) for an array composed of 20 cameras, and a world point elevation of 0◦. (b) interpolation error
with varying numbers of cameras, FOV=100◦, and a world point elevation of 0◦. (c) interpolation error with varying elevations of the world point, 20 cameras
and FOV=100◦.

Fig. 8. Example of two output panoramas P and P′ without (top two) and
with (bottom two) fixing the panorama orientation. Fixing the orientation
results in the expected behaviour of closer points (red) exhibiting stronger
motion parallax than far points (blue).

usually best observed when the user is not rotating at the same time,

this is not strictly required. Our system also supports the scenario

where sideways head motion and rotation occur simultaneously.

Results of head motion with fixed orientation in stereo are available

in the supplementary video.

Fig. 9. Our two camera rig prototypes used for capturing panoramic content.
The one on the left with a 3D printed camera mount has more accurate
orientation and position of the cameras and lenses with a wider field of
view compared to the hand-assembled rig on the right.

6 RESULTS
In this section we discuss results generated with our prototype array

and the described processing pipeline. Please see the supplemental

material for dynamic video results.

Real world results. We show real world results for different sce-

narios including static setups where the camera rig is fixed as well

as dynamic setups with a moving camera array, see Fig. 1 and Fig. 13.

Our experiments cover both indoor and outdoor scenes. For capture,

we have used two different 360
◦
camera rig prototypes. One has

been assembled by hand with approximate camera placement and

orientation, while the other one has been created with a 3D printer

(Fig. 9). Both prototypes are equipped with n = 16 synchronized

cameras that are more or less uniformly distributed on a circle of

radius r =20cm and r =15cm, respectively, with cameras pointing

outwards.

We used Lumenara Lt425 cameras equipped with Kowa lenses

with a field of view of approximately 70
◦
and 50

◦
, respectively, and

captured videos at a resolution of 2048× 2048 pixels per camera and

30 frames per second.

We processed the acquired videos on a standard desktop computer

equipped with an Intel i7 3.2Ghz and 64GB RAM. Our current C++
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Fig. 10. Top: Resulting panorama without using flow, i.e., setting all ui j = 0.
Bottom: Resulting panorama when using flow.

Fig. 11. Reconstructed panoramas without (top) and with (bottom) consid-
ering the extrinsic and intrinsic camera parameters. Note the significant,
spatially varying distortion of the scene in the top image, such as the car
and window. A consistent result as in the bottom is crucial, in particular for
dynamic scenes and for plausible virtual head motion effects.

prototype implementation running on CPU takes about 20 minutes

per time instance in total from the reading of the n input images

to the generation of all the panoramas with the complete range of

column disparities, including optical flow computation, which is

the current bottleneck. This is an offline preprocess that does not

require any user interaction. Once the panoramas are generated, our

view-independent approach allows real-time head-motion effects.

We expect significant speed improvements from an optimized GPU

implementation.

Necessity of flow-based correspondences. Fig. 10 shows crops
of panoramas with and without using the flow-based correspon-

dences. The latter one is achieved by simply setting all flows ui j = 0

during panorama reconstruction. In this case ghosting artifacts

occur because homographies alone do not allow for an accurate

reconstruction. Without using an accurate interpolation, creation

of stereoscopic content and changes of viewpoint are not possible.

In general, if the optical flow is inaccurate, artifacts may become

visible in the output panorama. This is not specific to our method,

but common for all flow-based techniques. Both Fig. 10 and Fig. 19

can give an intuition of how our system behaves when supplied

with inaccurate optical flow. Given that they constitute extreme

cases and still the generated panoramic image is well recognizable,

this shows that our system, in particular due to our pre-alignment,

Fig. 12. Top: Head-motion effect on a close-up view of the indoor panorama.
Note the significant parallax between the two images, especially the fore-
ground person occluding the body of the background person and themetallic
stool. See the video for a smooth interpolation. Bottom: Head-motion effect
on a close-up view of an outdoor panorama.

is designed to fail gracefully when supplied with inaccurate optical

flow.

Influence of calibration. Fig. 11 illustrates the errors that occur
when neglecting the camera parameters in the reconstruction pro-

cess (Sec. 4.2). Especially for our handmade prototype, the real cam-

era pose can considerably deviate from the theoretically expected

one. In this case, the flow-based interpolation will automatically

compensate for these deviations and still produce a photometri-

cally consistent panorama, e.g. without artifacts such as ghosting.

However, this comes at the cost of distorting the scene geometry.

Considering the camera parameters allows to produce geometri-

cally consistent panoramas which is crucial for creating stereoscopic

content and viewpoint animations.

Virtual head motion. Our method produces accurate reconstruc-

tions which enables a change of viewpoint. Fig. 12 shows a close-up

of different perspectives created from the same frame captured with

our rig. For instance, the parallax between the foreground person

and the metallic stool is clearly visible. By fixing points at infin-

ity and animating, we can achieve an effect that corresponds to a

sideways head motion. The accompanying video shows a real-time

version of this effect displayed on an Oculus head mounted display.

Compositing with CG. For mixing real-world and synthetic con-

tent in VR applications, it is straightforward to use the output

panorama frames as dynamically changing environment maps for

illuminating synthetic objects or refraction mapping (see Fig. 17

for two examples). To insert computer generated content into the

output video panoramas, we use the projection derived in Sec. 5.1,
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Fig. 13. Stereoscopic panoramas created with our approach, shown as red-cyan anaglyph images. Please see the accompanying video.

Fig. 14. The close-ups show that the panorama created with the depth based approach (top) contains considerably more ghosting artifacts than the panorama
created with our flow-based approach (bottom).

which renders objects appropriately distorted in agreement with

our panoramic non-linear projection (see Fig. 18).

Comparison to a depth based pipeline. Our approach allows to

create omnistereoscopic videos without explicit knowledge of scene

geometry. However, if scene geometry was known, performing the

view interpolation described in Sec. 4.2 would simply come down

to rendering the scene with a common pinhole camera model as

in Eq. 3. Therefore at a first glance it may seem more desirable to

follow a depth based pipeline that estimates the 3D geometry of

the scene and then reconstructs the desired lightfield by rendering

novel views. We compare a depth-based result to ours in Fig. 14.

In practice, a depth-based approach suffers from a number of

drawbacks: The kind of camera rigs used for creating omnistereo-

scopic video are not suitable for the popular and commonly available

multi-view stereo approaches such as [Fuhrmann et al. 2014; Fu-

rukawa and Ponce 2010; Galliani et al. 2015; Zhang et al. 2009] which

all did not yield any useable results for our scenario. This may be

due to the fact that such methods are rather tailored to scenarios

where a large number of cameras observes a part of a scene from dif-

ferent locations as opposed to a relatively small number of cameras

observing different parts of a scene from almost the same location.

Thus for a depth based pipeline, we had to resort to a two-view

stereomethod.We used the OpenCV implementation of a commonly

available state-of-the-art stereo algorithm [Hirschmüller 2008]. The

depth map for a single camera is estimated in four steps: First,

we select the reference camera and its left neighbor, perform a

rectification and compute stereo disparities. Second, we do the same

for the reference camera and its right neighbor. In the third step,

we convert the disparities to depth values using the cameras focal

length and baselines, and blend them in the coordinate frame of

the reference camera. In order to achieve a reasonable blending, we

have to keep track of the overlap regions between camera pairs.

In the fourth and last step, we fill in missing information in the

depth map by performing inpainting. Fig. 15 visualizes the depth

map resulting from these computations for one of the input views.
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Fig. 15. Row 1: Input images. Row 2: Color coded inverse depth maps. Row
3: Magnitude of optical flow according to Equation 10. Row 4: Deviation of
optical flow from epipolar constraints. The maximal distance is 7 pixels and
the darker the color the higher the distance. The flexibility to deviate from
the epipolar constraint offered by optical flow allows to be more robust and
to obtain a higher quality panoramic image (see Fig. 14.)

Besides requiring multiple steps for obtaining a single depthmap,

the depth based approach is also much more dependent on accurate

calibration information. In the extreme case where no calibration

information is used, our flow-based approach is already able to

produce photometrically accurate panoramas that only suffer from

geometric distortion (as shown in Fig. 11) while a depth based ap-

proach is not applicable at all. The depth based approach is sensitive

to calibration errors since correspondences are only searched for

along epipolar lines. Thus stereo methods cannot deal with imper-

fections in the calibration and have less flexibility to resolve brittle

situations that do not follow epipolar geometry. In contrast, pixel

movement described by optical flow can often be sufficient and more

stable in practice. The ability to deviate from epipolar constraints al-

lows us to be more robust and remove ghosting artifacts which leads

to a visually more pleasing panoramic image (as shown in Fig. 14).

Fig. 15 (bottom) illustrates how much the flow correspondences

deviate from the epipolar constraints by visualizing our flow-based

correspondences decomposed into magnitude along and accross the

epipolar line.

Relation to Google Jump. Google Jump [Anderson et al. 2016]

and our work have been developed concurrently. Both can be seen

as extensions of Megastereo [Richardt et al. 2013] to dynamic scenes.

As such, they have to deal with an order of magnitude less input

views. This makes the correspondence estimation, which is required

for correct view interpolation, more difficult. Both works use flow

correspondences instead of depth for view interpolation. While

Google Jump uses block matching and the bilateral solver for fil-

tering matches in a second step, we find correspondences by dense

optical flow incorporating prealignment.

Besides this, we also derive the omnistereoscopic panorama gener-

ation from a view interpolation problem and quantify the deviation

to geometric view interpolation that their and also our approach

introduce in more detail (see Fig. 7). This gives insight into devia-

tions from geometric view interpolation with respect to the depth

of a scene point for cameras with different fields of view, camera

arrays with different numbers of cameras, and points with different

elevations.

We also describe how to achieve a virtual head motion effect

for sideways headmotion in VR and show results in our demo ap-

plication using an Oculus Rift. Although we suggest using flow

correspondences for view interpolation as in Google Jump, we also

describe a depth based approach for omnistereoscopic panorama

generation and show comparisons between the depth based and the

flow-based approach. We also describe and show an example of how

to correctly incorporate CG elements into the panorama (Fig. 18).

Comparison to Facebook Surround 360. Fig. 16 compares our

method to results obtained with Facebook’s recently released Sur-

round 360 software (github.com/facebook/Surround360). We ran the

full pipeline of Surround 360 including calibration steps such as the

ring rectification and color adjustment. Furthermore, we supplied

the intrinsic camera parameters that we also use in our algorithm.

Judging by the source code, the ring rectification used in the Sur-

round 360 algorithm jointly estimates a homography for every input

camera in order to compensate for small deviations from an ideal

camera setup which would be obtained by evenly sampling α in

Eq. 3. However, the objective function used in the ring rectification

step only penalizes deviations in the y-coordinate of corresponding
points after projecting them on a spherical surface. Although the

camera rig that we used (see Fig. 9) is already quite close to such

an ideal setup, compared to our approach the Surround 360 algo-

rithm produces noticeable artifacts in many regions of the resulting

panorama (see the close-ups in Fig. 16).

Limitations. Our approach has some limitations and potential di-

rections for future work. Our study provides insight guidelines

for scene acquisition (Sec. 5), for example in terms of minimum

scene depth. When the derived minimum depth is violated, ghosting

effects appear (Fig. 19).

The admissible range of virtual head motion depends on the

radius of the camera array and the amount of camera overlap. To

increase the overlap, a solution is to increase the number of cameras,

which can become complicated in practice, or to use cameras with

a wider field of view. Since a wider field of view corresponds to a

loss in spatial resolution, a compromise has to be found in practice.

Creating a smooth headmotion animation needs 10 to 20 panoramic

image slices. Compared to the usual 2 slices required for common

onmnistereo, this is up to an order of magnitude more data which

would make it difficult to use for video streaming. However, since

there is a lot of redundancy in the data, it is optimally suited for effi-

cient compression. Therefore, investigating compression approaches
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Fig. 16. The panorama created with Facebook’s Surround 360 algorithm (top) contains visible artifacts that are not present in our panorama (bottom). This is
especially visible in the close-ups.

Fig. 17. Application of our results for dynamic environment map for objects
with glossy (left) and diffuse (right) material.

Fig. 18. Example of adding virtual content into a multi-perspective
panorama.

for such kind of data or also different representations of this data can

be interesting directions for future research. There are also research

opportunities for more principled future work, such as the exten-

sion of virtual head motion effects beyond sideways translation and

handling the singularities at the poles.

7 CONCLUSION
A practically feasible approach for omnistereoscopic video capture

and display of the real-world, including support for virtual head

motion currently is one of the key hindrances to a more widespread

adoption of real-world VR. In this paper, we built on the concept of

Fig. 19. Failure case: ghosting effect of an object too close to the camera
array.

omnistereoscopic panoramas and described both, a practical way of

capturing and generating the necessary image data from a sparse

array of cameras, as well as an analysis of the system parameters

and a practical guide to achieve plausible stereoscopic output. By

sharing our new insights, we hope that this work facilitates the

widespread adoption and creation of real-world VR, given that this

is currently such a thriving and exciting area in both academia and

industry.
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In this appendix, we provide the detailed derivations of some

equations presented in the main paper.

A PROJECTION EQUATION
Here, we provide the derivation of the panoramic image formation

in Sec. 5.1. When fixing the angle α of the camera along the circle,

the projection of Eq. 3 allows to project a world point X by(
x
y

)
� P(α )X with P(α ) = K[R(α ) |t] (18)

where (x ,y) is the projection in inhomogenous coordinates. As

described in Sec. 4.1 of our paper, the intrinsic calibration matrix is

defined as

K =



fx 0 cx
0 fy cy
0 0 1


(19)

where fx and fy denote the focal length in pixels in the horizontal

and vertical directions, and (cx , cy ) the principal point. The pose of
each camera is defined as

R(α ) =



− sin(α ) 0 − cos(α )
0 1 0

cos(α ) 0 − sin(α )


and t =



0

0

−r


(20)

where r is the circle radius. Since a panorama is just a (α ,y) slice of
L obtained by fixing x , the panoramic camera model can be obtained

by fixing x instead of α and solving for (α ,y). Given a 3D world

point X = (X ,Y ,Z ), the goal is to compute the camera angle α
that will project the 3D world point into the target column x . The
x-coordinate of the projection of X in the image by the projection

matrix P is obtained by:

x̂ =
P1 (α )[X, 1]T

P3 (α )[X, 1]T
(21)

where Pi is the i-th row of P. Constraining x̂ = x leads to the system:

x · P3 (α )[X, 1]T = P1 (α )[X, 1]T (22)

which gives

−x · (r − X · cos(α ) + Z · sin(α )) (23a)

= X · (cx · cos(α ) − fx · sin(α )) − cx · r (23b)

−Z · ( fx · cos(α ) + cx · sin(α )) (23c)

This leads to an equation of the form

A sin(α ) + B cos(α ) = C (24)

with the coefficients

A = X · fx − Z · (x − cx ) (25a)

B = Z · fx + X · (x − cx ) (25b)

C = −r · (x − cx ) (25c)

Two solutions exist:

α1 = ϕ − γ + 2πk (26a)

α2 = π − ϕ − γ + 2πk (26b)

where ϕ = sin
−1

(
C
D

)
, D =

√
A2 + B2, γ = tan

−1
(
B
A

)
, and k is an

integer. To obtain α , we set k = 0 and simply pick the solution for

which X lies in front of the camera.

(a) (b)

Fig. 20. (a) Illustration for fixing points at infinity. (b) Diagram of the mini-
mum distance. See text for details.

B FIXING PANORAMA ORIENTATION
As discussed in Sec. 5.5, the orientation of the generated panoramas

must be consistent for head-mounted displays, and we provided the

amount by which the panoramas have to be fixed.

Having panoramas with the same orientation means that points

at infinity must be fixed in the generated panoramas, i.e. be at the

same location. Let P and P ′ be two panoramas generated from

the columns x and x ′. In Fig. 20a, P∞ is a point at infinity and in

that case, the acquisition circle radius become negligible, then the

camera centers collapse to the circle center O . P∞ is observed with

an angle disparity ω = ω (x ) and ω ′ = ω (x ′) in the image planes I
and I ′ of two cameras at angle α and α ′. The fact that the point at
infinity must be at the same location in the panoramas P and P ′

means that we want α ′ = α . From Fig. 20a, to get the “directions"

of α ′ and α aligned, the direction of α ′ must be rotated by ω ′ − ω.
Concretely, by shifting the panorama P by this angle, then the two

panoramas P and P ′ have a consistent orientation.

C MINIMUM VISIBLE DEPTH
In Sec. 5.3, we presented the equation of the minimum visible depth.

Fig. 20b illustrates the minimum distance observed by two cameras

C1 and C2 with field of view β , on a circle of radius r centered at

O . The angle between the optical axis of the cameras is noted θ .
Given an angle γ (see Fig. 20b), the minimum distance observed by

C1 is d1 = ∥OQ1∥, and byC2 is d2 = ∥OQ2∥. These distances can be

computed by

d1 = r
sin(π − β/2)

sin(β/2 − γ )
(27a)

d2 = r
sin(π − β/2)

sin(β/2 − (θ − γ ))
(27b)

Thus theminimumdistance observed by the two cameras ismax(d1,d2),
which is obtained when γ = θ in practical settings. The minimum

distance observed by the two cameras is therefore:

d = r
sin(π − β/2)

sin(β/2 − θ )
. (28)
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